Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(12): e2119616119, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35290124

RESUMEN

Coherent nonlinear spectroscopies and imaging in the X-ray domain provide direct insight into the coupled motions of electrons and nuclei with resolution on the electronic length scale and timescale. The experimental realization of such techniques will strongly benefit from access to intense, coherent pairs of femtosecond X-ray pulses. We have observed phase-stable X-ray pulse pairs containing more than 3 × 107 photons at 5.9 keV (2.1 Å) with ∼1 fs duration and 2 to 5 fs separation. The highly directional pulse pairs are manifested by interference fringes in the superfluorescent and seeded stimulated manganese Kα emission induced by an X-ray free-electron laser. The fringes constitute the time-frequency X-ray analog of Young's double-slit interference, allowing for frequency domain X-ray measurements with attosecond time resolution.

2.
J Synchrotron Radiat ; 31(Pt 4): 751-762, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38904936

RESUMEN

A cavity-based X-ray free-electron laser (CBXFEL) is a possible future direction in the development of fully coherent X-ray sources. CBXFELs consist of a low-emittance electron source, a magnet system with several undulators and chicanes, and an X-ray cavity. The X-ray cavity stores and circulates X-ray pulses for repeated FEL interactions with electron pulses until the FEL reaches saturation. CBXFEL cavities require low-loss wavefront-preserving optical components: near-100%-reflectivity X-ray diamond Bragg-reflecting crystals, outcoupling devices such as thin diamond membranes or X-ray gratings, and aberration-free focusing elements. In the framework of the collaborative CBXFEL research and development project of Argonne National Laboratory, SLAC National Accelerator Laboratory and SPring-8, we report here the design, manufacturing and characterization of X-ray optical components for the CBXFEL cavity, which include high-reflectivity diamond crystal mirrors, a diamond drumhead crystal with thin membranes, beryllium refractive lenses and channel-cut Si monochromators. All the designed optical components have been fully characterized at the Advanced Photon Source to demonstrate their suitability for the CBXFEL cavity application.

3.
J Synchrotron Radiat ; 30(Pt 5): 1013-1022, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37610343

RESUMEN

The BL09XU beamline of SPring-8 has been reorganized into a beamline dedicated for hard X-ray photoelectron spectroscopy (HAXPES) to provide advanced capabilities with upgraded optical instruments. The beamline has two HAXPES analyzers to cover a wide range of applications. Two sets of double channel-cut crystal monochromators with the Si(220) and (311) reflections were installed to perform resonant HAXPES analyses with a total energy resolution of less than 300 meV over a wide energy range (4.9-12 keV) while achieving a fixed-exit condition. A double-crystal X-ray phase retarder using diamond crystals controls the polarization state with a high degree of polarization over 0.9 in the wide energy range 5.9-9.5 keV. Each HAXPES analyzer is equipped with a focusing mirror to provide a high-flux microbeam. The design and performance of the upgraded instruments are presented.

4.
Phys Rev Lett ; 131(16): 163201, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37925726

RESUMEN

X-ray diffraction of silicon irradiated with tightly focused femtosecond x-ray pulses (photon energy, 11.5 keV; pulse duration, 6 fs) was measured at various x-ray intensities up to 4.6×10^{19} W/cm^{2}. The measurement reveals that the diffraction intensity is highly suppressed when the x-ray intensity reaches of the order of 10^{19} W/cm^{2}. With a dedicated simulation, we confirm that the observed reduction of the diffraction intensity can be attributed to the femtosecond change in individual atomic scattering factors due to the ultrafast creation of highly ionized atoms through photoionization, Auger decay, and subsequent collisional ionization. We anticipate that this ultrafast reduction of atomic scattering factor will be a basis for new x-ray nonlinear techniques, such as pulse shortening and contrast variation x-ray scattering.

5.
Phys Rev Lett ; 131(7): 076901, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37656841

RESUMEN

We report ultrafast x-ray scattering experiments of the quasi-1D charge density wave (CDW) material (TaSe_{4})_{2}I following ultrafast infrared photoexcitation. From the time-dependent diffraction signal at the CDW sidebands we identify a 0.11 THz amplitude mode derived primarily from a transverse acoustic mode of the high-symmetry structure. From our measurements we determine that this mode interacts with the valence charge indirectly through another collective mode, and that the CDW system in (TaSe_{4})_{2}I has a composite nature supporting multiple dynamically active structural degrees of freedom.

6.
J Synchrotron Radiat ; 29(Pt 5): 1265-1272, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36073886

RESUMEN

In this study, double-multilayer monochromators that generate intense, high-energy, pink X-ray beams are designed, installed and evaluated at the SPring-8 medium-length (215 m) bending-magnet beamline BL20B2 for imaging applications. Two pairs of W/B4C multilayer mirrors are designed to utilize photon energies of 110 keV and 40 keV with bandwidths of 0.8% and 4.8%, respectively, which are more than 100 times larger when compared with the Si double-crystal monochromator (DCM) with a bandwidth of less than 0.01%. At an experimental hutch located 210 m away from the source, a large and uniform beam of size 14 mm (V) × 300 mm (H) [21 mm (V) × 300 mm (H)] was generated with a high flux density of 1.6 × 109 photons s-1 mm-2 (6.9 × 1010 photons s-1 mm-2) at 110 keV (40 keV), which marked a 300 (190) times increase in the photon flux when compared with a DCM with Si 511 (111) diffraction. The intense pink beams facilitate advanced X-ray imaging for large-sized objects such as fossils, rocks, organs and electronic devices with high speed and high spatial resolution.


Asunto(s)
Fotones , Sincrotrones , Rayos X
7.
J Synchrotron Radiat ; 28(Pt 1): 372, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33399589

RESUMEN

Corrections to equations and experimental results in the paper by Inoue et al. [(2019). J. Synchrotron Rad. 26, 2050-2054] are made.

8.
Phys Rev Lett ; 127(16): 163903, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34723578

RESUMEN

To shorten the duration of x-ray pulses, we present a nonlinear optical technique using atoms with core-hole vacancies (core-hole atoms) generated by inner-shell photoionization. The weak Coulomb screening in the core-hole atoms results in decreased absorption at photon energies immediately above the absorption edge. By employing this phenomenon, referred to as saturable absorption, we successfully reduce the duration of x-ray free-electron laser pulses (photon energy: 9.000 keV, duration: 6-7 fs, fluence: 2.0-3.5×10^{5} J/cm^{2}) by ∼35%. This finding that core-hole atoms are applicable to nonlinear x-ray optics is an essential stepping stone for extending nonlinear technologies commonplace at optical wavelengths to the hard x-ray region.

9.
Phys Rev Lett ; 126(11): 117403, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33798368

RESUMEN

Ultrafast changes of charge density distribution in diamond after irradiation with an intense x-ray pulse (photon energy, 7.8 keV; pulse duration, 6 fs; intensity, 3×10^{19} W/cm^{2}) have been visualized with the x-ray pump-x-ray probe technique. The measurement reveals that covalent bonds in diamond are broken and the electron distribution around each atom becomes almost isotropic within ∼5 fs after the intensity maximum of the x-ray pump pulse. The 15 fs time delay observed between the bond breaking and atomic disordering indicates nonisothermality of electron and lattice subsystems on this timescale. From these observations and simulation results, we interpret that the x-ray-induced change of the interatomic potential drives the ultrafast atomic disordering underway to the following nonthermal melting.

10.
J Synchrotron Radiat ; 27(Pt 6): 1720-1724, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33147199

RESUMEN

A simple scheme is proposed and experimentally confirmed to generate X-ray free-electron lasers (XFELs) consisting of broadband and narrowband beams with a controllable intensity ratio and a large photon-energy separation. This unique two-color XFEL beam will open new opportunities for investigation of nonlinear interactions between intense X-rays and matter.

11.
J Synchrotron Radiat ; 27(Pt 5): 1358-1361, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32876611

RESUMEN

Aiming for the fine observation of fast physical phenomena such as phonon propagation and laser ablation, phase-contrast X-ray imaging combined with a crystal X-ray interferometer and the X-ray free-electron laser (XFEL) of the SPring-8 Angstrom Compact Free-Electron Laser has been developed. An interference pattern with 70% visibility was obtained by single-shot exposure with a 15 keV monochromated XFEL. In addition, a phase map of an acrylic wedge was successfully obtained using the fringe scanning method.

12.
J Synchrotron Radiat ; 27(Pt 5): 1366-1371, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32876613

RESUMEN

This paper proposes and demonstrates a simple method using the intensity correlation of X-ray fluorescence to evaluate the focused beam size of an X-ray free-electron laser (XFEL). This method was applied to the sub-micrometre focused XFEL beam at the SPring-8 Angstrom Compact Free Electron Laser, and the beam size evaluated using the proposed method was consistent with that measured using the knife-edge scan method. The proposed method is readily applicable to extremely small X-ray spots and can be applied for the precise diagnostics of sub-10 nm focused X-ray beams which have recently emerged.

13.
J Synchrotron Radiat ; 27(Pt 4): 883-889, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33565996

RESUMEN

Ultimate focusing of an X-ray free-electron laser (XFEL) enables the generation of ultrahigh-intensity X-ray pulses. Although sub-10 nm focusing has already been achieved using synchrotron light sources, the sub-10 nm focusing of XFEL beams remains difficult mainly because the insufficient stability of the light source hinders the evaluation of a focused beam profile. This problem is specifically disadvantageous for the Kirkpatrick-Baez (KB) mirror focusing system, in which a slight misalignment of ∼300 nrad can degrade the focused beam. In this work, an X-ray nanobeam of a free-electron laser was generated using reflective KB focusing optics combined with speckle interferometry. The speckle profiles generated by 2 nm platinum particles were systematically investigated on a single-shot basis by changing the alignment of the multilayer KB mirror system installed at the SPring-8 Angstrom Compact Free-Electron Laser, in combination with computer simulations. It was verified that the KB mirror alignments were optimized with the required accuracy, and a focused vertical beam of 5.8 nm (±1.2 nm) was achieved after optimization. The speckle interferometry reported in this study is expected to be an effective tool for optimizing the alignment of nano-focusing systems and for generating an unprecedented intensity of up to 1022 W cm-2 using XFEL sources.

14.
Opt Express ; 28(18): 25706-25715, 2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-32906855

RESUMEN

A high-resolution micro channel-cut crystal monochromator (µCCM) composed of an Si(220) crystal is developed for the purpose of narrowing the bandwidth of a reflection self-seeded X-ray free-electron laser. Subsurface damage on the monochromator, which distorts the wavefront and broadens the bandwidth of the monochromatic seed beam, was removed by using a plasma etching technique. High diffraction performance of the monochromator was confirmed through evaluation with coherent X-rays. Reflection self-seeding operation was tested with the Si(220) µCCM at SPring-8 Angstrom Compact free-electron laser. A narrow average bandwidth of 0.6 eV, which is five times narrower than the value previously reported [I. Inoue et al., Nat. Photonics13, 319 (2019)10.1038/s41566-019-0365-y], was successfully obtained at 9 keV. The narrow-band X-ray beams with high intensity realized in this study will further expand the capabilities of X-ray free-electron lasers.

15.
J Synchrotron Radiat ; 26(Pt 6): 2050-2054, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31721750

RESUMEN

A simple method using X-ray fluorescence is proposed to diagnose the duration of an X-ray free-electron laser (XFEL) pulse. This work shows that the degree of intensity correlation of the X-ray fluorescence generated by irradiating an XFEL pulse on metal foil reflects the magnitude relation between the XFEL duration and the coherence time of the fluorescence. Through intensity correlation measurements of copper Kα fluorescence, the duration of 12 keV XFEL pulses from SACLA was evaluated to be ∼10 fs.

16.
J Synchrotron Radiat ; 26(Pt 2): 333-338, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30855240

RESUMEN

X-ray optics were implemented for advanced ultrafast X-ray experiments with different techniques at the hard X-ray beamline BL3 of SPring-8 Ångstrom Compact free-electron LAser. A double channel-cut crystal monochromator (DCCM) and compound refractive lenses (CRLs) were installed to tailor the beam conditions. These X-ray optics can work simultaneously with an arrival-timing monitor that compensates for timing jitter and drift. Inner-walls of channel-cut crystals (CCs) in the DCCM were processed by plasma chemical vaporization machining to remove crystallographic damage. Four-bounced reflection profiles of the CCs were investigated and excellent diffraction qualities were achieved. The use of CRLs enabled two-dimensional X-ray focusing with a spot size of ∼1.5 µm × 1.5 µm full width at half-maximum, while keeping reasonable throughputs for a wide photon energy range of 5-15 keV.

17.
J Synchrotron Radiat ; 26(Pt 5): 1496-1502, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31490137

RESUMEN

A channel-cut Si(111) crystal with a channel width of 90 µm was developed for achieving reflection self-seeding in hard X-ray free-electron lasers (XFELs). With the crystal a monochromatic seed pulse is produced from a broadband XFEL pulse generated in the first undulator section with an optical delay of 119 fs at 10 keV. The small optical delay allows a temporal overlap between the seed optical pulse and the electron bunch by using a small magnetic chicane for the electron beam placed between two undulator sections. Peak reflectivity reached 67%, which is reasonable compared with the theoretical value of 81%. By using this monochromator, a monochromatic seed pulse without broadband background in the spectrum was obtained at SACLA with a conversion efficiency from a broadband XFEL pulse of 2 × 10-2, which is ∼10 times higher than the theoretical efficiency of transmission self-seeding using a thin diamond (400) monochromator.


Asunto(s)
Rayos Láser , Óptica y Fotónica/instrumentación , Diamante/química , Electrones , Diseño de Equipo , Silicio/química , Rayos X
18.
J Synchrotron Radiat ; 25(Pt 2): 346-353, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29488912

RESUMEN

An X-ray prism for the extraction of a specific harmonic of undulator radiation is proposed. By using the prism in a grazing incidence geometry, the beam axes of fundamental and harmonics of undulator radiation are separated with large angles over 10 µrad, which enables the selection of a specific harmonic with the help of apertures, while keeping a high photon flux. The concept of the harmonic separation was experimentally confirmed using X-ray beams from the X-ray free-electron laser SACLA.

19.
J Synchrotron Radiat ; 25(Pt 1): 20-25, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29271746

RESUMEN

The performance of a hard X-ray split-and-delay optical (SDO) system with a wavefront division scheme was investigated at the hard X-ray free-electron laser facility SACLA. For the wavefront division, beam splitters made of edge-polished perfect Si(220) crystals were employed. We characterized the beam properties of the SDO system, and investigated its capabilities for beam manipulation and diagnostics. First, it was confirmed that shot-to-shot non-invasive diagnostics of pulse energies for both branches in the SDO system was feasible. Second, nearly ideal and identical focal profiles for both branches were obtained with a spot size of ∼1.5 µm in full width at half-maximum. Third, a spatial overlap of the two focused beams with a sub-µm accuracy was achieved by fine tuning of the SDO system. Finally, a reliable tunability of the delay time between two pulses was confirmed. The time interval was measured with an X-ray streak camera by changing the path length of the variable-delay branch. Errors from the fitted line were evaluated to be as small as ±0.4 ps over a time range of 60 ps.

20.
Phys Rev Lett ; 121(8): 083901, 2018 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-30192600

RESUMEN

X-ray two-photon absorption (TPA) spectrum of metallic copper is measured using a free-electron laser (XFEL). The spectrum differs from that measured by the conventional one-photon absorption (OPA), and characterized by a peak below the Fermi level, which is assigned to the transition to the 3d state. The impact of the XFEL pulse on the OPA spectrum is discussed by analyzing the pulse-energy dependence, which indicates that the intrinsic TPA spectrum is measured.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA