RESUMEN
Damage of the endothelial glycocalyx (eGC) plays a central role in the development of vascular hyperpermeability and organ damage during systemic inflammation. However, the specific signalling pathways for eGC damage remain poorly defined. Aim of this study was to combine sublingual video-microscopy, plasma proteomics and live cell imaging to uncover further pathways of eGC damage in patients with coronavirus disease 2019 (COVID-19) or bacterial sepsis. This secondary analysis of the prospective multicenter MICROCODE study included 22 patients with COVID-19 and 43 patients with bacterial sepsis admitted to intermediate or intensive care units and 10 healthy controls. Interleukin-6 (IL-6) was strongly associated with damaged eGC and correlated both with eGC dimensions (rs=0.36, p = 0.0015) and circulating eGC biomarkers. In vitro, IL-6 reduced eGC height and coverage, which was inhibited by blocking IL-6 signalling with the anti-IL-6 receptor antibody tocilizumab or the Janus kinase inhibitor tofacitinib. Exposure of endothelial cells to 5% serum from COVID-19 or sepsis patients resulted in a significant decrease in eGC height, which was attenuated by co-incubation with tocilizumab. In an external COVID-19 cohort of 219 patients from Massachusetts General Hospital, a previously identified proteomic eGC signature correlated with IL-6 (rs=-0.58, p < 0.0001) and predicted the combined endpoint of 28-day mortality and/or intubation (ROC-AUC: 0.86 [95% CI: 0.81-0.91], p < 0.001). The data suggest that IL-6 may significantly drive eGC damage in COVID-19 and bacterial sepsis. Our findings provide valuable insights into pathomechanisms of vascular dysfunction during systemic inflammation and highlight the need for further in vivo studies.
Asunto(s)
COVID-19 , Glicocálix , Interleucina-6 , Sepsis , Humanos , COVID-19/patología , COVID-19/metabolismo , COVID-19/complicaciones , Glicocálix/metabolismo , Glicocálix/patología , Interleucina-6/metabolismo , Interleucina-6/sangre , Masculino , Femenino , Persona de Mediana Edad , Sepsis/patología , Sepsis/metabolismo , Sepsis/complicaciones , Anciano , Estudios Prospectivos , SARS-CoV-2/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Anticuerpos Monoclonales HumanizadosRESUMEN
BACKGROUND: Recent studies have highlighted Coronavirus disease 2019 (COVID-19) as a multisystemic vascular disease. Up to 60% of the patients suffer from long-term sequelae and persistent symptoms even 6 months after the initial infection. METHODS: This prospective, observational study included 58 participants, 27 of whom were long COVID patients with persistent symptoms > 12 weeks after recovery from PCR-confirmed SARS-CoV-2 infection. Fifteen healthy volunteers and a historical cohort of critically ill COVID-19 patients (n = 16) served as controls. All participants underwent sublingual videomicroscopy using sidestream dark field imaging. A newly developed version of Glycocheck™ software was used to quantify vascular density, perfused boundary region (PBR-an inverse variable of endothelial glycocalyx dimensions), red blood cell velocity (VRBC) and the microvascular health score (MVHS™) in sublingual microvessels with diameters 4-25 µm. MEASUREMENTS AND MAIN RESULTS: Although dimensions of the glycocalyx were comparable to those of healthy controls, a µm-precise analysis showed a significant decrease of vascular density, that exclusively affected very small capillaries (D5: - 45.16%; D6: - 35.60%; D7: - 22.79%). Plotting VRBC of capillaries and feed vessels showed that the number of capillaries perfused in long COVID patients was comparable to that of critically ill COVID-19 patients and did not respond adequately to local variations of tissue metabolic demand. MVHS was markedly reduced in the long COVID cohort (healthy 3.87 vs. long COVID 2.72 points; p = 0.002). CONCLUSIONS: Our current data strongly suggest that COVID-19 leaves a persistent capillary rarefication even 18 months after infection. Whether, to what extent, and when the observed damage might be reversible remains unclear.
Asunto(s)
COVID-19 , Capilares , Humanos , Síndrome Post Agudo de COVID-19 , Estudios Prospectivos , Enfermedad Crítica , COVID-19/metabolismo , SARS-CoV-2 , Glicocálix , MicrocirculaciónRESUMEN
AIMS: Although coronavirus disease 2019 (COVID-19) and bacterial sepsis are distinct conditions, both are known to trigger endothelial dysfunction with corresponding microcirculatory impairment. The purpose of this study was to compare microvascular injury patterns and proteomic signatures in COVID-19 and bacterial sepsis patients. METHODS AND RESULTS: This multi-center, observational study included 22 hospitalized adult COVID-19 patients, 43 hospitalized bacterial sepsis patients, and 10 healthy controls from 4 hospitals. Microcirculation and glycocalyx dimensions were quantified via intravital sublingual microscopy. Plasma proteins were measured using targeted proteomics (Olink). Coregulation and cluster analysis of plasma proteins was performed using a training-set and confirmed in a test-set. An independent external cohort of 219 COVID-19 patients was used for validation and outcome analysis. Microcirculation and plasma proteome analysis found substantial overlap between COVID-19 and bacterial sepsis. Severity, but not disease entity explained most data variation. Unsupervised correlation analysis identified two main coregulated plasma protein signatures in both diseases that strictly counteract each other. They were associated with microvascular dysfunction and several established markers of clinical severity. The signatures were used to derive new composite biomarkers of microvascular injury that allow to predict 28-day mortality or/and intubation (area under the curve 0.90, p < 0.0001) in COVID-19. CONCLUSION: Our data imply a common biological host response of microvascular injury in both bacterial sepsis and COVID-19. A distinct plasma signature correlates with endothelial health and improved outcomes, while a counteracting response is associated with glycocalyx breakdown and high mortality. Microvascular health biomarkers are powerful predictors of clinical outcomes.
Asunto(s)
COVID-19 , Sepsis , Adulto , Biomarcadores/metabolismo , Humanos , Microcirculación , Proteoma , ProteómicaRESUMEN
RATIONALE: Pre-clinical and autopsy studies have fueled the hypothesis that a dysregulated vascular endothelium might play a central role in the pathogenesis of ARDS and multi-organ failure in COVID-19. OBJECTIVES: To comprehensively characterize and quantify microvascular alterations in patients with COVID-19. METHODS: Hospitalized adult patients with moderate-to-severe or critical COVID-19 (n = 23) were enrolled non-consecutively in this prospective, observational, cross-sectional, multi-center study. Fifteen healthy volunteers served as controls. All participants underwent intravital microscopy by sidestream dark field imaging to quantify vascular density, red blood cell velocity (VRBC), and glycocalyx dimensions (perfused boundary region, PBR) in sublingual microvessels. Circulating levels of endothelial and glycocalyx-associated markers were measured by multiplex proximity extension assay and enzyme-linked immunosorbent assay. MEASUREMENTS AND MAIN RESULTS: COVID-19 patients showed an up to 90% reduction in vascular density, almost exclusively limited to small capillaries (diameter 4-6 µm), and also significant reductions of VRBC. Especially, patients on mechanical ventilation showed severe glycocalyx damage as indicated by higher PBR values (i.e., thinner glycocalyx) and increased blood levels of shed glycocalyx constituents. Several markers of endothelial dysfunction were increased and correlated with disease severity in COVID-19. PBR (AUC 0.75, p = 0.01), ADAMTS13 (von Willebrand factor-cleaving protease; AUC 0.74, p = 0.02), and vascular endothelial growth factor A (VEGF-A; AUC 0.73, p = 0.04) showed the best discriminatory ability to predict 60-day in-hospital mortality. CONCLUSIONS: Our data clearly show severe alterations of the microcirculation and the endothelial glycocalyx in patients with COVID-19. Future therapeutic approaches should consider the importance of systemic vascular involvement in COVID-19.
Asunto(s)
COVID-19/fisiopatología , Endotelio Vascular/fisiopatología , Microcirculación , Anciano , Área Bajo la Curva , Estudios Transversales , Femenino , Estudios de Seguimiento , Glicocálix/química , Voluntarios Sanos , Humanos , Inflamación , Microscopía Intravital , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Perfusión , Estudios Prospectivos , Resultado del TratamientoRESUMEN
Coronavirus disease 2019 (COVID-19) is a systemic disease associated with injury (thinning) of the endothelial glycocalyx (eGC), a protective layer on the vascular endothelium. The aim of this translational study was to investigate the role of the eGC-degrading enzyme heparanase (HPSE), which is known to play a central role in the destruction of the eGC in bacterial sepsis. Excess activity of HPSE in plasma from COVID-19 patients correlated with several markers of eGC damage and perfused boundary region (PBR, an inverse estimate of glycocalyx dimensions of vessels with a diameter 4-25 µm). In a series of translational experiments, we demonstrate that the changes in eGC thickness of cultured cells exposed to COVID-19 serum correlated closely with HPSE activity in concordant plasma samples (R = 0.82, P = 0.003). Inhibition of HPSE by a nonanticoagulant heparin fragment prevented eGC injury in response to COVID-19 serum, as shown by atomic force microscopy and immunofluorescence imaging. Our results suggest that the protective effect of heparin in COVID-19 may be due to an eGC-protective off-target effect.
Asunto(s)
COVID-19 , Glucuronidasa , Glicocálix , COVID-19/metabolismo , COVID-19/patología , Glucuronidasa/metabolismo , Glicocálix/metabolismo , Glicocálix/patología , Heparina/farmacología , HumanosRESUMEN
Background: Following COVID-19, patients often present with ongoing symptoms comparable to chronic fatigue and subjective deterioration of exercise capacity (EC), which has been recently described as postacute COVID-19 syndrome. Objective: To objectify the reduced EC after COVID-19 and to evaluate for pathologic limitations. Methods: Thirty patients with subjective limitation of EC performed cardiopulmonary exercise testing (CPET). If objectively limited in EC or deteriorated in oxygen pulse, we offered cardiac stress magnetic resonance imaging (MRI) and a follow-up CPET. Results: Eighteen male and 12 female patients were included. Limited relative EC was detected in 11/30 (36.7%) patients. Limitation correlated with reduced body weight-indexed peak oxygen (O2) uptake (peakVÌO2/kg) (mean 74.7 (±7.1) % vs. 103.6 (±14.9) %, p < 0.001). Reduced peakVÌO2/kg was found in 18/30 (60.0%) patients with limited EC. Patients with reduced EC widely presented an impaired maximum O2 pulse (75.7% (±5.6) vs. 106.8% (±13.9), p < 0.001). Abnormal gas exchange was absent in all limited EC patients. Moreover, no patient showed signs of reduced pulmonary perfusion. Using cardiac MRI, diminished biventricular ejection fraction was ruled out in 16 patients as a possible cause for reduced O2 pulse. Despite noncontrolled training exercises, follow-up CPET did not reveal any exercise improvements. Conclusions: Deterioration of EC was not associated with ventilatory or pulmonary vascular limitation. Exercise limitation was related to both reduced O2 pulse and peakVÌO2/kg, which, however, did not correlate with the initial severity of COVID-19. We hypothesize that impaired microcirculation or limited peripheral O2 utilization might be causative for prolonged deterioration of EC following acute COVID-19 infection.