Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(20): e202403218, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38497312

RESUMEN

The generally observed decrease of the electrostatic energy in the complex with increasing solvent polarity has led to the assumption that the stability of the complexes with ion-pair hydrogen bonds decreases with increasing solvent polarity. Besides, the smaller solvent-accessible surface area (SASA) of the complex in comparison with the isolated subsystems results in a smaller solvation energy of the latter, leading to a destabilization of the complex in the solvent compared to the gas phase. In our study, which combines Nuclear Magnetic Resonance, Infrared Spectroscopy experiments, quantum chemical calculations, and molecular dynamics (MD) simulations, we question the general validity of this statement. We demonstrate that the binding free energy of the ion-pair hydrogen-bonded complex between 2-fluoropropionic acid and n-butylamine (CH3CHFCOO-…NH3But+) increases with increased solvent polarity. This phenomenon is rationalized by a substantial charge transfer between the subsystems that constitute the ion-pair hydrogen-bonded complex. This unexpected finding introduces a new perspective to our understanding of solvation dynamics, emphasizing the interplay between solvent polarity and molecular stability within hydrogen-bonded systems.

2.
J Org Chem ; 87(15): 10309-10318, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35895908

RESUMEN

Curcumin and its congeners exist in an equilibrium between diketo and ketoenol tautomers, which have different potencies to bind biomolecules. This work describes procedures for the preparation of 4-alkylated curcumin derivatives and the separation of their two tautomeric forms. Comprehensive NMR studies of the tautomer equilibria in various solvents have been accomplished. Additionally, a pure ketoenol tautomeric form of the active pharmaceutical ingredient (API) ASC-JM17 has been unequivocally determined by X-ray crystallography. Two different polymorphs of this API have been microscopically identified in the X-ray sample and manually separated, and a solid-state NMR study of the two polymorphs has also been performed. This work reports on the slow kinetics of diketo-ketoenol tautomerization in particular solvents that allow the separation and full characterization of both curcuminoids' tautomers.


Asunto(s)
Curcumina , Diarilheptanoides , Curcumina/química , Isomerismo , Cinética , Solventes/química
3.
Molecules ; 27(3)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35164232

RESUMEN

Herein, we report the use of the Suzuki-Miyaura cross-coupling reaction for the preparation of a library of synthetic derivatives of flavonoids for biological activity assays. We have investigated the reactivity of halogenated flavonoids with aryl boronates and with boronyl flavonoids. This reaction was used to prepare new synthetic derivatives of flavonoids substituted at C-8 with aryl, heteroaryl, alkyl, and boronate substituents. The formation of flavonoid boronate enabled a cross-coupling reaction with halogenated flavones yielding biflavonoids connected at C-8. This method was used for the preparation of natural compounds including C-8 prenylated compounds, such as sinoflavonoid NB. Flavonoid boronates were used for the preparation of rare C-8 hydroxyflavonoids (natural flavonoids gossypetin and hypolaetin). A series of previously unknown derivatives of quercetin and luteolin were prepared and fully characterized.


Asunto(s)
Ácidos Borónicos/química , Flavonoides/química , Luteolina/química , Paladio/química , Quercetina/química , Catálisis , Estructura Molecular
4.
Org Lett ; 26(3): 708-712, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38227978

RESUMEN

Photooxygenation of flavonoids leads to the release of carbon monoxide (CO). Our structure-photoreactivity study, employing several structurally different flavonoids, including their 13C-labeled analogs, revealed that CO can be produced via two completely orthogonal pathways, depending on their hydroxy group substitution pattern and the reaction conditions. While photooxygenation of the enol 3-OH group has previously been established as the CO liberation channel, we show that the catechol-type hydroxy groups of ring B can predominantly participate in photodecarbonylation.


Asunto(s)
Monóxido de Carbono , Flavonoides , Fotoquímica/métodos
5.
Chem Sci ; 15(2): 594-608, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38179543

RESUMEN

Certain peptide sequences, some of them as short as amino acid triplets, are significantly overpopulated in specific secondary structure motifs in folded protein structures. For example, 74% of the EAM triplet is found in α-helices, and only 3% occurs in the extended parts of proteins (typically ß-sheets). In contrast, other triplets (such as VIV and IYI) appear almost exclusively in extended parts (79% and 69%, respectively). In order to determine whether such preferences are structurally encoded in a particular peptide fragment or appear only at the level of a complex protein structure, NMR, VCD, and ECD experiments were carried out on selected tripeptides: EAM (denoted as pro-'α-helical' in proteins), KAM(α), ALA(α), DIC(α), EKF(α), IYI(pro-ß-sheet or more generally, pro-extended), and VIV(ß), and the reference α-helical CATWEAMEKCK undecapeptide. The experimental data were in very good agreement with extensive quantum mechanical conformational sampling. Altogether, we clearly showed that the pro-helical vs. pro-extended propensities start to emerge already at the level of tripeptides and can be fully developed at longer sequences. We postulate that certain short peptide sequences can be considered minimal "folding seeds". Admittedly, the inherent secondary structure propensity can be overruled by the large intramolecular interaction energies within the folded and compact protein structures. Still, the correlation of experimental and computational data presented herein suggests that the secondary structure propensity should be considered as one of the key factors that may lead to understanding the underlying physico-chemical principles of protein structure and folding from the first principles.

6.
J Med Chem ; 67(12): 10135-10151, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38857067

RESUMEN

Yohimbine, a natural indole alkaloid and a nonselective adrenoceptor antagonist, possesses potential benefits in treating inflammatory disorders and sepsis. Nevertheless, its broader clinical use faces challenges due to its low receptor selectivity. A structure-activity relationship study of novel yohimbine analogues identified amino esters of yohimbic acid as potent and selective ADRA2A antagonists. Specifically, amino ester 4n, in comparison to yohimbine, showed a 6-fold higher ADRA1A/ADRA2A selectivity index (SI > 556 for 4n) and a 25-fold higher ADRA2B/ADRA2A selectivity index. Compound 4n also demonstrated high plasma and microsomal stability, moderate-to-low membrane permeability determining its limited ability to cross the blood-brain barrier, and negligible toxicity on nontumor normal human dermal fibroblasts. Compound 4n represents an important complementary pharmacological tool to study the involvement of adrenoceptor subtypes in pathophysiologic conditions such as inflammation and sepsis and a novel candidate for further preclinical development to treat ADRA2A-mediated pathologies.


Asunto(s)
Antagonistas de Receptores Adrenérgicos alfa 2 , Diseño de Fármacos , Receptores Adrenérgicos alfa 2 , Yohimbina , Humanos , Receptores Adrenérgicos alfa 2/metabolismo , Yohimbina/farmacología , Yohimbina/química , Relación Estructura-Actividad , Antagonistas de Receptores Adrenérgicos alfa 2/farmacología , Antagonistas de Receptores Adrenérgicos alfa 2/química , Antagonistas de Receptores Adrenérgicos alfa 2/síntesis química , Animales
7.
ACS Omega ; 8(28): 25538-25548, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37483191

RESUMEN

Hydrogen bonding between nucleobases is a crucial noncovalent interaction for life on Earth. Canonical nucleobases form base pairs according to two main geometries: Watson-Crick pairing, which enables the static functions of nucleic acids, such as the storing of genetic information; and Hoogsteen pairing, which facilitates the dynamic functions of these biomacromolecules. This precisely tuned system can be affected by oxidation or substitution of nucleobases, leading to changes in their hydrogen-bonding patterns. This paper presents an investigation into the intermolecular interactions of various 8-substituted purine derivatives with their hydrogen-bonding partners. The systems were analyzed using nuclear magnetic resonance spectroscopy and density functional theory calculations. Our results demonstrate that the stability of hydrogen-bonded complexes, or base pairs, depends primarily on the number of intermolecular H-bonds and their donor-acceptor alternation. No strong preferences for a particular geometry, either Watson-Crick or Hoogsteen, were found.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA