Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Ther ; 28(1): 328-340, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31628051

RESUMEN

ß-globin lentiviral vectors (ß-LV) have faced challenges in clinical translation for gene therapy of sickle cell disease (SCD) due to low titer and sub-optimal gene transfer to hematopoietic stem and progenitor cells (HSPCs). To overcome the challenge of preserving efficacious expression while increasing vector performance, we used published genomic and epigenomic data available through ENCODE to redefine enhancer element boundaries of the ß-globin locus control region (LCR) to construct novel ENCODE core sequences. These novel LCR elements were used to design a ß-LV of reduced proviral length, termed CoreGA-AS3-FB, produced at higher titers and possessing superior gene transfer to HSPCs when compared to the full-length parental ß-LV at equal MOI. At low vector copy number, vectors containing the ENCODE core sequences were capable of reversing the sickle phenotype in a mouse model of SCD. These studies provide a ß-LV that will be beneficial for gene therapy of SCD by significantly reducing the cost of vector production and extending the vector supply.


Asunto(s)
Anemia de Células Falciformes/terapia , Terapia Genética/métodos , Vectores Genéticos , Lentivirus/genética , Región de Control de Posición/genética , Transducción Genética/métodos , Globinas beta/genética , Animales , Células de la Médula Ósea/metabolismo , Modelos Animales de Enfermedad , Células HEK293 , Voluntarios Sanos , Células Madre Hematopoyéticas/metabolismo , Humanos , Ratones , Fenotipo , Transfección
2.
NAR Cancer ; 5(2): zcad027, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37275275

RESUMEN

Estrogen receptor α (ER) mutations occur in up to 30% of metastatic ER-positive breast cancers. Recent data has shown that ER mutations impact the expression of thousands of genes not typically regulated by wildtype ER. While the majority of these altered genes can be explained by constant activity of mutant ER or genomic changes such as altered ER binding and chromatin accessibility, as much as 33% remain unexplained, indicating the potential for post-transcriptional effects. Here, we explored the role of microRNAs in mutant ER-driven gene regulation and identified several microRNAs that are dysregulated in ER mutant cells. These differentially regulated microRNAs target a significant portion of mutant-specific genes involved in key cellular processes. When the activity of microRNAs is altered using mimics or inhibitors, significant changes are observed in gene expression and cellular proliferation related to mutant ER. An in-depth evaluation of miR-301b led us to discover an important role for PRKD3 in the proliferation of ER mutant cells. Our findings show that microRNAs contribute to mutant ER gene regulation and cellular effects in breast cancer cells.

3.
Sci Rep ; 12(1): 19731, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36396974

RESUMEN

Most endometrial cancers express the hormone receptor estrogen receptor alpha (ER) and are driven by excess estrogen signaling. However, evaluation of the estrogen response in endometrial cancer cells has been limited by the availability of hormonally responsive in vitro models, with one cell line, Ishikawa, being used in most studies. Here, we describe a novel, adherent endometrioid endometrial cancer (EEC) cell line model, HCI-EC-23. We show that HCI-EC-23 retains ER expression and that ER functionally responds to estrogen induction over a range of passages. We also demonstrate that this cell line retains paradoxical activation of ER by tamoxifen, which is also observed in Ishikawa and is consistent with clinical data. The mutational landscape shows that HCI-EC-23 is mutated at many of the commonly altered genes in EEC, has relatively few copy-number alterations, and is microsatellite instable high (MSI-high). In vitro proliferation of HCI-EC-23 is strongly reduced upon combination estrogen and progesterone treatment. HCI-EC-23 exhibits strong estrogen dependence for tumor growth in vivo and tumor size is reduced by combination estrogen and progesterone treatment. Molecular characterization of estrogen induction in HCI-EC-23 revealed hundreds of estrogen-responsive genes that significantly overlapped with those regulated in Ishikawa. Analysis of ER genome binding identified similar patterns in HCI-EC-23 and Ishikawa, although ER exhibited more bound sites in Ishikawa. This study demonstrates that HCI-EC-23 is an estrogen- and progesterone-responsive cell line model that can be used to study the hormonal aspects of endometrial cancer.


Asunto(s)
Carcinoma Endometrioide , Neoplasias Endometriales , Femenino , Humanos , Progesterona/farmacología , Progesterona/uso terapéutico , Estradiol/farmacología , Células Tumorales Cultivadas , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/genética , Neoplasias Endometriales/metabolismo , Estrógenos/farmacología , Estrógenos/uso terapéutico , Carcinoma Endometrioide/tratamiento farmacológico , Carcinoma Endometrioide/genética , Línea Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA