Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
EMBO J ; 34(19): 2424-40, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26206584

RESUMEN

Primary cilia start forming within the G1 phase of the cell cycle and continue to grow as cells exit the cell cycle (G0). They start resorbing when cells re-enter the cell cycle (S phase) and are practically invisible in mitosis. The mechanisms by which cilium biogenesis and disassembly are coupled to the cell cycle are complex and not well understood. We previously identified the centrosomal phosphoprotein NDE1 as a negative regulator of ciliary length and showed that its levels inversely correlate with ciliogenesis. Here, we identify the tumor suppressor FBW7 (also known as FBXW7, CDC4, AGO, or SEL-10) as the E3 ligase that mediates the destruction of NDE1 upon entry into G1. CDK5, a kinase active in G1/G0, primes NDE1 for FBW7-mediated recognition. Cells depleted of FBW7 or CDK5 show enhanced levels of NDE1 and a reduction in ciliary length, which is corrected in cells depleted of both FBW7 or CDK5 and NDE1. These data show that cell cycle-dependent mechanisms can control ciliary length through a CDK5-FBW7-NDE1 pathway.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiología , Quinasa 5 Dependiente de la Ciclina/metabolismo , Proteínas F-Box/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/fisiología , Animales , Células 3T3 BALB , Proteínas de Ciclo Celular/genética , Cilios/genética , Cilios/metabolismo , Quinasa 5 Dependiente de la Ciclina/genética , Proteínas F-Box/genética , Proteína 7 que Contiene Repeticiones F-Box-WD , Células HEK293 , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/genética , Transducción de Señal/fisiología , Ubiquitina-Proteína Ligasas/genética
2.
Arterioscler Thromb Vasc Biol ; 37(9): 1674-1682, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28729363

RESUMEN

OBJECTIVE: The chromatin remodeling enzyme BRG1 (brahma-related gene 1) transcriptionally regulates target genes important for early blood vessel development and primitive hematopoiesis. However, because Brg1 deletion in vascular progenitor cells results in lethal anemia by embryonic day 10.5 (E10.5), roles for BRG1 in embryonic vascular development after midgestation are unknown. In this study, we sought to determine whether endothelial cell BRG1 regulates genes important for vascular development or maintenance later in embryonic development. APPROACH AND RESULTS: Using mice with temporally inducible deletion of endothelial BRG1 (Brg1fl/fl;Cdh5(PAC)-CreERT2 ), we found that Brg1 excision between E9.5 and 11.5 results in capillary dilation and lethal hemorrhage by E14.5. This phenotype strongly resembles that seen when the SRF (serum response factor) transcription factor is deleted from embryonic endothelial cells. Although expression of Srf and several of its known endothelial cell target genes are downregulated in BRG1-depleted endothelial cells, we did not detect binding of BRG1 at these gene promoters, indicating that they are not direct BRG1 target genes. Instead, we found that BRG1 binds to the promoters of the SRF cofactors Mrtfa and Mrtfb (myocardin-related transcription factors A and B) in endothelial cells, and these genes are downregulated in Brg1-deficient endothelial cells. CONCLUSIONS: BRG1 promotes transcription of endothelial Mrtfa and Mrtfb, which elevates expression of SRF and SRF target genes that establish embryonic capillary integrity. These data highlight a new and temporally specific role for BRG1 in embryonic vasculature and provide novel information about epigenetic regulation of Mrtf expression and SRF signaling in developing blood vessels.


Asunto(s)
Capilares/metabolismo , ADN Helicasas/metabolismo , Células Endoteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Neovascularización Fisiológica , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Animales , Antígenos CD/genética , Sitios de Unión , Cadherinas/genética , Capilares/embriología , Línea Celular , ADN Helicasas/deficiencia , ADN Helicasas/genética , Epigénesis Genética , Genotipo , Edad Gestacional , Integrasas/genética , Ratones Noqueados , Morfogénesis , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Fenotipo , Regiones Promotoras Genéticas , Interferencia de ARN , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/metabolismo , Transducción de Señal , Transactivadores/genética , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Transfección
3.
Proc Natl Acad Sci U S A ; 111(11): 4197-202, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24591628

RESUMEN

Signaling through the store-operated Ca(2+) release-activated Ca(2+) (CRAC) channel regulates critical cellular functions, including gene expression, cell growth and differentiation, and Ca(2+) homeostasis. Loss-of-function mutations in the CRAC channel pore-forming protein ORAI1 or the Ca(2+) sensing protein stromal interaction molecule 1 (STIM1) result in severe immune dysfunction and nonprogressive myopathy. Here, we identify gain-of-function mutations in the cytoplasmic domain of STIM1 (p.R304W) associated with thrombocytopenia, bleeding diathesis, miosis, and tubular myopathy in patients with Stormorken syndrome, and in ORAI1 (p.P245L), associated with a Stormorken-like syndrome of congenital miosis and tubular aggregate myopathy but without hematological abnormalities. Heterologous expression of STIM1 p.R304W results in constitutive activation of the CRAC channel in vitro, and spontaneous bleeding accompanied by reduced numbers of thrombocytes in zebrafish embryos, recapitulating key aspects of Stormorken syndrome. p.P245L in ORAI1 does not make a constitutively active CRAC channel, but suppresses the slow Ca(2+)-dependent inactivation of the CRAC channel, thus also functioning as a gain-of-function mutation. These data expand our understanding of the phenotypic spectrum of dysregulated CRAC channel signaling, advance our knowledge of the molecular function of the CRAC channel, and suggest new therapies aiming at attenuating store-operated Ca(2+) entry in the treatment of patients with Stormorken syndrome and related pathologic conditions.


Asunto(s)
Trastornos de las Plaquetas Sanguíneas/genética , Canales de Calcio/genética , Señalización del Calcio/genética , Dislexia/genética , Ictiosis/genética , Proteínas de la Membrana/genética , Trastornos Migrañosos/genética , Miosis/genética , Miopatías Estructurales Congénitas/genética , Proteínas de Neoplasias/genética , Bazo/anomalías , Animales , Secuencia de Bases , Niño , Cartilla de ADN/genética , Eritrocitos Anormales , Femenino , Humanos , Datos de Secuencia Molecular , Fatiga Muscular/genética , Mutagénesis Sitio-Dirigida , Mutación/genética , Proteína ORAI1 , Técnicas de Placa-Clamp , Linaje , Análisis de Secuencia de ADN , Molécula de Interacción Estromal 1 , Pez Cebra
4.
J Biol Chem ; 288(31): 22219-32, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23770672

RESUMEN

Ca(2+) signaling is essential for bone homeostasis and skeletal development. Here, we show that the transient receptor potential canonical 1 (TRPC1) channel and the inhibitor of MyoD family, I-mfa, function antagonistically in the regulation of osteoclastogenesis. I-mfa null mice have an osteopenic phenotype characterized by increased osteoclast numbers and surface, which are normalized in mice lacking both Trpc1 and I-mfa. In vitro differentiation of pre-osteoclasts derived from I-mfa-deficient mice leads to an increased number of mature osteoclasts and higher bone resorption per osteoclast. These parameters return to normal levels in osteoclasts derived from double mutant mice. Consistently, whole cell currents activated in response to the depletion of intracellular Ca(2+) stores are larger in pre-osteoclasts derived from I-mfa knock-out mice compared with currents in wild type mice and normalized in cells derived from double mutant mice, suggesting a cell-autonomous effect of I-mfa on TRPC1 in these cells. A new splice variant of TRPC1 (TRPC1ε) was identified in early pre-osteoclasts. Heterologous expression of TRPC1ε in HEK293 cells revealed that it is unique among all known TRPC1 isoforms in its ability to amplify the activity of the Ca(2+) release-activated Ca(2+) (CRAC) channel, mediating store-operated currents. TRPC1ε physically interacts with Orai1, the pore-forming subunit of the CRAC channel, and I-mfa is recruited to the TRPC1ε-Orai1 complex through TRPC1ε suppressing CRAC channel activity. We propose that the positive and negative modulation of the CRAC channel by TRPC1ε and I-mfa, respectively, fine-tunes the dynamic range of the CRAC channel regulating osteoclastogenesis.


Asunto(s)
Osteoclastos/citología , Canales Catiónicos TRPC/fisiología , Animales , Secuencia de Bases , División Celular , Línea Celular , Codón , Cartilla de ADN , Humanos , Ratones , Ratones Noqueados , Biosíntesis de Proteínas , ARN Mensajero/genética , Canales Catiónicos TRPC/genética
5.
Biotechnol Prog ; 35(5): e2839, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31090257

RESUMEN

In order to avoid the metabolic burden of protein expression during cell growth, and to avoid potential toxicity of recombinant proteins, microbial expression systems typically utilize regulated expression vectors. In contrast, constitutive expression vectors have usually been utilized for isolation of protein expressing mammalian cell lines. In mammalian systems, inducible expression vectors are typically utilized for only those proteins that are toxic when overexpressed. We developed a tetracycline regulated expression system in CHO cells, and show that cell pools selected in the uninduced state recover faster than those selected in the induced state even though the proteins showed no apparent toxicity or expression instability. Furthermore, cell pools selected in the uninduced state had higher expression levels when protein expression was turned on only in production cultures compared to pools that were selected and maintained in the induced state through production. We show a titer improvement of greater than twofold for an Fc-fusion protein and greater than 50% improvement for a recombinant antibody. The improvement is primarily due to an increase in specific productivity. Recombinant protein mRNA levels correlate strongly with protein expression levels and are highest in those cultures selected in the uninduced state and only induced during production. These data are consistent with a model where CHO cell lines with constitutive expression select for subclones with lower expression levels.


Asunto(s)
Regulación de la Expresión Génica , Vectores Genéticos/genética , Proteínas Recombinantes de Fusión , Animales , Anticuerpos Monoclonales/análisis , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/metabolismo , Células CHO , Técnicas de Cultivo de Célula , Cricetinae , Cricetulus , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , ARN Mensajero/análisis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Tetraciclina/farmacología
6.
Cell Signal ; 19(3): 444-53, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17084592

RESUMEN

Naturally occurring mutations in two separate, but interacting loci, pkd1 and pkd2 are responsible for almost all cases of autosomal dominant polycystic kidney disease (ADPKD). ADPKD is one of the most common genetic diseases resulting primarily in the formation of large kidney, liver, and pancreatic cysts. Homozygous deletion of either pkd1 or pkd2 results in embryonic lethality in mice due to kidney and heart defects illustrating their indispensable roles in mammalian development. However, the mechanism by which mutations in these genes cause ADPKD and other developmental defects are unknown. Research in the past several years has revealed that PKD2 has multiple functions depending on its subcellular localization. It forms a receptor-operated, non-selective cation channel in the plasma membrane, a novel intracellular Ca2+ release channel in the endoplasmic reticulum (ER), and a mechanosensitive channel in the primary cilium. This review focuses on the functional compartmentalization of PKD2, its modes of activation, and PKD2-mediated signal transduction.


Asunto(s)
Proteínas de la Membrana/genética , Biología Molecular , Riñón Poliquístico Autosómico Dominante/genética , Proteínas/genética , Animales , Centrosoma/fisiología , Cilios/fisiología , Humanos , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Proteínas/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA