Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 19(6): e1010445, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37352370

RESUMEN

Hyper-secretion and/or hyper-concentration of mucus is a defining feature of multiple obstructive lung diseases, including chronic obstructive pulmonary disease (COPD). Mucus itself is composed of a mixture of water, ions, salt and proteins, of which the gel-forming mucins, MUC5AC and MUC5B, are the most abundant. Recent studies have linked the concentrations of these proteins in sputum to COPD phenotypes, including chronic bronchitis (CB) and acute exacerbations (AE). We sought to determine whether common genetic variants influence sputum mucin concentrations and whether these variants are also associated with COPD phenotypes, specifically CB and AE. We performed a GWAS to identify quantitative trait loci for sputum mucin protein concentration (pQTL) in the Sub-Populations and InteRmediate Outcome Measures in COPD Study (SPIROMICS, n = 708 for total mucin, n = 215 for MUC5AC, MUC5B). Subsequently, we tested for associations of mucin pQTL with CB and AE using regression modeling (n = 822-1300). Replication analysis was conducted using data from COPDGene (n = 5740) and by examining results from the UK Biobank. We identified one genome-wide significant pQTL for MUC5AC (rs75401036) and two for MUC5B (rs140324259, rs10001928). The strongest association for MUC5B, with rs140324259 on chromosome 11, explained 14% of variation in sputum MUC5B. Despite being associated with lower MUC5B, the C allele of rs140324259 conferred increased risk of CB (odds ratio (OR) = 1.42; 95% confidence interval (CI): 1.10-1.80) as well as AE ascertained over three years of follow up (OR = 1.41; 95% CI: 1.02-1.94). Associations between rs140324259 and CB or AE did not replicate in COPDGene. However, in the UK Biobank, rs140324259 was associated with phenotypes that define CB, namely chronic mucus production and cough, again with the C allele conferring increased risk. We conclude that sputum MUC5AC and MUC5B concentrations are associated with common genetic variants, and the top locus for MUC5B may influence COPD phenotypes, in particular CB.


Asunto(s)
Mucinas , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Mucinas/genética , Mucinas/metabolismo , Esputo/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/genética , Moco/metabolismo , Fenotipo
2.
Am J Hum Genet ; 109(5): 857-870, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35385699

RESUMEN

While polygenic risk scores (PRSs) enable early identification of genetic risk for chronic obstructive pulmonary disease (COPD), predictive performance is limited when the discovery and target populations are not well matched. Hypothesizing that the biological mechanisms of disease are shared across ancestry groups, we introduce a PrediXcan-derived polygenic transcriptome risk score (PTRS) to improve cross-ethnic portability of risk prediction. We constructed the PTRS using summary statistics from application of PrediXcan on large-scale GWASs of lung function (forced expiratory volume in 1 s [FEV1] and its ratio to forced vital capacity [FEV1/FVC]) in the UK Biobank. We examined prediction performance and cross-ethnic portability of PTRS through smoking-stratified analyses both on 29,381 multi-ethnic participants from TOPMed population/family-based cohorts and on 11,771 multi-ethnic participants from TOPMed COPD-enriched studies. Analyses were carried out for two dichotomous COPD traits (moderate-to-severe and severe COPD) and two quantitative lung function traits (FEV1 and FEV1/FVC). While the proposed PTRS showed weaker associations with disease than PRS for European ancestry, the PTRS showed stronger association with COPD than PRS for African Americans (e.g., odds ratio [OR] = 1.24 [95% confidence interval [CI]: 1.08-1.43] for PTRS versus 1.10 [0.96-1.26] for PRS among heavy smokers with ≥ 40 pack-years of smoking) for moderate-to-severe COPD. Cross-ethnic portability of the PTRS was significantly higher than the PRS (paired t test p < 2.2 × 10-16 with portability gains ranging from 5% to 28%) for both dichotomous COPD traits and across all smoking strata. Our study demonstrates the value of PTRS for improved cross-ethnic portability compared to PRS in predicting COPD risk.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Transcriptoma , Humanos , Pulmón , National Heart, Lung, and Blood Institute (U.S.) , Enfermedad Pulmonar Obstructiva Crónica/genética , Factores de Riesgo , Estados Unidos/epidemiología
3.
Artículo en Inglés | MEDLINE | ID: mdl-38843116

RESUMEN

RATIONAL: Ground glass opacities (GGO) in the absence of interstitial lung disease are understudied. OBJECTIVE: To assess the association of GGO with white blood cells (WBCs) and progression of quantified chest CT emphysema. METHODS: We analyzed data of participants in the Subpopulations and Intermediate Outcome Measures In COPD Study (SPIROMICS). Chest radiologists and pulmonologists labeled regions of the lung as GGO and adaptive multiple feature method (AMFM) trained the computer to assign those labels to image voxels and quantify the volume of the lung with GGO (%GGOAMFM). We used multivariable linear regression, zero-inflated negative binomial, and proportional hazards regression models to assess the association of %GGOAMFM with WBC, changes in %emphysema, and clinical outcomes. MEASUREMENTS AND MAIN RESULTS: Among 2,714 participants, 1,680 had COPD and 1,034 had normal spirometry. Among COPD participants, based on the multivariable analysis, current smoking and chronic productive cough was associated with higher %GGOAMFM. Higher %GGOAMFM was cross-sectionally associated with higher WBCs and neutrophils levels. Higher %GGOAMFM per interquartile range at visit 1 (baseline) was associated with an increase in emphysema at one-year follow visit by 11.7% (Relative increase; 95%CI 7.5-16.1%;P<0.001). We found no association between %GGOAMFM and one-year FEV1 decline but %GGOAMFM was associated with exacerbations and all-cause mortality during a median follow-up time of 1,544 days (Interquartile Interval=1,118-2,059). Among normal spirometry participants, we found similar results except that %GGOAMFM was associated with progression to COPD at one-year follow-up. CONCLUSIONS: Our findings suggest that GGOAMFM is associated with increased systemic inflammation and emphysema progression.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38507607

RESUMEN

RATIONALE: Individuals with COPD have airflow obstruction and maldistribution of ventilation. For those living at high altitude, any gas exchange abnormality is compounded by reduced partial pressures of inspired oxygen. OBJECTIVES: Does residence at higher-altitude exposure affect COPD outcomes, including lung function, imaging characteristics, symptoms, health status, functional exercise capacity, exacerbations, or mortality? METHODS: From the SPIROMICS cohort, we identified individuals with COPD living below 1,000 ft (305 m) elevation (n= 1,367) versus above 4,000 ft (1,219 m) elevation (n= 288). Multivariable regression models were used to evaluate associations of exposure to high altitude with COPD-related outcomes. MEASUREMENTS AND MAIN RESULTS: Living at higher altitude was associated with reduced functional exercise capacity as defined by 6MWD (-32.3 m, (-55.7 to -28.6)). There were no differences in patient-reported outcomes as defined by symptoms (CAT, mMRC), or health status (SGRQ). Higher altitude was not associated with a different rate of FEV1 decline. Higher altitude was associated with lower odds of severe exacerbations (IRR 0.65, (0.46 to 0.90)). There were no differences in small airway disease, air trapping, or emphysema. In longitudinal analyses, higher altitude was associated with increased mortality (HR 1.25, (1.0 to 1.55)); however, this association was no longer significant when accounting for air pollution. CONCLUSIONS: Chronic altitude exposure is associated with reduced functional exercise capacity in individuals with COPD, but this did not translate into differences in symptoms or health status. Additionally, chronic high-altitude exposure did not affect progression of disease as defined by longitudinal changes in spirometry.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38261629

RESUMEN

RATIONALE: The airway microbiome has the potential to shape COPD pathogenesis, but its relationship to outcomes in milder disease is unestablished. OBJECTIVES: Identify sputum microbiome characteristics associated with markers of COPD in participants of the SubPopulations and InteRmediate Outcome Measures of COPD Study (SPIROMICS). METHODS: Sputum DNA from 877 participants were analyzed using 16S rRNA gene sequencing. Relationships between baseline airway microbiota composition and clinical, radiographic and muco-inflammatory markers, including longitudinal lung function trajectory, were examined. MEASUREMENTS AND MAIN RESULTS: Participant data represented predominantly milder disease (GOLD 0-2: N=732/877). Phylogenetic diversity (range of different species within a sample) correlated positively with baseline lung function, declined with higher GOLD stage, and correlated negatively with symptom burden, radiographic markers of airway disease, and total mucin concentrations (p<0.001). In co-variate adjusted regression models, organisms robustly associated with better lung function included members of Alloprevotella, Oribacterium, and Veillonella. Conversely, lower lung function, greater symptoms and radiographic measures of small airway disease associated with enrichment in members of Streptococcus, Actinobacillus, Actinomyces, and other genera. Baseline sputum microbiota features also associated with lung function trajectory during SPIROMICS follow up (stable/improved, decliner, or rapid decliner). The 'stable/improved' group (slope of FEV1 regression ≥ 66th percentile) had higher bacterial diversity at baseline, associated with enrichment in Prevotella, Leptotrichia, and Neisseria. In contrast, the 'rapid decliner' group (FEV1 slope ≤ 33rd percentile) had significantly lower baseline diversity, associated with enrichment in Streptococcus. CONCLUSIONS: In SPIROMICS baseline airway microbiota features demonstrate divergent associations with better or worse COPD-related outcomes.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38935874

RESUMEN

Rationale Dysanapsis refers to a mismatch between airway tree caliber and lung size arising early in life. Dysanapsis assessed by computed tomography (CT) is evident by early adulthood and associated with chronic obstructive pulmonary disease (COPD) risk later in life. Objective By examining the genetic factors associated with CT-assessed dysanapsis, we aimed to elucidate its molecular underpinnings and physiological significance across the lifespan. Methods We performed a genome-wide association study (GWAS) of CT-assessed dysanapsis in 11,951 adults, including individuals from two population-based and two COPD-enriched studies. We applied colocalization analysis to integrate GWAS and gene expression data from whole blood and lung. Genetic variants associated with dysanapsis were combined into a genetic risk score that was applied to examine association with lung function in children from a population-based birth cohort (n=1,278) and adults from the UK Biobank (n=369,157). Measurements and Main Results CT-assessed dysanapsis was associated with genetic variants from 21 independent signals in 19 gene regions, implicating HHIP, DSP, and NPNT as potential molecular targets based on colocalization of their expression. Higher dysanapsis genetic risk score was associated with obstructive spirometry among 5 year old children and among adults in the 5th, 6th and 7th decades of life. Conclusions CT-assessed dysanapsis is associated with variation in genes previously implicated in lung development and dysanapsis genetic risk is associated with obstructive lung function from early life through older adulthood. Dysanapsis may represent an endo-phenotype link between the genetic variations associated with lung function and COPD.

7.
Am J Respir Cell Mol Biol ; 70(3): 165-177, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37976469

RESUMEN

Chronic obstructive pulmonary disease (COPD) remains a major public health challenge that contributes greatly to mortality and morbidity worldwide. Although it has long been recognized that the epithelium is altered in COPD, there has been little focus on targeting it to modify the disease course. Therefore, mechanisms that disrupt epithelial cell function in patients with COPD are poorly understood. In this study, we sought to determine whether epigenetic reprogramming of the cell-cell adhesion molecule E-cadherin, encoded by the CDH1 gene, disrupts epithelial integrity. By reducing these epigenetic marks, we can restore epithelial integrity and rescue alveolar airspace destruction. We used differentiated normal and COPD-derived primary human airway epithelial cells, genetically manipulated mouse tracheal epithelial cells, and mouse and human precision-cut lung slices to assess the effects of epigenetic reprogramming. We show that the loss of CDH1 in COPD is due to increased DNA methylation site at the CDH1 enhancer D through the downregulation of the ten-eleven translocase methylcytosine dioxygenase (TET) enzyme TET1. Increased DNA methylation at the enhancer D region decreases the enrichment of RNA polymerase II binding. Remarkably, treatment of human precision-cut slices derived from patients with COPD with the DNA demethylation agent 5-aza-2'-deoxycytidine decreased cell damage and reduced air space enlargement in the diseased tissue. Here, we present a novel mechanism that targets epigenetic modifications to reverse the tissue remodeling in human COPD lungs and serves as a proof of concept for developing a disease-modifying target.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Humanos , Animales , Ratones , Enfermedad Pulmonar Obstructiva Crónica/genética , Diferenciación Celular , Metilación de ADN , Progresión de la Enfermedad , Epigénesis Genética , Oxigenasas de Función Mixta , Proteínas Proto-Oncogénicas
8.
Clin Exp Allergy ; 54(4): 265-277, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38253462

RESUMEN

INTRODUCTION: Previous bronchoalveolar lavage fluid (BALF) proteomic analysis has evaluated limited numbers of subjects for only a few proteins of interest, which may differ between asthma and normal controls. Our objective was to examine a more comprehensive inflammatory biomarker panel in quantitative proteomic analysis for a large asthma cohort to identify molecular phenotypes distinguishing severe from nonsevere asthma. METHODS: Bronchoalveolar lavage fluid from 48 severe and 77 nonsevere adult asthma subjects were assessed for 75 inflammatory proteins, normalized to BALF total protein concentration. Validation of BALF differences was sought through equivalent protein analysis of autologous sputum. Subjects' data, stratified by asthma severity, were analysed by standard statistical tests, principal component analysis and 5 machine learning algorithms. RESULTS: The severe group had lower lung function and greater health care utilization. Significantly increased BALF proteins for severe asthma compared to nonsevere asthma were fibroblast growth factor 2 (FGF2), TGFα, IL1Ra, IL2, IL4, CCL8, CCL13 and CXCL7 and significantly decreased were platelet-derived growth factor a-a dimer (PDGFaa), vascular endothelial growth factor (VEGF), interleukin 5 (IL5), CCL17, CCL22, CXCL9 and CXCL10. Four protein differences were replicated in sputum. FGF2, PDGFaa and CXCL7 were independently identified by 5 machine learning algorithms as the most important variables for discriminating severe and nonsevere asthma. Increased and decreased proteins identified for the severe cluster showed significant protein-protein interactions for chemokine and cytokine signalling, growth factor activity, and eosinophil and neutrophil chemotaxis differing between subjects with severe and nonsevere asthma. CONCLUSION: These inflammatory protein results confirm altered airway remodelling and cytokine/chemokine activity recruiting leukocytes into the airways of severe compared to nonsevere asthma as important processes even in stable status.


Asunto(s)
Asma , Factor A de Crecimiento Endotelial Vascular , Adulto , Humanos , Proteómica , Factor 2 de Crecimiento de Fibroblastos , Citocinas/metabolismo , Lavado Broncoalveolar , Quimiocinas , Líquido del Lavado Bronquioalveolar
9.
Am J Respir Crit Care Med ; 208(10): 1042-1051, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37523421

RESUMEN

Rationale: Indoor pollutants have been associated with chronic obstructive pulmonary disease morbidity, but it is unclear whether they contribute to disease progression. Objectives: We aimed to determine whether indoor particulate matter (PM) and nitrogen dioxide (NO2) are associated with lung function decline among current and former smokers. Methods: Of the 2,382 subjects with a history of smoking in SPIROMICS AIR, 1,208 participants had complete information to estimate indoor PM and NO2, using individual-based prediction models, in relation to measured spirometry at two or more clinic visits. We used a three-way interaction model between time, pollutant, and smoking status and assessed the indoor pollutant-associated difference in FEV1 decline separately using a generalized linear mixed model. Measurements and Main Results: Participants had an average rate of FEV1 decline of 60.3 ml/yr for those currently smoking compared with 35.2 ml/yr for those who quit. The association of indoor PM with FEV1 decline differed by smoking status. Among former smokers, every 10 µg/m3 increase in estimated indoor PM was associated with an additional 10 ml/yr decline in FEV1 (P = 0.044). Among current smokers, FEV1 decline did not differ by indoor PM. The results of indoor NO2 suggest trends similar to those for PM ⩽2.5 µm in aerodynamic diameter. Conclusions: Former smokers with chronic obstructive pulmonary disease who live in homes with high estimated PM have accelerated lung function loss, and those in homes with low PM have lung function loss similar to normal aging. In-home PM exposure may contribute to variability in lung function decline in people who quit smoking and may be a modifiable exposure.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminación del Aire , Contaminantes Ambientales , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Fumadores , Contaminación del Aire Interior/efectos adversos , Contaminación del Aire Interior/análisis , Dióxido de Nitrógeno/efectos adversos , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/etiología , Material Particulado/efectos adversos , Pulmón , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos
10.
Am J Respir Crit Care Med ; 207(8): 978-995, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36973004

RESUMEN

Current American Thoracic Society (ATS) standards promote the use of race and ethnicity-specific reference equations for pulmonary function test (PFT) interpretation. There is rising concern that the use of race and ethnicity in PFT interpretation contributes to a false view of fixed differences between races and may mask the effects of differential exposures. This use of race and ethnicity may contribute to health disparities by norming differences in pulmonary function. In the United States and globally, race serves as a social construct that is based on appearance and reflects social values, structures, and practices. Classification of people into racial and ethnic groups differs geographically and temporally. These considerations challenge the notion that racial and ethnic categories have biological meaning and question the use of race in PFT interpretation. The ATS convened a diverse group of clinicians and investigators for a workshop in 2021 to evaluate the use of race and ethnicity in PFT interpretation. Review of evidence published since then that challenges current practice and continued discussion concluded with a recommendation to replace race and ethnicity-specific equations with race-neutral average reference equations, which must be accompanied with a broader re-evaluation of how PFTs are used to make clinical, employment, and insurance decisions. There was also a call to engage key stakeholders not represented in this workshop and a statement of caution regarding the uncertain effects and potential harms of this change. Other recommendations include continued research and education to understand the impact of the change, to improve the evidence for the use of PFTs in general, and to identify modifiable risk factors for reduced pulmonary function.


Asunto(s)
Etnicidad , Sociedades , Humanos , Estados Unidos , Pruebas de Función Respiratoria
11.
Am J Respir Crit Care Med ; 208(7): 791-801, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37523715

RESUMEN

Rationale: In addition to rare genetic variants and the MUC5B locus, common genetic variants contribute to idiopathic pulmonary fibrosis (IPF) risk. The predictive power of common variants outside the MUC5B locus for IPF and interstitial lung abnormalities (ILAs) is unknown. Objectives: We tested the predictive value of IPF polygenic risk scores (PRSs) with and without the MUC5B region on IPF, ILA, and ILA progression. Methods: We developed PRSs that included (PRS-M5B) and excluded (PRS-NO-M5B) the MUC5B region (500-kb window around rs35705950-T) using an IPF genome-wide association study. We assessed PRS associations with area under the receiver operating characteristic curve (AUC) metrics for IPF, ILA, and ILA progression. Measurements and Main Results: We included 14,650 participants (1,970 IPF; 1,068 ILA) from six multi-ancestry population-based and case-control cohorts. In cases excluded from genome-wide association study, the PRS-M5B (odds ratio [OR] per SD of the score, 3.1; P = 7.1 × 10-95) and PRS-NO-M5B (OR per SD, 2.8; P = 2.5 × 10-87) were associated with IPF. Participants in the top PRS-NO-M5B quintile had ∼sevenfold odds for IPF compared with those in the first quintile. A clinical model predicted IPF (AUC, 0.61); rs35705950-T and PRS-NO-M5B demonstrated higher AUCs (0.73 and 0.7, respectively), and adding both genetic predictors to a clinical model yielded the highest performance (AUC, 0.81). The PRS-NO-M5B was associated with ILA (OR, 1.25) and ILA progression (OR, 1.16) in European ancestry participants. Conclusions: A common genetic variant risk score complements the MUC5B variant to identify individuals at high risk of interstitial lung abnormalities and pulmonary fibrosis.


Asunto(s)
Estudio de Asociación del Genoma Completo , Fibrosis Pulmonar Idiopática , Humanos , Fibrosis Pulmonar Idiopática/genética , Factores de Riesgo , Pulmón , Mucina 5B/genética , Predisposición Genética a la Enfermedad
12.
PLoS Genet ; 17(11): e1009912, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34784346

RESUMEN

α1-anti-trypsin (A1AT), encoded by SERPINA1, is a neutrophil elastase inhibitor that controls the inflammatory response in the lung. Severe A1AT deficiency increases risk for Chronic Obstructive Pulmonary Disease (COPD), however, the role of A1AT in COPD in non-deficient individuals is not well known. We identify a 2.1-fold increase (p = 2.5x10-6) in the use of a distal poly-adenylation site in primary lung tissue RNA-seq in 82 COPD cases when compared to 64 controls and replicate this in an independent study of 376 COPD and 267 controls. This alternative polyadenylation event involves two sites, a proximal and distal site, 61 and 1683 nucleotides downstream of the A1AT stop codon. To characterize this event, we measured the distal ratio in human primary tissue short read RNA-seq data and corroborated our results with long read RNA-seq data. Integrating these results with 3' end RNA-seq and nanoluciferase reporter assay experiments we show that use of the distal site yields mRNA transcripts with over 50-fold decreased translation efficiency and A1AT expression. We identified seven RNA binding proteins using enhanced CrossLinking and ImmunoPrecipitation precipitation (eCLIP) with one or more binding sites in the SERPINA1 3' UTR. We combined these data with measurements of the distal ratio in shRNA knockdown experiments, nuclear and cytoplasmic fractionation, and chemical RNA structure probing. We identify Quaking Homolog (QKI) as a modulator of SERPINA1 mRNA translation and confirm the role of QKI in SERPINA1 translation with luciferase reporter assays. Analysis of single-cell RNA-seq showed differences in the distribution of the SERPINA1 distal ratio among hepatocytes, macrophages, αß-Tcells and plasma cells in the liver. Alveolar Type 1,2, dendritic cells and macrophages also vary in their distal ratio in the lung. Our work reveals a complex post-transcriptional mechanism that regulates alternative polyadenylation and A1AT expression in COPD.


Asunto(s)
Pulmón/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/genética , alfa 1-Antitripsina/genética , Línea Celular , Codón de Terminación/genética , Regulación de la Expresión Génica/genética , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Pulmón/patología , Macrófagos/metabolismo , Poliadenilación/genética , Proteínas Inhibidoras de Proteinasas Secretoras/genética , Proteínas Inhibidoras de Proteinasas Secretoras/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , RNA-Seq , Análisis de la Célula Individual , Linfocitos T/metabolismo
13.
Sensors (Basel) ; 24(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38400435

RESUMEN

Today, maintaining an Internet connection is indispensable; as an example, we can refer to IoT applications that can be found in fields such as environmental monitoring, smart manufacturing, healthcare, smart buildings, smart homes, transportation, energy, and others. The critical elements in IoT applications are both the Wireless Sensor Nodes (WSn) and the Wireless Sensor Networks. It is essential to state that designing an application demands a particular design of a WSn, which represents an important time consumption during the process. In line with this observation, our work describes the development of a modular WSn (MWSn) built with digital processing, wireless communication, and power supply subsystems. Then, we reduce the WSn-implementing process into the design of its modular sensing subsystem. This would allow the development and launching processes of IoT applications across different fields to become faster and easier. Our proposal presents a versatile communication between the sensing modules and the MWSn using one- or two-wired communication protocols, such as I2C. To validate the efficiency and versatility of our proposal, we present two IoT-based remote monitoring applications.

14.
Am J Physiol Lung Cell Mol Physiol ; 324(1): L32-L37, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36342131

RESUMEN

Nicotine from cigarette smoke is a biologically active molecule that has pleiotropic effects in the airway, which could play a role in smoking-induced lung disease. However, whether nicotine and its metabolites reach sustained, physiologically relevant concentrations on airway surfaces of smokers is not well defined. To address these issues, concentrations of nicotine, cotinine, and hydroxycotinine were measured by mass spectrometry (MS) in supernatants of induced sputum obtained from participants in the subpopulations and intermediate outcome measures in COPD study (SPIROMICS), an ongoing observational study that included never smokers, former smokers, and current smokers with and without chronic obstructive pulmonary disease (COPD). A total of 980 sputum supernatants were analyzed from 77 healthy never smokers, 494 former smokers (233 with COPD), and 396 active smokers (151 with COPD). Sputum nicotine, cotinine, and hydroxycotinine concentrations corresponded to self-reported smoking status and were strongly correlated to urine measures. A cutoff of ∼8-10 ng/mL of sputum cotinine distinguished never smokers from active smokers. Accounting for sample dilution during processing, active smokers had airway nicotine concentrations in the 70-850 ng/mL (∼0.5-5 µM) range, and concentrations remained elevated even in current smokers who had not smoked within 24 h. This study demonstrates that airway nicotine and its metabolites are readily measured in sputum supernatants and can serve as biological markers of smoke exposure. In current smokers, nicotine is present at physiologically relevant concentrations for prolonged periods, supporting a contribution to cigarette-induced airway disease.


Asunto(s)
Nicotina , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Nicotina/metabolismo , Cotinina/análisis , Cotinina/metabolismo , Fumadores , Sistema Respiratorio/metabolismo , Biomarcadores/análisis
15.
Clin Immunol ; 250: 109324, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37030524

RESUMEN

While hypogammaglobulinemia is associated with COPD exacerbations, it is unknown whether frequent exacerbators have specific defects in antibody production/function. We hypothesized that reduced quantity/function of serum pneumococcal antibodies correlate with exacerbation risk in the SPIROMICS cohort. We measured total pneumococcal IgG in n = 764 previously vaccinated participants with COPD. In a propensity-matched subset of n = 200 with vaccination within five years (n = 50 without exacerbations in the previous year; n = 75 with one, n = 75 with ≥2), we measured pneumococcal IgG for 23 individual serotypes, and pneumococcal antibody function for 4 serotypes. Higher total pneumococcal IgG, serotype-specific IgG (17/23 serotypes), and antibody function (3/4 serotypes) were independently associated with fewer prior exacerbations. Higher pneumococcal IgG (5/23 serotypes) predicted lower exacerbation risk in the following year. Pneumococcal antibodies are inversely associated with exacerbations, supporting the presence of immune defects in frequent exacerbators. With further study, pneumococcal antibodies may be useful biomarkers for immune dysfunction in COPD.


Asunto(s)
Infecciones Neumocócicas , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Inmunoglobulina G , Streptococcus pneumoniae , Vacunación , Pruebas Inmunológicas , Anticuerpos Antibacterianos , Vacunas Neumococicas
16.
Thorax ; 78(11): 1067-1079, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37268414

RESUMEN

BACKGROUND: Treatment and preventative advances for chronic obstructive pulmonary disease (COPD) have been slow due, in part, to limited subphenotypes. We tested if unsupervised machine learning on CT images would discover CT emphysema subtypes with distinct characteristics, prognoses and genetic associations. METHODS: New CT emphysema subtypes were identified by unsupervised machine learning on only the texture and location of emphysematous regions on CT scans from 2853 participants in the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS), a COPD case-control study, followed by data reduction. Subtypes were compared with symptoms and physiology among 2949 participants in the population-based Multi-Ethnic Study of Atherosclerosis (MESA) Lung Study and with prognosis among 6658 MESA participants. Associations with genome-wide single-nucleotide-polymorphisms were examined. RESULTS: The algorithm discovered six reproducible (interlearner intraclass correlation coefficient, 0.91-1.00) CT emphysema subtypes. The most common subtype in SPIROMICS, the combined bronchitis-apical subtype, was associated with chronic bronchitis, accelerated lung function decline, hospitalisations, deaths, incident airflow limitation and a gene variant near DRD1, which is implicated in mucin hypersecretion (p=1.1 ×10-8). The second, the diffuse subtype was associated with lower weight, respiratory hospitalisations and deaths, and incident airflow limitation. The third was associated with age only. The fourth and fifth visually resembled combined pulmonary fibrosis emphysema and had distinct symptoms, physiology, prognosis and genetic associations. The sixth visually resembled vanishing lung syndrome. CONCLUSION: Large-scale unsupervised machine learning on CT scans defined six reproducible, familiar CT emphysema subtypes that suggest paths to specific diagnosis and personalised therapies in COPD and pre-COPD.


Asunto(s)
Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Humanos , Enfisema Pulmonar/diagnóstico por imagen , Enfisema Pulmonar/genética , Estudios de Casos y Controles , Aprendizaje Automático no Supervisado , Pulmón , Tomografía Computarizada por Rayos X
17.
Am J Respir Crit Care Med ; 205(7): 819-829, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34913855

RESUMEN

Rationale: African American individuals have worse outcomes in chronic obstructive pulmonary disease (COPD). Objectives: To assess whether race-specific approaches for estimating lung function contribute to racial inequities by failing to recognize pathological decrements and considering them normal. Methods: In a cohort with and at risk for COPD, we assessed whether lung function prediction equations applied in a race-specific versus universal manner better modeled the relationship between FEV1, FVC, and other COPD outcomes, including the COPD Assessment Test, St. George's Respiratory Questionnaire, computed tomography percent emphysema, airway wall thickness, and 6-minute-walk test. We related these outcomes to differences in FEV1 using multiple linear regression and compared predictive performance between fitted models using root mean squared error and Alpaydin's paired F test. Measurements and Main Results: Using race-specific equations, African American individuals were calculated to have better lung function than non-Hispanic White individuals (FEV1, 76.8% vs. 71.8% predicted; P = 0.02). Using universally applied equations, African American individuals were calculated to have worse lung function. Using Hankinson's Non-Hispanic White equation, FEV1 was 64.7% versus 71.8% (P < 0.001). Using the Global Lung Initiative's Other race equation, FEV1 was 70.0% versus 77.9% (P < 0.001). Prediction errors from linear regression were less for universally applied equations compared with race-specific equations when examining FEV1% predicted with the COPD Assessment Test (P < 0.01), St. George's Respiratory Questionnaire (P < 0.01), and airway wall thickness (P < 0.01). Although African American participants had greater adversity (P < 0.001), less adversity was only associated with better FEV1 in non-Hispanic White participants (P for interaction = 0.041). Conclusions: Race-specific equations may underestimate COPD severity in African American individuals.Clinical trial registered with www.clinicaltrials.gov (NCT01969344).


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Volumen Espiratorio Forzado , Humanos , Pulmón/diagnóstico por imagen , Pruebas de Función Respiratoria , Capacidad Vital
18.
Am J Respir Crit Care Med ; 206(4): 427-439, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35536732

RESUMEN

Rationale: Chronic obstructive pulmonary disease (COPD) is variable in its development. Lung microbiota and metabolites collectively may impact COPD pathophysiology, but relationships to clinical outcomes in milder disease are unclear. Objectives: Identify components of the lung microbiome and metabolome collectively associated with clinical markers in milder stage COPD. Methods: We analyzed paired microbiome and metabolomic data previously characterized from bronchoalveolar lavage fluid in 137 participants in the SPIROMICS (Subpopulations and Intermediate Outcome Measures in COPD Study), or (GOLD [Global Initiative for Chronic Obstructive Lung Disease Stage 0-2). Datasets used included 1) bacterial 16S rRNA gene sequencing; 2) untargeted metabolomics of the hydrophobic fraction, largely comprising lipids; and 3) targeted metabolomics for a panel of hydrophilic compounds previously implicated in mucoinflammation. We applied an integrative approach to select features and model 14 individual clinical variables representative of known associations with COPD trajectory (lung function, symptoms, and exacerbations). Measurements and Main Results: The majority of clinical measures associated with the lung microbiome and metabolome collectively in overall models (classification accuracies, >50%, P < 0.05 vs. chance). Lower lung function, COPD diagnosis, and greater symptoms associated positively with Streptococcus, Neisseria, and Veillonella, together with compounds from several classes (glycosphingolipids, glycerophospholipids, polyamines and xanthine, an adenosine metabolite). In contrast, several Prevotella members, together with adenosine, 5'-methylthioadenosine, sialic acid, tyrosine, and glutathione, associated with better lung function, absence of COPD, or less symptoms. Significant correlations were observed between specific metabolites and bacteria (Padj < 0.05). Conclusions: Components of the lung microbiome and metabolome in combination relate to outcome measures in milder COPD, highlighting their potential collaborative roles in disease pathogenesis.


Asunto(s)
Microbiota , Enfermedad Pulmonar Obstructiva Crónica , Adenosina , Humanos , Pulmón/patología , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , ARN Ribosómico 16S/genética
19.
Proc Natl Acad Sci U S A ; 117(4): 2187-2193, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31932420

RESUMEN

Asthma resistance to glucocorticoid treatment is a major health problem with unclear etiology. Glucocorticoids inhibit adrenal androgen production. However, androgens have potential benefits in asthma. HSD3B1 encodes for 3ß-hydroxysteroid dehydrogenase-1 (3ß-HSD1), which catalyzes peripheral conversion from adrenal dehydroepiandrosterone (DHEA) to potent androgens and has a germline missense-encoding polymorphism. The adrenal restrictive HSD3B1(1245A) allele limits conversion, whereas the adrenal permissive HSD3B1(1245C) allele increases DHEA metabolism to potent androgens. In the Severe Asthma Research Program (SARP) III cohort, we determined the association between DHEA-sulfate and percentage predicted forced expiratory volume in 1 s (FEV1PP). HSD3B1(1245) genotypes were assessed, and association between adrenal restrictive and adrenal permissive alleles and FEV1PP in patients with (GC) and without (noGC) daily oral glucocorticoid treatment was determined (n = 318). Validation was performed in a second cohort (SARP I&II; n = 184). DHEA-sulfate is associated with FEV1PP and is suppressed with GC treatment. GC patients homozygous for the adrenal restrictive genotype have lower FEV1PP compared with noGC patients (54.3% vs. 75.1%; P < 0.001). In patients with the homozygous adrenal permissive genotype, there was no FEV1PP difference in GC vs. noGC patients (73.4% vs. 78.9%; P = 0.39). Results were independently confirmed: FEV1PP for homozygous adrenal restrictive genotype in GC vs. noGC is 49.8 vs. 63.4 (P < 0.001), and for homozygous adrenal permissive genotype, it is 66.7 vs. 67.7 (P = 0.92). The adrenal restrictive HSD3B1(1245) genotype is associated with GC resistance. This effect appears to be driven by GC suppression of 3ß-HSD1 substrate. Our results suggest opportunities for prediction of GC resistance and pharmacologic intervention.


Asunto(s)
Asma/tratamiento farmacológico , Asma/enzimología , Glucocorticoides/administración & dosificación , Complejos Multienzimáticos/genética , Progesterona Reductasa/genética , Esteroide Isomerasas/genética , Adulto , Anciano , Alelos , Andrógenos/metabolismo , Asma/genética , Asma/metabolismo , Estudios de Cohortes , Resistencia a Medicamentos , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Complejos Multienzimáticos/metabolismo , Progesterona Reductasa/metabolismo , Esteroide Isomerasas/metabolismo , Adulto Joven
20.
J Allergy Clin Immunol ; 150(3): 721-726.e1, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35398411

RESUMEN

BACKGROUND: Regulator of G protein signaling (RGS) 2 terminates bronchoconstrictive Gαq signaling; murine RGS2 knockout demonstrate airway hyperresponsiveness. While RGS2 promoter variants rs2746071 and rs2746072 associate with a clinical mild asthma phenotype, their impact on human airway smooth muscle (HASM) contractility and asthma severity outcomes is unknown. OBJECTIVE: We sought to determine whether reductions in RGS2 expression seen with these 2 RGS2 promoter variants augment HASM contractility and associate with an asthma severity phenotype. METHODS: We transfected HASM with a range of RGS2-specific small interfering RNA (siRNA) concentrations and determined RGS2 protein expression by Western blot analysis and intracellular calcium flux induced by histamine (a Gαq-coupled H1 receptor bronchoconstrictive agonist). We conducted regression-based genotype association analyses of RGS2 variants from 611 patients from the National Heart, Lung, and Blood Institute Severe Asthma Research Program 3. RESULTS: RGS2-specific siRNA caused dose-dependent increases in histamine-stimulated bronchoconstrictive intracellular calcium signaling (2-way ANOVA, P < .0001) with a concomitant decrease in RGS2 protein expression. RGS2-specific siRNA did not affect Gαq-independent ionomycin-induced intracellular calcium signaling (P = .42). The minor allele frequency of rs2746071 and rs2746072 was 0.46 and 0.28 among African American/non-Hispanic Black patients and was 0.28 and 0.27 among non-Hispanic White patients, among whom these single nucleotide polymorphisms were in stronger linkage disequilibrium (r2 = 0.97). Among non-Hispanic White patients, risk allele homozygotes for rs2746072 and rs2746071 each had nearly 2-fold greater asthma exacerbation rates relative to alternative genotypes with wild-type alleles (Padditive = 2.86 × 10-5/Precessive = 5.22 × 10-6 and Padditive = 3.46 × 10-6/Precessive = 6.74 × 10-7, respectively) at baseline, which was confirmed by prospective longitudinal exacerbation data. CONCLUSION: RGS2 promoter variation associates with a molecular and clinical phenotype characterized by enhanced bronchoconstrictive stimulation in vitro and higher asthma exacerbations rates in non-Hispanic White patients.


Asunto(s)
Asma , Proteínas RGS , Animales , Asma/genética , Asma/metabolismo , Histamina , Humanos , Ratones , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Estudios Prospectivos , Proteínas RGS/genética , Proteínas RGS/metabolismo , ARN Interferente Pequeño
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA