Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Conserv Biol ; 37(2): e13994, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36047704

RESUMEN

Europe has a long history of human pressure on freshwater ecosystems. As pressure continues to grow and new threats emerge, there is an urgent need for conservation of freshwater biodiversity and its ecosystem services. However, whilst some taxonomic groups, mainly vertebrates, have received a disproportionate amount of attention and funds, other groups remain largely off the public and scientific radar. Freshwater mussels (Bivalvia, Unionida) are an alarming example of this conservation bias and here we point out six conceptual areas that need immediate and long-term attention: knowledge, threats, socioeconomics, conservation, governance and education. The proposed roadmap aims to advance research, policy and education by identifying the most pressing priorities for the short- and long-term conservation of freshwater mussels across Europe.


Asunto(s)
Bivalvos , Ecosistema , Animales , Humanos , Conservación de los Recursos Naturales , Biodiversidad , Agua Dulce , Europa (Continente)
2.
J Fish Dis ; 44(8): 1101-1115, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33891319

RESUMEN

During the conservation aquaculture of the freshwater mussel Margaritifera margaritifera, fish health has become a concern due to the need of mussel larvae (glochidia) to parasitize the salmonid gills and metamorphose into juveniles. However, there is a lack of information about the impact on fish during the juvenile detachment and the subsequent gill healing. To evaluate the morphopathological changes and gill recovery after the parasitism of M. margaritifera, 51 Atlantic salmon fry (Salmo salar), infested with around 22 larvae/fish g, were necropsied during the synchronized detachment of the mussel juveniles, and gills were assessed by stereomicroscopy and by light and scanning electron microscopy. Salmon showed no clinical signs during the trial and gills recovered their normal morphology almost completely in a short time, suggesting a minimal impact on fish health after glochidiosis. In this sense, the non-erosive droplet detachment and the goblet cell hyperplasia favoured an effective gill remodelling mediated by apoptosis, polarization and cell shedding of the gill epithelia, providing insights to the defence, clearing and healing mechanisms of the gill. These morphopathological techniques could also be implemented to preserve fish welfare and to optimize the artificial breeding programmes of endangered freshwater mussels.


Asunto(s)
Bivalvos/fisiología , Enfermedades de los Peces/patología , Branquias/parasitología , Salmo salar , Animales , Enfermedades de los Peces/parasitología , Branquias/patología , Interacciones Huésped-Parásitos
3.
J Fish Dis ; 43(1): 69-80, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31642063

RESUMEN

Freshwater mussels of the order Unionida encyst into the fish mucosa to metamorphose and complete their life cycle, causing a parasitic disease known as glochidiosis. This parasitic stage represents a bottleneck for the survival of naiads, particularly for critically endangered species as Margaritifera margaritifera; however, little is known about the events occurring during this critical stage. Therefore, this study aimed to histologically characterize the development of M. margaritifera glochidiosis in Atlantic salmon to get insight into the pathogenesis of this interaction. Fish exposed to glochidia were sampled during the first 44 days post-exposure, and organs were observed by stereomicroscopy and light microscopy. Glochidia attached to the gills by pinching the lamellar epithelium, whereupon an acute proliferative branchitis engulfed most of the larvae. However, during the first 14 days, a severe detachment of unviable glochidia occurred, associated with the presence of pleomorphic inflammatory infiltrate and epithelial degeneration. In the cases where larvae remained attached, a chronification of the lesions with none to scarce inflammation was observed. These results provide key information to better understand the complex host-parasite interaction during the early stages of glochidiosis and provide valuable information to optimize artificial rearing of naiads in conservation of threatened freshwater mussel populations.


Asunto(s)
Bivalvos/fisiología , Enfermedades de los Peces/patología , Branquias/parasitología , Salmo salar , Animales , Bivalvos/crecimiento & desarrollo , Enfermedades de los Peces/parasitología
4.
BMC Evol Biol ; 19(1): 229, 2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31856711

RESUMEN

BACKGROUND: Supernumerary ORFan genes (i.e., open reading frames without obvious homology to other genes) are present in the mitochondrial genomes of gonochoric freshwater mussels (Bivalvia: Unionida) showing doubly uniparental inheritance (DUI) of mitochondria. DUI is a system in which distinct female-transmitted and male-transmitted mitotypes coexist in a single species. In families Unionidae and Margaritiferidae, the transition from dioecy to hermaphroditism and the loss of DUI appear to be linked, and this event seems to affect the integrity of the ORFan genes. These observations led to the hypothesis that the ORFans have a role in DUI and/or sex determination. Complete mitochondrial genome sequences are however scarce for most families of freshwater mussels, therefore hindering a clear localization of DUI in the various lineages and a comprehensive understanding of the influence of the ORFans on DUI and sexual systems. Therefore, we sequenced and characterized eleven new mitogenomes from poorly sampled freshwater mussel families to gather information on the evolution and variability of the ORFan genes and their protein products. RESULTS: We obtained ten complete plus one almost complete mitogenome sequence from ten representative species (gonochoric and hermaphroditic) of families Margaritiferidae, Hyriidae, Mulleriidae, and Iridinidae. ORFan genes are present only in DUI species from Margaritiferidae and Hyriidae, while non-DUI species from Hyriidae, Iridinidae, and Mulleriidae lack them completely, independently of their sexual system. Comparisons among the proteins translated from the newly characterized ORFans and already known ones provide evidence of conserved structures, as well as family-specific features. CONCLUSIONS: The ORFan proteins show a comparable organization of secondary structures among different families of freshwater mussels, which supports a conserved physiological role, but also have distinctive family-specific features. Given this latter observation and the fact that the ORFans can be either highly mutated or completely absent in species that secondarily lost DUI depending on their respective family, we hypothesize that some aspects of the connection among ORFans, sexual systems, and DUI may differ in the various lineages of unionids.


Asunto(s)
Bivalvos/clasificación , Bivalvos/genética , Genoma Mitocondrial , Animales , Bivalvos/citología , ADN Mitocondrial/genética , Agua Dulce , Proteínas Mitocondriales/genética , Sistemas de Lectura Abierta , Filogenia , Análisis de Secuencia de ADN
5.
J Morphol ; 279(1): 4-16, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28921628

RESUMEN

The global decline of freshwater mussels can be partially attributed to their complex life cycle. Their survival from glochidium to adulthood is like a long obstacle race, with juvenile mortality as a key critical point. Mass mortality shortly after entering into a juvenile state has been reported in both wild and captive populations, thus weakening the effective bivalve population. A similar phenomenon occurs during metamorphosis in natural and hatchery populations of juvenile marine bivalves. Based on a morphological analysis using scanning electron microscopy of newly formed juveniles of the freshwater species Margaritifera margaritifera (L.) (Margaritiferidae) and Unio mancus Lamarck (Unionidae), we show that a second metamorphosis, consisting of drastic morphological changes, occurs that leads to suspension feeding in place of deposit feeding by the ciliated foot. We hypothesize that suspension feeding in these two species improves due to a gradual development of several morphological features including the contact between cilia of the inner gill posterior filaments, the inner gill reflection, the appearance of the ctenidial ventral groove and the formation of the pedal palps. Regardless of the presence of available food, a suspension feeding mode replaces deposit feeding, and juveniles unable to successfully transition morphologically or adapt to the feeding changes likely perish.


Asunto(s)
Bivalvos/anatomía & histología , Bivalvos/fisiología , Conducta Alimentaria , Agua Dulce , Destete , Animales , Bivalvos/ultraestructura , Metamorfosis Biológica
6.
Biol Rev Camb Philos Soc ; 92(1): 572-607, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26727244

RESUMEN

Freshwater mussels of the Order Unionida provide important ecosystem functions and services, yet many of their populations are in decline. We comprehensively review the status of the 16 currently recognized species in Europe, collating for the first time their life-history traits, distribution, conservation status, habitat preferences, and main threats in order to suggest future management actions. In northern, central, and eastern Europe, a relatively homogeneous species composition is found in most basins. In southern Europe, despite the lower species richness, spatially restricted species make these basins a high conservation priority. Information on freshwater mussels in Europe is unevenly distributed with considerable differences in data quality and quantity among countries and species. To make conservation more effective in the future, we suggest greater international cooperation using standardized protocols and methods to monitor and manage European freshwater mussel diversity. Such an approach will not only help conserve this vulnerable group but also, through the protection of these important organisms, will offer wider benefits to freshwater ecosystems.


Asunto(s)
Bivalvos/fisiología , Conservación de los Recursos Naturales , Ecosistema , Distribución Animal , Animales , Conservación de los Recursos Naturales/tendencias , Europa (Continente) , Agua Dulce
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA