Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nature ; 625(7993): 166-174, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38057662

RESUMEN

Myeloid cells are known to suppress antitumour immunity1. However, the molecular drivers of immunosuppressive myeloid cell states are not well defined. Here we used single-cell RNA sequencing of human and mouse non-small cell lung cancer (NSCLC) lesions, and found that in both species the type 2 cytokine interleukin-4 (IL-4) was predicted to be the primary driver of the tumour-infiltrating monocyte-derived macrophage phenotype. Using a panel of conditional knockout mice, we found that only deletion of the IL-4 receptor IL-4Rα in early myeloid progenitors in bone marrow reduced tumour burden, whereas deletion of IL-4Rα in downstream mature myeloid cells had no effect. Mechanistically, IL-4 derived from bone marrow basophils and eosinophils acted on granulocyte-monocyte progenitors to transcriptionally programme the development of immunosuppressive tumour-promoting myeloid cells. Consequentially, depletion of basophils profoundly reduced tumour burden and normalized myelopoiesis. We subsequently initiated a clinical trial of the IL-4Rα blocking antibody dupilumab2-5 given in conjunction with PD-1/PD-L1 checkpoint blockade in patients with relapsed or refractory NSCLC who had progressed on PD-1/PD-L1 blockade alone (ClinicalTrials.gov identifier NCT05013450 ). Dupilumab supplementation reduced circulating monocytes, expanded tumour-infiltrating CD8 T cells, and in one out of six patients, drove a near-complete clinical response two months after treatment. Our study defines a central role for IL-4 in controlling immunosuppressive myelopoiesis in cancer, identifies a novel combination therapy for immune checkpoint blockade in humans, and highlights cancer as a systemic malady that requires therapeutic strategies beyond the primary disease site.


Asunto(s)
Médula Ósea , Carcinogénesis , Interleucina-4 , Mielopoyesis , Transducción de Señal , Animales , Humanos , Ratones , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/metabolismo , Médula Ósea/efectos de los fármacos , Médula Ósea/metabolismo , Carcinogénesis/efectos de los fármacos , Carcinogénesis/metabolismo , Carcinogénesis/patología , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/terapia , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Inhibidores de Puntos de Control Inmunológico/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Interleucina-4/metabolismo , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/terapia , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Monocitos/efectos de los fármacos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Recurrencia , Transducción de Señal/efectos de los fármacos
2.
Genes Dev ; 25(23): 2465-79, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22156207

RESUMEN

The microenvironment is known to critically modulate tumor progression, yet its role in regulating treatment response is poorly understood. Here we found increased macrophage infiltration and cathepsin protease levels in mammary tumors following paclitaxel (Taxol) chemotherapy. Cathepsin-expressing macrophages protected against Taxol-induced tumor cell death in coculture, an effect fully reversed by cathepsin inhibition and mediated partially by cathepsins B and S. Macrophages were also found to protect against tumor cell death induced by additional chemotherapeutics, specifically etoposide and doxorubicin. Combining Taxol with cathepsin inhibition in vivo significantly enhanced efficacy against primary and metastatic tumors, supporting the therapeutic relevance of this effect. Additionally incorporating continuous low-dose cyclophosphamide dramatically impaired tumor growth and metastasis and improved survival. This study highlights the importance of integrated targeting of the tumor and its microenvironment and implicates macrophages and cathepsins in blunting chemotherapeutic response.


Asunto(s)
Antineoplásicos/farmacología , Catepsinas/metabolismo , Macrófagos/patología , Neoplasias Mamarias Animales/tratamiento farmacológico , Paclitaxel/farmacología , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Interacciones Farmacológicas , Resistencia a Antineoplásicos , Etopósido/farmacología , Etopósido/uso terapéutico , Femenino , Neoplasias Pulmonares/prevención & control , Neoplasias Pulmonares/secundario , Neoplasias Mamarias Animales/enzimología , Neoplasias Mamarias Animales/patología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Invasividad Neoplásica , Paclitaxel/uso terapéutico
3.
Nat Rev Immunol ; 24(8): 596-613, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38467802

RESUMEN

Definitive haematopoiesis is the process by which haematopoietic stem cells, located in the bone marrow, generate all haematopoietic cell lineages in healthy adults. Although highly regulated to maintain a stable output of blood cells in health, the haematopoietic system is capable of extensive remodelling in response to external challenges, prioritizing the production of certain cell types at the expense of others. In this Review, we consider how acute insults, such as infections and cytotoxic drug-induced myeloablation, cause molecular, cellular and metabolic changes in haematopoietic stem and progenitor cells at multiple levels of the haematopoietic hierarchy to drive accelerated production of the mature myeloid cells needed to resolve the initiating insult. Moreover, we discuss how dysregulation or subversion of these emergency myelopoiesis mechanisms contributes to the progression of chronic inflammatory diseases and cancer.


Asunto(s)
Células Madre Hematopoyéticas , Inmunidad Innata , Mielopoyesis , Humanos , Mielopoyesis/inmunología , Inmunidad Innata/inmunología , Animales , Células Madre Hematopoyéticas/inmunología , Células Madre Hematopoyéticas/citología , Neoplasias/inmunología
4.
J Exp Med ; 220(8)2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37115584

RESUMEN

Hematopoietic stem cells (HSC) and downstream lineage-biased multipotent progenitors (MPP) tailor blood production and control myelopoiesis on demand. Recent lineage tracing analyses revealed MPPs to be major functional contributors to steady-state hematopoiesis. However, we still lack a precise resolution of myeloid differentiation trajectories and cellular heterogeneity in the MPP compartment. Here, we found that myeloid-biased MPP3 are functionally and molecularly heterogeneous, with a distinct subset of myeloid-primed secretory cells with high endoplasmic reticulum (ER) volume and FcγR expression. We show that FcγR+/ERhigh MPP3 are a transitional population serving as a reservoir for rapid production of granulocyte/macrophage progenitors (GMP), which directly amplify myelopoiesis through inflammation-triggered secretion of cytokines in the local bone marrow (BM) microenvironment. Our results identify a novel regulatory function for a secretory MPP3 subset that controls myeloid differentiation through lineage-priming and cytokine production and acts as a self-reinforcing amplification compartment in inflammatory stress and disease conditions.


Asunto(s)
Hematopoyesis , Receptores de IgG , Diferenciación Celular , Linaje de la Célula , Células Mieloides , Guanilato-Quinasas/metabolismo , Proteínas de la Membrana/metabolismo
5.
Nat Cell Biol ; 25(1): 30-41, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36650381

RESUMEN

Haematopoietic ageing is marked by a loss of regenerative capacity and skewed differentiation from haematopoietic stem cells (HSCs), leading to impaired blood production. Signals from the bone marrow niche tailor blood production, but the contribution of the old niche to haematopoietic ageing remains unclear. Here we characterize the inflammatory milieu that drives both niche and haematopoietic remodelling. We find decreased numbers and functionality of osteoprogenitors at the endosteum and expansion of central marrow LepR+ mesenchymal stromal cells associated with deterioration of the sinusoidal vasculature. Together, they create a degraded and inflamed old bone marrow niche. Niche inflammation in turn drives the chronic activation of emergency myelopoiesis pathways in old HSCs and multipotent progenitors, which promotes myeloid differentiation and hinders haematopoietic regeneration. Moreover, we show how production of interleukin-1ß (IL-1ß) by the damaged endosteum acts in trans to drive the proinflammatory nature of the central marrow, with damaging consequences for the old blood system. Notably, niche deterioration, HSC dysfunction and defective regeneration can all be ameliorated by blocking IL-1 signalling. Our results demonstrate that targeting IL-1 as a key mediator of niche inflammation is a tractable strategy to improve blood production during ageing.


Asunto(s)
Médula Ósea , Células Madre Hematopoyéticas , Médula Ósea/metabolismo , Diferenciación Celular , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Nicho de Células Madre , Interleucina-1/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-31988205

RESUMEN

The hematopoietic system is highly organized to maintain its functional integrity and to meet lifelong organismal demands. Hematopoietic stem cells (HSCs) must balance self-renewal with differentiation and the regeneration of the blood system. It is a complex balancing act between these competing HSC functions. Although highly quiescent at steady state, HSCs become activated in response to inflammatory cytokines and regenerative challenges. This activation phase leads to many intrinsic stresses such as replicative, metabolic, and oxidative stress, which can cause functional decline, impaired self-renewal, and exhaustion of HSCs. To cope with these insults, HSCs use both built-in and emergency-triggered stress-response mechanisms to maintain homeostasis and to defend against disease development. In this review, we discuss how the hematopoietic system operates in steady state and stress conditions, what strategies are used to maintain functional integrity, and how deregulation in the balance between self-renewal and regeneration can drive malignant transformation.


Asunto(s)
Hematopoyesis/fisiología , Células Madre Hematopoyéticas/metabolismo , Regeneración/fisiología , Animales , Antineoplásicos Inmunológicos , Diferenciación Celular , Citometría de Flujo/métodos , Factores de Crecimiento de Célula Hematopoyética/sangre , Células Madre Hematopoyéticas/citología , Homeostasis , Humanos , Ratones
7.
Nat Rev Cancer ; 20(7): 365-382, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32415283

RESUMEN

Haematopoiesis is governed by haematopoietic stem cells (HSCs) that produce all lineages of blood and immune cells. The maintenance of blood homeostasis requires a dynamic response of HSCs to stress, and dysregulation of these adaptive-response mechanisms underlies the development of myeloid leukaemia. Leukaemogenesis often occurs in a stepwise manner, with genetic and epigenetic changes accumulating in pre-leukaemic HSCs prior to the emergence of leukaemic stem cells (LSCs) and the development of acute myeloid leukaemia. Clinical data have revealed the existence of age-related clonal haematopoiesis, or the asymptomatic clonal expansion of mutated blood cells in the elderly, and this phenomenon is connected to susceptibility to leukaemic transformation. Here we describe how selection for specific mutations that increase HSC competitive fitness, in conjunction with additional endogenous and environmental changes, drives leukaemic transformation. We review the ways in which LSCs take advantage of normal HSC properties to promote survival and expansion, thus underlying disease recurrence and resistance to conventional therapies, and we detail our current understanding of leukaemic 'stemness' regulation. Overall, we link the cellular and molecular mechanisms regulating HSC behaviour with the functional dysregulation of these mechanisms in myeloid leukaemia and discuss opportunities for targeting LSC-specific mechanisms for the prevention or cure of malignant diseases.


Asunto(s)
Carcinogénesis/genética , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/fisiología , Leucemia Mieloide Aguda/fisiopatología , Antineoplásicos/farmacología , Carcinogénesis/efectos de los fármacos , Carcinogénesis/patología , Interacción Gen-Ambiente , Inestabilidad Genómica/efectos de los fármacos , Inestabilidad Genómica/fisiología , Hematopoyesis/genética , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutación/efectos de los fármacos , Mutación/genética , Mutación/fisiología , Nicho de Células Madre/efectos de los fármacos , Nicho de Células Madre/fisiología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/fisiología
8.
Cell Rep ; 19(1): 101-113, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28380350

RESUMEN

Antimitotic agents, including Taxol, disrupt microtubule dynamics and cause a protracted mitotic arrest and subsequent cell death. Despite the broad utility of these drugs in breast cancer and other tumor types, clinical response remains variable. Tumor-associated macrophages (TAMs) suppress the duration of Taxol-induced mitotic arrest in breast cancer cells and promote earlier mitotic slippage. This correlates with a decrease in the phosphorylated form of histone H2AX (γH2AX), decreased p53 activation, and reduced cancer cell death in interphase. TAMs promote cancer cell viability following mitotic slippage in a manner sensitive to MAPK/ERK kinase (MEK) inhibition. Acute depletion of major histocompatibility complex class II low (MHCIIlo) TAMs increased Taxol-induced DNA damage and apoptosis in cancer cells, leading to greater efficacy in intervention trials. MEK inhibition blocked the protective capacity of TAMs and phenocopied the effects of TAM depletion on Taxol treatment. TAMs suppress the cytotoxic effects of Taxol, in part through cell non-autonomous modulation of mitotic arrest in cancer cells, and targeting TAM-cancer cell interactions potentiates Taxol efficacy.


Asunto(s)
Antimitóticos/farmacología , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Macrófagos/inmunología , Mitosis/efectos de los fármacos , Paclitaxel/farmacología , Animales , Antimitóticos/uso terapéutico , Benzotiazoles/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Daño del ADN , Células Endoteliales/efectos de los fármacos , Femenino , Histonas/metabolismo , Humanos , Macrófagos/efectos de los fármacos , Complejo Mayor de Histocompatibilidad , Ratones , Ratones Transgénicos , Quinasas de Proteína Quinasa Activadas por Mitógenos , Paclitaxel/uso terapéutico , Ácidos Picolínicos/farmacología , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/metabolismo
9.
Nat Cell Biol ; 19(8): 974-987, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28737771

RESUMEN

Obesity is associated with chronic, low-grade inflammation, which can disrupt homeostasis within tissue microenvironments. Given the correlation between obesity and relative risk of death from cancer, we investigated whether obesity-associated inflammation promotes metastatic progression. We demonstrate that obesity causes lung neutrophilia in otherwise normal mice, which is further exacerbated by the presence of a primary tumour. The increase in lung neutrophils translates to increased breast cancer metastasis to this site, in a GM-CSF- and IL5-dependent manner. Importantly, weight loss is sufficient to reverse this effect, and reduce serum levels of GM-CSF and IL5 in both mouse models and humans. Our data indicate that special consideration of the obese patient population is critical for effective management of cancer progression.


Asunto(s)
Neoplasias de la Mama/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Interleucina-5/metabolismo , Neoplasias Pulmonares/metabolismo , Pulmón/metabolismo , Infiltración Neutrófila , Neutrófilos/metabolismo , Obesidad/metabolismo , Neumonía/metabolismo , Adiposidad , Traslado Adoptivo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Técnicas de Cocultivo , Dieta con Restricción de Grasas , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Factor Estimulante de Colonias de Granulocitos y Macrófagos/sangre , Interleucina-5/sangre , Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/prevención & control , Neoplasias Pulmonares/secundario , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Neutrófilos/patología , Neutrófilos/trasplante , Obesidad/complicaciones , Obesidad/dietoterapia , Obesidad/patología , Neumonía/etiología , Neumonía/patología , Neumonía/prevención & control , Transducción de Señal , Factores de Tiempo , Microambiente Tumoral , Pérdida de Peso
10.
Cancer Res ; 77(22): 6400-6414, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28951461

RESUMEN

Perineural invasion (PNI) is an ominous event strongly linked to poor clinical outcome. Cells residing within peripheral nerves collaborate with cancer cells to enable PNI, but the contributing conditions within the tumor microenvironment are not well understood. Here, we show that CCR2-expressing inflammatory monocytes (IM) are preferentially recruited to sites of PNI, where they differentiate into macrophages and potentiate nerve invasion through a cathepsin B-mediated process. A series of adoptive transfer experiments with genetically engineered donors and recipients demonstrated that IM recruitment to nerves was driven by CCL2 released from Schwann cells at the site of PNI, but not CCL7, an alternate ligand for CCR2. Interruption of either CCL2-CCR2 signaling or cathepsin B function significantly impaired PNI in vivo Correlative studies in human specimens demonstrated that cathepsin B-producing macrophages were enriched in invaded nerves, which was associated with increased local tumor recurrence. These findings deepen our understanding of PNI pathogenesis and illuminate how PNI is driven in part by corruption of a nerve repair program. Further, they support the exploration of inhibiting IM recruitment and function as a targeted therapy for PNI. Cancer Res; 77(22); 6400-14. ©2017 AACR.


Asunto(s)
Catepsina B/metabolismo , Quimiocina CCL2/metabolismo , Monocitos/metabolismo , Neoplasias Pancreáticas/metabolismo , Nervios Periféricos/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Quimiocina CCL2/genética , Humanos , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Desnudos , Monocitos/patología , Invasividad Neoplásica , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Nervios Periféricos/patología , Receptores CCR2/genética , Receptores CCR2/metabolismo , Células de Schwann/metabolismo , Trasplante Heterólogo
11.
Cell Rep ; 16(6): 1762-1773, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27477282

RESUMEN

Deregulated cathepsin proteolysis occurs across numerous cancers, but in vivo substrates mediating tumorigenesis remain ill-defined. Applying 8-plex iTRAQ terminal amine isotopic labeling of substrates (TAILS), a systems-level N-terminome degradomics approach, we identified cathepsin B, H, L, S, and Z in vivo substrates and cleavage sites with the use of six different cathepsin knockout genotypes in the Rip1-Tag2 mouse model of pancreatic neuroendocrine tumorigenesis. Among 1,935 proteins and 1,114 N termini identified by TAILS, stable proteolytic products were identified in wild-type tumors compared with one or more different cathepsin knockouts (17%-44% of 139 cleavages). This suggests a lack of compensation at the substrate level by other cathepsins. The majority of neo-N termini (56%-83%) for all cathepsins was consistent with protein degradation. We validated substrates, including the glycolytic enzyme pyruvate kinase M2 associated with the Warburg effect, the ER chaperone GRP78, and the oncoprotein prothymosin-alpha. Thus, the identification of cathepsin substrates in tumorigenesis improves the understanding of cathepsin functions in normal physiology and cancer.


Asunto(s)
Catepsinas/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteoma/metabolismo , Animales , Carcinogénesis/metabolismo , Chaperón BiP del Retículo Endoplásmico , Proteínas de Choque Térmico/metabolismo , Ratones Transgénicos , Proteínas Oncogénicas/metabolismo , Procesamiento Proteico-Postraduccional , Proteómica/métodos , Especificidad por Sustrato/fisiología
12.
Nat Rev Cancer ; 15(12): 712-29, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26597527

RESUMEN

Cysteine cathepsin protease activity is frequently dysregulated in the context of neoplastic transformation. Increased activity and aberrant localization of proteases within the tumour microenvironment have a potent role in driving cancer progression, proliferation, invasion and metastasis. Recent studies have also uncovered functions for cathepsins in the suppression of the response to therapeutic intervention in various malignancies. However, cathepsins can be either tumour promoting or tumour suppressive depending on the context, which emphasizes the importance of rigorous in vivo analyses to ascertain function. Here, we review the basic research and clinical findings that underlie the roles of cathepsins in cancer, and provide a roadmap for the rational integration of cathepsin-targeting agents into clinical treatment.


Asunto(s)
Antineoplásicos/uso terapéutico , Catepsinas/metabolismo , Inhibidores de Cisteína Proteinasa/uso terapéutico , Neoplasias/tratamiento farmacológico , Animales , Catepsinas/antagonistas & inhibidores , Progresión de la Enfermedad , Humanos , Neoplasias/enzimología , Neoplasias/patología
13.
Cancer Res ; 75(17): 3479-91, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26269531

RESUMEN

Tumor relapse after chemotherapy-induced regression is a major clinical problem, because it often involves inoperable metastatic disease. Tumor-associated macrophages (TAM) are known to limit the cytotoxic effects of chemotherapy in preclinical models of cancer. Here, we report that an alternatively activated (M2) subpopulation of TAMs (MRC1(+)TIE2(Hi)CXCR4(Hi)) accumulate around blood vessels in tumors after chemotherapy, where they promote tumor revascularization and relapse, in part, via VEGF-A release. A similar perivascular, M2-related TAM subset was present in human breast carcinomas and bone metastases after chemotherapy. Although a small proportion of M2 TAMs were also present in hypoxic tumor areas, when we genetically ablated their ability to respond to hypoxia via hypoxia-inducible factors 1 and 2, tumor relapse was unaffected. TAMs were the predominant cells expressing immunoreactive CXCR4 in chemotherapy-treated mouse tumors, with the highest levels expressed by MRC1(+) TAMs clustering around the tumor vasculature. Furthermore, the primary CXCR4 ligand, CXCL12, was upregulated in these perivascular sites after chemotherapy, where it was selectively chemotactic for MRC1(+) TAMs. Interestingly, HMOX-1, a marker of oxidative stress, was also upregulated in perivascular areas after chemotherapy. This enzyme generates carbon monoxide from the breakdown of heme, a gas known to upregulate CXCL12. Finally, pharmacologic blockade of CXCR4 selectively reduced M2-related TAMs after chemotherapy, especially those in direct contact with blood vessels, thereby reducing tumor revascularization and regrowth. Our studies rationalize a strategy to leverage chemotherapeutic efficacy by selectively targeting this perivascular, relapse-promoting M2-related TAM cell population.


Asunto(s)
Neoplasias de la Mama/genética , Macrófagos/patología , Recurrencia Local de Neoplasia/genética , Neovascularización Patológica/genética , Receptores CXCR4/biosíntesis , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Carcinoma Pulmonar de Lewis/tratamiento farmacológico , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/patología , Quimiocina CXCL12/biosíntesis , Quimiocina CXCL12/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Macrófagos/metabolismo , Ratones , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/patología , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Neovascularización Patológica/tratamiento farmacológico , Receptores CXCR4/antagonistas & inhibidores , Receptores CXCR4/genética , Transducción de Señal/efectos de los fármacos , Tamoxifeno/administración & dosificación , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Factor A de Crecimiento Endotelial Vascular/genética
14.
Cell Res ; 23(2): 179-81, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22945358

RESUMEN

Resistance to molecularly targeted therapies can result from genomic alterations in the tumor cells that reactivate oncogenic signaling. Less is known of tumor cell-extrinsic mechanisms of resistance to targeted therapies. Two recent studies have identified HGF as a soluble factor capable of mediating resistance to BRAF and HER2 inhibitors in a paracrine manner. These new findings suggest an important role for the tumor microenvironment in mediating resistance to molecularly targeted therapies.


Asunto(s)
Microambiente Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Factor de Crecimiento de Hepatocito/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/metabolismo , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-2/metabolismo , Transducción de Señal/efectos de los fármacos
16.
Nat Med ; 19(10): 1264-72, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24056773

RESUMEN

Glioblastoma multiforme (GBM) comprises several molecular subtypes, including proneural GBM. Most therapeutic approaches targeting glioma cells have failed. An alternative strategy is to target cells in the glioma microenvironment, such as tumor-associated macrophages and microglia (TAMs). Macrophages depend on colony stimulating factor-1 (CSF-1) for differentiation and survival. We used an inhibitor of the CSF-1 receptor (CSF-1R) to target TAMs in a mouse proneural GBM model, which significantly increased survival and regressed established tumors. CSF-1R blockade additionally slowed intracranial growth of patient-derived glioma xenografts. Surprisingly, TAMs were not depleted in treated mice. Instead, glioma-secreted factors, including granulocyte-macrophage CSF (GM-CSF) and interferon-γ (IFN-γ), facilitated TAM survival in the context of CSF-1R inhibition. Expression of alternatively activated M2 markers decreased in surviving TAMs, which is consistent with impaired tumor-promoting functions. These gene signatures were associated with enhanced survival in patients with proneural GBM. Our results identify TAMs as a promising therapeutic target for proneural gliomas and establish the translational potential of CSF-1R inhibition for GBM.


Asunto(s)
Neoplasias Encefálicas/patología , Glioblastoma/patología , Macrófagos/citología , Receptor de Factor Estimulante de Colonias de Macrófagos/antagonistas & inhibidores , Animales , Neoplasias Encefálicas/metabolismo , Progresión de la Enfermedad , Glioblastoma/metabolismo , Ratones , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA