Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Int J Mol Sci ; 24(18)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37762260

RESUMEN

In cancer therapy, new therapeutic nanoformulations able to mediate targeted chemotherapy are required. Recently, biomimetic magnetic nanoparticles (BMNPs) mediated by MamC, a magnetosome protein from Magnetococcus marinus MC-1, have proven, in vitro and in vivo, to be effective drug nanocarriers (following the application of an external gradient magnetic field) and to allow combination with hyperthermia. However, these nanoassemblies require further optimization to improve cytocompatibility, stability and active targeting ability. Herein, we describe the production of the magnetoliposomes (LP) embedding BMNPs functionalized (or not) with doxorubicin (DOXO), [LP(+/-DOXO-BMNPs)], and their surface modification with the DO-24 mAb, which targets the human Met/HGF receptor's ectodomain (overexpressed in many cancers). Nanoformulations were extensively characterized using TEM, DLS, FTIR and when tested in vitro, the lipid coating increased the colloidal stability and their biocompatibility, favoring the cellular uptake in cells overexpressing the cognate receptor. Indeed, the magnetoliposomes mAb-LP(+/-DOXO-BMNPs) exerted a specific active targeting ability by the presence of the mAb that preserved its immunocompetence. Both LP(BMNPs) and mAb-LP(BMNPs) were not toxic to cells, while +/-mAb-LP(DOXO-BMNPs) nanoformulations were indeed cytotoxic. Therefore, this study represents a proof of concept for the development of promising drug carriers for cancer therapy based on local chemotherapy directed by mAbs.


Asunto(s)
Biomimética , Neoplasias , Humanos , Sistemas de Liberación de Medicamentos , Anticuerpos Monoclonales/farmacología , Portadores de Fármacos , Transporte Biológico , Doxorrubicina/farmacología , Neoplasias/tratamiento farmacológico
2.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34502309

RESUMEN

Skeletal muscles represent 40% of body mass and its native regenerative capacity can be permanently lost after a traumatic injury, congenital diseases, or tumor ablation. The absence of physiological regeneration can hinder muscle repair preventing normal muscle tissue functions. To date, tissue engineering (TE) represents one promising option for treating muscle injuries and wasting. In particular, hydrogels derived from the decellularized extracellular matrix (dECM) are widely investigated in tissue engineering applications thanks to their essential role in guiding muscle regeneration. In this work, the myogenic potential of dECM substrate, obtained from decellularized bovine pericardium (Tissuegraft Srl), was evaluated in vitro using C2C12 murine muscle cells. To assess myotubes formation, the width, length, and fusion indexes were measured during the differentiation time course. Additionally, the ability of dECM to support myogenesis was assessed by measuring the expression of specific myogenic markers: α-smooth muscle actin (α-sma), myogenin, and myosin heavy chain (MHC). The results obtained suggest that the dECM niche was able to support and enhance the myogenic potential of C2C12 cells in comparison of those grown on a plastic standard surface. Thus, the use of extracellular matrix proteins, as biomaterial supports, could represent a promising therapeutic strategy for skeletal muscle tissue engineering.


Asunto(s)
Diferenciación Celular , Matriz Extracelular/fisiología , Desarrollo de Músculos , Mioblastos/citología , Pericardio/citología , Ingeniería de Tejidos/métodos , Animales , Bovinos , Hidrogeles/química , Ratones , Andamios del Tejido/química
3.
Langmuir ; 34(45): 13713-13724, 2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30394747

RESUMEN

New biomimetic magnetite nanoparticles (hereafter BMNPs) with sizes larger than most common superparamagnetic nanoparticles were produced in the presence of the recombinant MamC protein from Magnetococcus marinus MC-1 and functionalized with doxorubicin (DOXO) intended as potential drug nanocarriers. Unlike inorganic magnetite nanoparticles, in BMNPs the MamC protein controls their size and morphology, providing them with magnetic properties consistent with a large magnetic moment per particle; moreover, it provides the nanoparticles with novel surface properties. BMNPs display the isoelectric point at pH 4.4, being strongly negatively charged at physiological pH (pH 7.4). This allows both (i) their functionalization with DOXO, which is positively charged at pH 7.4, and (ii) the stability of the DOXO-surface bond and DOXO release to be pH dependent and governed by electrostatic interactions. DOXO adsorption follows a Langmuir-Freundlich model, and the coupling of DOXO to BMNPs (binary biomimetic nanoparticles) is very stable at physiological pH (maximum release of 5% of the drug adsorbed). Conversely, when pH decreases, these electrostatic interactions weaken, and at pH 5, DOXO is released up to ∼35% of the amount initially adsorbed. The DOXO-BMNPs display cytotoxicity on the GTL-16 human gastric carcinoma cell line in a dose-dependent manner, reaching about ∼70% of mortality at the maximum amount tested, while the nonloaded BMNPs are fully cytocompatible. The present data suggest that BMNPs could be useful as potential drug nanocarriers with a drug adsorption-release governed by changes in local pH values.


Asunto(s)
Proteínas Bacterianas/química , Materiales Biomiméticos/química , Doxorrubicina/química , Portadores de Fármacos/química , Nanopartículas de Magnetita/química , Adsorción , Alphaproteobacteria/química , Proteínas Bacterianas/toxicidad , Materiales Biomiméticos/toxicidad , Línea Celular Tumoral , Portadores de Fármacos/síntesis química , Portadores de Fármacos/toxicidad , Liberación de Fármacos , Hemólisis/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Nanopartículas de Magnetita/toxicidad , Tamaño de la Partícula , Proteínas Recombinantes/química , Proteínas Recombinantes/toxicidad , Propiedades de Superficie
4.
Langmuir ; 31(5): 1766-75, 2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25602940

RESUMEN

Multifunctional biomimetic nanoparticles (NPs) are acquiring increasing interest as carriers in medicine and basic research since they can efficiently combine labels for subsequent tracking, moieties for specific cell targeting, and bioactive molecules, e.g., drugs. In particular, because of their easy synthesis, low cost, good biocompatibility, high resorbability, easy surface functionalization, and pH-dependent solubility, nanocrystalline apatites are promising candidates as nanocarriers. This work describes the synthesis and characterization of bioinspired apatite nanoparticles to be used as fluorescent nanocarriers targeted against the Met/hepatocyte growth factor receptor, which is considered a tumor associated cell surface marker of many cancers. To this aim the nanoparticles have been labeled with Fluorescein-5-isothiocyanate (FITC) by simple isothermal adsorption, in the absence of organic, possibly toxic, molecules, and then functionalized with a monoclonal antibody (mAb) directed against such a receptor. Direct labeling of the nanoparticles allowed tracking the moieties with spatiotemporal resolution and thus following their interaction with cells, expressing or not the targeted receptor, as well as their fate in vitro. Cytofluorometry and confocal microscopy experiments showed that the functionalized nanocarriers, which emitted a strong fluorescent signal, were rapidly and specifically internalized in cells expressing the receptor. Indeed, we found that, once inside the cells expressing the receptor, mAb-functionalized FITC nanoparticles partially dissociated in their two components, with some mAbs being recycled to the cell surface and the FITC-labeled nanoparticles remaining in the cytosol. This work thus shows that FITC-labeled nanoapatites are very promising probes for targeted cell imaging applications.


Asunto(s)
Anticuerpos Monoclonales/química , Apatitas/química , Materiales Biomiméticos/química , Fluoresceína-5-Isotiocianato/química , Colorantes Fluorescentes/química , Imagen Molecular/métodos , Nanopartículas/química , Anticuerpos Monoclonales/inmunología , Transporte Biológico , Materiales Biomiméticos/síntesis química , Materiales Biomiméticos/metabolismo , Línea Celular Tumoral , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/metabolismo , Humanos , Espacio Intracelular/metabolismo , Ensayo de Materiales , Proteínas Proto-Oncogénicas c-met/inmunología
5.
Pharmaceutics ; 15(6)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37376159

RESUMEN

New therapeutic strategies are required in cancer therapy. Considering the prominent role of tumor-associated macrophages (TAMs) in the development and progression of cancer, the re-education of TAMs in the tumor microenvironment (TME) could represent a potential approach for cancer immunotherapy. TAMs display an irregular unfolded protein response (UPR) in their endoplasmic reticulum (ER) to endure environmental stress and ensure anti-cancer immunity. Therefore, nanotechnology could be an attractive tool to modulate the UPR in TAMs, providing an alternative strategy for TAM-targeted repolarization therapy. Herein, we developed and tested polydopamine-coupled magnetite nanoparticles (PDA-MNPs) functionalized with small interfering RNAs (siRNA) to downregulate the protein kinase R (PKR)-like ER kinase (PERK) expression in TAM-like macrophages derived from murine peritoneal exudate (PEMs). After the evaluation of the cytocompatibility, the cellular uptake, and the gene silencing efficiency of PDA-MNPs/siPERK in PEMs, we analyzed their ability to re-polarize in vitro these macrophages from M2 to the M1 inflammatory anti-tumor phenotype. Our results indicate that PDA-MNPs, with their magnetic and immunomodulator features, are cytocompatible and able to re-educate TAMs toward the M1 phenotype by PERK inhibition, a UPR effector contributing to TAM metabolic adaptation. These findings can provide a novel strategy for the development of new tumor immunotherapies in vivo.

6.
Nanomaterials (Basel) ; 13(16)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37630883

RESUMEN

The eggshell is a biomineral consisting of CaCO3 in the form of calcite phase and a pervading organic matrix (1-3.5 wt.%). Transforming eggshell calcite particles into calcium phosphate (apatite) micro-nanoparticles opens the door to repurposing the eggshell waste as materials with potential biomedical applications, fulfilling the principles of the circular economy. Previous methods to obtain these particles consisted mainly of two steps, the first one involving the calcination of the eggshell. In this research, direct transformation by a one-pot hydrothermal method ranging from 100-200 °C was studied, using suspensions with a stoichiometric P/CaCO3 ratio, K2HPO4 as P reagent, and eggshells particles (Ø < 50 µm) both untreated and treated with NaClO to remove surface organic matter. In the untreated group, the complete conversion was achieved at 160 °C, and most particles displayed a hexagonal plate morphology, eventually with a central hole. In the treated group, this replacement occurred at 180 °C, yielding granular (spherulitic) apatite nanoparticles. The eggshell particles and apatite micro-nanoparticles were cytocompatible when incubated with MG-63 human osteosarcoma cells and m17.ASC murine mesenchymal stem cells and promoted the osteogenic differentiation of m17.ASC cells. The study results are useful for designing and fabricating biocompatible microstructured materials with osteoinductive properties for applications in bone tissue engineering and dentistry.

7.
J Mater Chem B ; 11(32): 7766-7777, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37476854

RESUMEN

We have developed a straightforward, one-pot, low-temperature hydrothermal method to transform oyster shell waste particles (bCCP) from the species Crassostrea gigas (Mg-calcite, 5 wt% Mg) into hydroxyapatite (HA) micro/nanoparticles. The influence of the P reagents (H3PO4, KH2PO4, and K2HPO4), P/bCCP molar ratios (0.24, 0.6, and 0.96), digestion temperatures (25-200 °C), and digestion times (1 week-2 months) on the transformation process was thoroughly investigated. At 1 week, the minimum temperature to yield the full transformation significantly reduced from 160 °C to 120 °C when using K2HPO4 instead of KH2PO4 at a P/bCCP ratio of 0.6, and even to 80 °C at a P/bCCP ratio of 0.96. The transformation took place via a dissolution-reprecipitation mechanism driven by the favorable balance between HA precipitation and bCCP dissolution, due to the lower solubility product of HA than that of calcite at any of the tested temperatures. Both the bCCP and the derived HA particles were cytocompatible for MG-63 human osteosarcoma cells and m17.ASC murine mesenchymal stem cells, and additionally, they promoted the osteogenic differentiation of m17.ASC, especially the HA particles. Because of their physicochemical features and biological compatibility, both particles could be useful osteoinductive platforms for translational applications in bone tissue engineering.


Asunto(s)
Carbonato de Calcio , Nanopartículas , Ratones , Animales , Humanos , Durapatita/farmacología , Osteogénesis , Exoesqueleto
8.
Polymers (Basel) ; 12(8)2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32824256

RESUMEN

The design of novel nanomaterials that can be used as multifunctional platforms allowing the combination of therapies is gaining increased interest. Moreover, if this nanomaterial is intended for a targeted drug delivery, the use of several guidance methods to increase guidance efficiency is also crucial. Magnetic nanoparticles (MNPs) allow this combination of therapies and guidance strategies. In fact, MNPs can be used simultaneously as drug nanocarriers and magnetic hyperthermia agents and, moreover, they can be guided toward the target by an external magnetic field and by their functionalization with a specific probe. However, it is difficult to find a system based on MNPs that exhibits optimal conditions as a drug nanocarrier and as a magnetic hyperthermia agent. In this work, a novel nanoformulation is proposed to be used as a multifunctional platform that also allows dual complementary guidance. This nanoformulation is based on mixtures of inorganic magnetic nanoparticles (M) that have been shown to be optimal hyperthermia agents, and biomimetic magnetic nanoparticles (BM), that have been shown to be highly efficient drug nanocarriers. The presence of the magnetosome protein MamC at the surface of BM confers novel surface properties that allow for the efficient and stable functionalization of these nanoparticles without the need of further coating, with the release of the relevant molecule being pH-dependent, improved by magnetic hyperthermia. The BM are functionalized with Doxorubicin (DOXO) as a model drug and with an antibody that allows for dual guidance based on a magnetic field and on an antibody. The present study represents a proof of concept to optimize the nanoformulation composition in order to provide the best performance in terms of the magnetic hyperthermia agent and drug nanocarrier.

9.
Cancers (Basel) ; 12(9)2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32916816

RESUMEN

Biomimetic magnetic nanoparticles mediated by magnetosome proteins (BMNPs) are potential innovative tools for cancer therapy since, besides being multifunctional platforms, they can be manipulated by an external gradient magnetic field (GMF) and/or an alternating magnetic field (AMF), mediating targeting and hyperthermia, respectively. We evaluated the cytocompatibility/cytotoxicity of BMNPs and Doxorubicin (DOXO)-BMNPs in the presence/absence of GMF in 4T1 and MCF-7 cells as well as their cellular uptake. We analyzed the biocompatibility and in vivo distribution of BMNPs as well as the effect of DOXO-BMNPs in BALB/c mice bearing 4T1 induced mammary carcinomas after applying GMF and AMF. Results: GMF enhanced the cell uptake of both BMNPs and DOXO-BMNPs and the cytotoxicity of DOXO-BMNPs. BMNPs were biocompatible when injected intravenously in BALB/c mice. The application of GMF on 4T1 tumors after each of the repeated (6×) iv administrations of DOXO-BMNPs enhanced tumor growth inhibition when compared to any other treatment, including that with soluble DOXO. Moreover, injection of DOXO-BMNPs in the tumor combined with application of an AMF resulted in a significant tumor weight reduction. These promising results show the suitability of BMNPs as magnetic nanocarriers for local targeted chemotherapy and as local agents for hyperthermia.

10.
Nanomaterials (Basel) ; 10(2)2020 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-31979272

RESUMEN

In the field of Nanomedicine, there is an increasing demand for new inorganic nanophosphors with low cytotoxicity and efficient loading-release ability of drugs for applications in bioimaging and drug delivery. This work assesses the potentiality of matured Eu-doped citrate-coated carbonated apatite nanoparticles to be used as theranostic platforms, for bioimaging, as luminescent nanoprobes, and for drug delivery applications, using Doxorubicin as a model drug. The drug adsorption isotherm fits the Langmuir-Freundlich (LF) model, showing that the Eu:cit-cAp nanoparticles can carry a maximum of 0.29 ± 0.02 mg Doxo mg Eu:cit-cAp-1 (Qmax). The affinity constant KFL for this binding is 44 ± 2 mL mg-1, and the cooperativity coefficient r is 6 ± 1. The nanoparticle suspensions presented charge reversion from negative to positive after loading with Doxo as revealed by the ζ-potential versus pH characterization. The release of drug from the loaded nanoparticles was found to be strongly pH-dependent, being around 5 wt % at physiological pH 7.4 and 20 wt % at pH 5, in experiments lasting 24 h. Luminescence spectroscopic measurements of Doxo-loaded nanoparticles revealed the increase of luminescence with a decrease in the amount of adsorbed Doxo, due to the so-called inner filter effect. The nanoparticles free of Doxo were cytocompatible when interacted with two human cell lines derived respectively from a gastric carcinoma (GTL-16), and a hepatocarcinoma (Huh7), while Doxo-loaded nanoparticles displayed significant toxicity in a dose-dependent relationship. Therefore, the new nanoassemblies might have a dual function, as nanoprobes in bioimaging by detecting the fate of the nanoparticles in biological environments, and for monitoring the delivery of the drug in such environments, by measuring the rise of the luminescence provided by the desorption of Doxo.

11.
Nanomaterials (Basel) ; 9(11)2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31698869

RESUMEN

Tumor-targeted drug-loaded nanocarriers represent innovative and attractive tools for cancer therapy. Several magnetic nanoparticles (MNPs) were analyzed as potential tumor-targeted drug-loaded nanocarriers after functionalization with anti-Met oncogene (anti-Met/HGFR) monoclonal antibody (mAb) and doxorubicin (DOXO). Their cytocompatibility, stability, immunocompetence (immunoprecipitation), and their interactions with cancer cells in vitro (Perl's staining, confocal microscopy, cytotoxic assays: MTT, real time toxicity) and with tumors in vivo (Perl's staining) were evaluated. The simplest silica- and calcium-free mAb-loaded MNPs were the most cytocompatible, the most stable, and showed the best immunocompetence and specificity. These mAb-functionalized MNPs specifically interacted with the surface of Met/HGFR-positive cells, and not with Met/HGFR-negative cells; they were not internalized, but they discharged in the targeted cells DOXO, which reached the nucleus, exerting cytotoxicity. The presence of mAbs on DOXO-MNPs significantly increased their cytotoxicity on Met/HGFR-positive cells, while no such effect was detectable on Met/HGFR-negative cells. Bare MNPs were biocompatible in vivo; mAb presence on MNPs induced a better dispersion within the tumor mass when injected in situ in Met/HGFR-positive xenotumors in NOD/SCID-γnull mice. These MNPs may represent a new and promising carrier for in vivo targeted drug delivery, in which applied gradient and alternating magnetic fields can enhance targeting and induce hyperthermia respectively.

12.
J Colloid Interface Sci ; 538: 174-186, 2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30504057

RESUMEN

Biocompatible nanosystems exhibiting long-lifetime (∼millisecond) luminescence features are particularly relevant in the field of bioimaging. In this study, citrate-functionalized calcium-doped europium phosphates nanophosphors of the rhabdophane type were prepared at different synthesis times by a bioinspired crystallization route, consisting in thermal decomplexing of Ca2+/Eu3+ /citrate/phosphate/carbonate solutions. The general formula of this material is CaαEu1-α(PO4)1-α(HPO4)α·nH2O, with α ranging from 0 to 0.58 and n ∼ 1. A thorough characterization of the nanoparticles has been carried out by XRD (including data processing with Topas 6.0), HR-TEM, TEM, FTIR, TG/DTA, ICP, dynamic light scattering (DLS), electrophoretic mobility, and fluorescence spectroscopy. Based on these results a crystallization mechanism involving the filling of cationic sites with Ca2+ions associated to a concomitant adjustment of the PO4/HPO4 ratio was proposed. Upon calcium doping, the aspect ratio of the nanoparticles as well as of the crystalline domains decreased and the relative luminescence intensity (R.L.I.) could be modulated. Neither the pH nor the ionic strength, nor the temperature (from 25 to 37 °C) affected significantly the R.L.I. of particles after resuspension in water, leading to rather steady luminescence features usable in a large domain of conditions. This new class of luminescent compounds has been proved to be fully cytocompatible relative to GTL-16 human carcinoma cells and showed an improved cytocompatibility as the Ca2+ content increased when contacted with the more sensitive m17. ASC murine mesenchymal stem cells. These biocompatible nanoparticles thus appear as promising new tailorable tools for biomedical applications as luminescent nanoprobes.


Asunto(s)
Fosfatos de Calcio/química , Citratos/química , Europio/química , Luminiscencia , Nanopartículas/química , Cristalización , Humanos , Tamaño de la Partícula , Propiedades de Superficie
13.
RSC Adv ; 8(5): 2385-2397, 2018 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-35541482

RESUMEN

Nanomedicine covers the application of nanotechnologies in medicine. Of particular interest is the setup of highly-cytocompatible nanoparticles for use as drug carriers and/or for medical imaging. In this context, luminescent nanoparticles are appealing nanodevices with great potential for imaging of tumor or other targetable cells, and several strategies are under investigation. Biomimetic apatite nanoparticles represent candidates of choice in nanomedicine due to their high intrinsic biocompatibility and to the highly accommodative properties of the apatite structure, allowing many ionic substitutions. In this work, the preparation of biomimetic (bone-like) citrate-coated carbonated apatite nanoparticles doped with europium ions is explored using the citrate-based thermal decomplexing approach. The technique allows the preparation of the single apatitic phase with nanosized dimensions only at Eu3+ doping concentrations ≤0.01 M at some timepoints. The presence of the citrate coating on the particle surface (as found in bone nanoapatites) and Eu3+ substituting Ca2+ is beneficial for the preparation of stable suspensions at physiological pH, as witnessed by the ζ-potential versus pH characterizations. The sensitized luminescence features of the solid particles, as a function of the Eu3+ doping concentrations and the maturation times, have been thoroughly investigated, while those of particles in suspensions have been investigated at different pHs, ionic strengths and temperatures. Their cytocompatibility is illustrated in vitro on two selected cell types, the GTL-16 human carcinoma cells and the m17.ASC murine mesenchymal stem cells. This contribution shows the potentiality of the thermal decomplexing method for the setup of luminescent biomimetic apatite nanoprobes with controlled features for use in bioimaging.

14.
Methods Mol Biol ; 1553: 169-182, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28229415

RESUMEN

Adipose tissue has been shown to be particularly advantageous as source of mesenchymal stem cells (MSCs), because of its easy accessibility, and the possibility of obtaining stem cells in high yields. MSCs are obtained from the so-called Stromal Vascular Fraction, (SVF), exploiting their property of adhering to plastic surfaces and can be further purified by positive or negative immunomagnetic selection with appropriately chosen antibodies. These cells (Stromal Stem Cells, SSCs) can then be directly analyzed, frozen in liquid nitrogen, or expanded for further applications, e.g., for tissue engineering and regenerative medicine. The methodology described here in detail for SSCs isolated from mouse subcutaneous adipose tissue can be applied to human tissues, such as epicardium.


Asunto(s)
Tejido Adiposo/citología , Separación Celular , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Animales , Biomarcadores , Técnicas de Cultivo de Célula , Diferenciación Celular , Linaje de la Célula , Separación Celular/métodos , Células Cultivadas , Criopreservación/métodos , Humanos , Inmunofenotipificación/métodos , Ratones , Microscopía Fluorescente
15.
PLoS One ; 10(9): e0137999, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26375957

RESUMEN

A major obstacle to an effective myocardium stem cell therapy has always been the delivery and survival of implanted stem cells in the heart. Better engraftment can be achieved if cells are administered as cell aggregates, which maintain their extra-cellular matrix (ECM). We have generated spheroid aggregates in less than 24 h by seeding human cardiac progenitor cells (hCPCs) onto methylcellulose hydrogel-coated microwells. Cells within spheroids maintained the expression of stemness/mesenchymal and ECM markers, growth factors and their cognate receptors, cardiac commitment factors, and metalloproteases, as detected by immunofluorescence, q-RT-PCR and immunoarray, and expressed a higher, but regulated, telomerase activity. Compared to cells in monolayers, 3D spheroids secreted also bFGF and showed MMP2 activity. When spheroids were seeded on culture plates, the cells quickly migrated, displaying an increased wound healing ability with or without pharmacological modulation, and reached confluence at a higher rate than cells from conventional monolayers. When spheroids were injected in the heart wall of healthy mice, some cells migrated from the spheroids, engrafted, and remained detectable for at least 1 week after transplantation, while, when the same amount of cells was injected as suspension, no cells were detectable three days after injection. Cells from spheroids displayed the same engraftment capability when they were injected in cardiotoxin-injured myocardium. Our study shows that spherical in vivo ready-to-implant scaffold-less aggregates of hCPCs able to engraft also in the hostile environment of an injured myocardium can be produced with an economic, easy and fast protocol.


Asunto(s)
Corazón/fisiología , Miocardio/citología , Esferoides Celulares/citología , Esferoides Celulares/trasplante , Trasplante de Células Madre , Células Madre/citología , Ingeniería de Tejidos , Anciano , Anciano de 80 o más Años , Animales , Western Blotting , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Células Cultivadas , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Técnicas para Inmunoenzimas , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Miocardio/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Esferoides Celulares/metabolismo , Células Madre/metabolismo , Andamios del Tejido
16.
Biomedicines ; 2(4): 359-383, 2014 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-28548076

RESUMEN

Monoclonal antibodies can be seen as valuable tools for many aspects of basic as well as applied sciences. In the case of MET/HGFR, they allowed the identification of truncated isoforms of the receptor, as well as the dissection of different epitopes, establishing structure-function relationships. Antibodies directed against MET extracellular domain were found to be full or partial receptor agonists or antagonists. The agonists can mimic the effects of the different isoforms of the natural ligand, but with the advantage of being more stable than the latter. Thus, some agonist antibodies promote all the biological responses triggered by MET activation, including motility, proliferation, morphogenesis, and protection from apoptosis, while others can induce only a migratory response. On the other hand, antagonists can inhibit MET-driven biological functions either by competing with the ligand or by removing the receptor from the cell surface. Since MET/HGFR is often over-expressed and/or aberrantly activated in tumors, monoclonal antibodies can be used as probes for MET detection or as "bullets" to target MET-expressing tumor cells, thus pointing to their use in diagnosis and therapy.

17.
Stem Cells Dev ; 23(8): 888-98, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24328510

RESUMEN

Electrical stimulation (ES) of cells has been shown to induce a variety of responses, such as cytoskeleton rearrangements, migration, proliferation, and differentiation. In this study, we have investigated whether monophasic and biphasic pulsed ES could exert any effect on the proliferation and differentiation of human cardiac progenitor cells (hCPCs) isolated from human heart fragments. Cells were cultured under continuous exposure to monophasic or biphasic ES with fixed cycles for 1 or 3 days. Results indicate that neither stimulation protocol affected cell viability, while the cell shape became more elongated and reoriented more perpendicular to the electric field direction. Moreover, the biphasic ES clearly induced the upregulation of early cardiac transcription factors, MEF2D, GATA-4, and Nkx2.5, as well as the de novo expression of the late cardiac sarcomeric proteins, troponin T, cardiac alpha actinin, and SERCA 2a. Both treatments increased the expression of connexin 43 and its relocation to the cell membrane, but biphasic ES was faster and more effective. Finally, when hCPCs were exposed to both monophasic and biphasic ES, they expressed de novo the mRNA of the voltage-dependent calcium channel Cav 3.1(α1G) subunit, which is peculiar of the developing heart. Taken together, these results show that ES alone is able to set the conditions for early differentiation of adult hCPCs toward a cardiac phenotype.


Asunto(s)
Células Madre Adultas/fisiología , Diferenciación Celular , Biomarcadores/metabolismo , Proliferación Celular , Forma de la Célula , Supervivencia Celular , Células Cultivadas , Estimulación Eléctrica , Expresión Génica , Regulación de la Expresión Génica , Atrios Cardíacos/citología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA