Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genes Cells ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965717

RESUMEN

The brain utilizes glucose as a primary energy substrate but also fatty acids for the ß-oxidation in mitochondria. The ß-oxidation is reported to occur mainly in astrocytes, but its capacity and efficacy against different fatty acids remain unknown. Here, we show the fatty acid preference for the ß-oxidation in mitochondria of murine cultured astrocytes. Fatty acid oxidation assay using an extracellular flux analyzer showed that saturated or monosaturated fatty acids, palmitic acid and oleic acid, are preferred substrates over polyunsaturated fatty acids like arachidonic acid and docosahexaenoic acid. We also report that fatty acid binding proteins expressed in the astrocytes contribute less to fatty acid transport to mitochondria for ß-oxidation. Our results could give insight into understanding energy metabolism through fatty acid consumption in the brain.

3.
EMBO Rep ; 22(2): e51524, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33399271

RESUMEN

Advanced paternal age can have deleterious effects on various traits in the next generation. Here, we establish a paternal-aging model in mice to understand the molecular mechanisms of transgenerational epigenetics. Whole-genome target DNA methylome analyses of sperm from aged mice reveal more hypo-methylated genomic regions enriched in REST/NRSF binding motifs. Gene set enrichment analyses also reveal the upregulation of REST/NRSF target genes in the forebrain of embryos from aged fathers. Offspring derived from young mice administrated with a DNA de-methylation drug phenocopy the abnormal vocal communication of pups derived from aged fathers. In conclusion, hypo-methylation of sperm DNA can be a key molecular feature modulating neurodevelopmental programs in offspring by causing fluctuations in the expression of REST/NRSF target genes.


Asunto(s)
Metilación de ADN , Edad Paterna , Animales , Epigénesis Genética , Padre , Humanos , Masculino , Ratones , Espermatozoides/metabolismo
4.
Dev Dyn ; 251(3): 525-535, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34542211

RESUMEN

BACKGROUND: Repressor element 1-silencing transcription factor (REST) is a master regulator that is highly expressed in multipotent stem cells to repress gene networks involving a wide range of biological processes. A recent study has suggested that REST might be involved in a misregulation of its target genes in the embryonic brain of offspring derived from aged fathers. However, detailed analyses of the REST function in spermatogenesis are lacking due to difficulty in the detection of REST protein in specific cell types. RESULTS: To determine localization of REST, we generated an epitope tag knock-in (KI) mouse line with the C-terminus insertion of a podoplanin (PA)-tag at an endogenous Rest locus by the CRISPR/Cas9 system. Localization of the PA-tag was confirmed in neural stem cells marked with Pax6 in the embryonic brain. Moreover, PA-tagged REST was detected in undifferentiated and differentiating spermatogonia as well as Sertoli cells in both neonatal and adult testes. CONCLUSIONS: We demonstrate that REST is expressed at the early step of spermatogenesis and suggest a possibility that REST may modulate the epigenetic state of male germline cells. Our KI mice may be useful for studying REST-associated molecular mechanisms of neurodevelopmental and age-related disorders.


Asunto(s)
Edición Génica , Testículo , Animales , Epítopos/genética , Epítopos/metabolismo , Masculino , Ratones , Proteínas Represoras , Espermatogénesis/genética , Espermatogonias/metabolismo , Testículo/metabolismo , Factores de Transcripción/metabolismo
5.
J Anat ; 241(3): 820-830, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35638289

RESUMEN

The subcommissural organ (SCO) is a part of the circumventricular organs located in the dorsocaudal region of the third ventricle at the entrance of the aqueduct of Sylvius. The SCO comprises epithelial cells and produces high molecular weight glycoproteins, which are secreted into the third ventricle and become part of Reissner's fibre in the cerebrospinal fluid. Abnormal development of the SCO has been linked with congenital hydrocephalus, a condition characterized by excessive accumulation of cerebrospinal fluid in the brain. In the present study, we characterized the SCO cells in the adult mouse brain to gain insights into the possible role of this brain region. Immunohistochemical analyses revealed that expression of Pax6, a transcription factor essential for SCO differentiation during embryogenesis, is maintained in the SCO at postnatal stages from P0 to P84. SCO cells in the adult brain expressed known neural stem/progenitor cell (NSPC) markers, Sox2 and vimentin. The adult SCO cells also expressed proliferating marker PCNA, although expression of another proliferation marker Ki67, indicating a G2 /M phase, was not detected. The SCO cells did not incorporate BrdU, a marker for DNA synthesis in the S phase. Therefore, the SCO cells have a potential for proliferation but are quiescent for cell division in the adult. The SCO cells also expressed GFAP, a marker for astrocytes or NSPCs, but not NeuN (for neurons). A few cells positive for Iba1 (microglia), Olig2 (for oligodendrocytes) and PDGFRα (oligodendrocyte progenitors) existed within or on the periphery of the SCO. These findings revealed that the SCO cells have a unique feature as secretory yet immature neuroepithelial cells in the adult mouse brain.


Asunto(s)
Hidrocefalia , Órgano Subcomisural , Animales , Ventrículos Cerebrales/metabolismo , Glicoproteínas/metabolismo , Hidrocefalia/líquido cefalorraquídeo , Hidrocefalia/genética , Ratones , Células Neuroepiteliales
6.
Int J Mol Sci ; 23(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35682795

RESUMEN

Pax6 is a sequence-specific DNA binding transcription factor that positively and negatively regulates transcription and is expressed in multiple cell types in the developing and adult central nervous system (CNS). As indicated by the morphological and functional abnormalities in spontaneous Pax6 mutant rodents, Pax6 plays pivotal roles in various biological processes in the CNS. At the initial stage of CNS development, Pax6 is responsible for brain patterning along the anteroposterior and dorsoventral axes of the telencephalon. Regarding the anteroposterior axis, Pax6 is expressed inversely to Emx2 and Coup-TF1, and Pax6 mutant mice exhibit a rostral shift, resulting in an alteration of the size of certain cortical areas. Pax6 and its downstream genes play important roles in balancing the proliferation and differentiation of neural stem cells. The Pax6 gene was originally identified in mice and humans 30 years ago via genetic analyses of the eye phenotypes. The human PAX6 gene was discovered in patients who suffer from WAGR syndrome (i.e., Wilms tumor, aniridia, genital ridge defects, mental retardation). Mutations of the human PAX6 gene have also been reported to be associated with autism spectrum disorder (ASD) and intellectual disability. Rodents that lack the Pax6 gene exhibit diverse neural phenotypes, which might lead to a better understanding of human pathology and neurodevelopmental disorders. This review describes the expression and function of Pax6 during brain development, and their implications for neuropathology.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Animales , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Proteínas de Homeodominio/genética , Humanos , Ratones , Trastornos del Neurodesarrollo/genética , Factor de Transcripción PAX6/genética , Factor de Transcripción PAX6/metabolismo , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Telencéfalo/metabolismo
7.
Development ; 145(8)2018 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-29661783

RESUMEN

The evolution of unique organ structures is associated with changes in conserved developmental programs. However, characterizing the functional conservation and variation of homologous transcription factors (TFs) that dictate species-specific cellular dynamics has remained elusive. Here, we dissect shared and divergent functions of Pax6 during amniote brain development. Comparative functional analyses revealed that the neurogenic function of Pax6 is highly conserved in the developing mouse and chick pallium, whereas stage-specific binary functions of Pax6 in neurogenesis are unique to mouse neuronal progenitors, consistent with Pax6-dependent temporal regulation of Notch signaling. Furthermore, we identified that Pax6-dependent enhancer activity of Dbx1 is extensively conserved between mammals and chick, although Dbx1 expression in the developing pallium is highly divergent in these species. Our results suggest that spatiotemporal changes in Pax6-dependent regulatory programs contributed to species-specific neurogenic patterns in mammalian and avian lineages, which underlie the morphological divergence of the amniote pallial architectures.


Asunto(s)
Proteínas Aviares/fisiología , Encéfalo/embriología , Encéfalo/fisiología , Factor de Transcripción PAX6/fisiología , Animales , Animales Modificados Genéticamente , Proteínas Aviares/genética , Embrión de Pollo , Elementos de Facilitación Genéticos , Evolución Molecular , Femenino , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , Ratones Transgénicos , Neurogénesis/genética , Neurogénesis/fisiología , Factor de Transcripción PAX6/deficiencia , Factor de Transcripción PAX6/genética , Embarazo , Receptores Notch/genética , Receptores Notch/fisiología , Transducción de Señal , Especificidad de la Especie
8.
Development ; 145(23)2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30446626

RESUMEN

In mouse embryos, primordial germ cells (PGCs) are fate-determined from epiblast cells. Signaling pathways involved in PGC formation have been identified, but their epigenetic mechanisms remain poorly understood. Here, we show that the histone methyltransferase SETDB1 is an epigenetic regulator of PGC fate determination. Setdb1-deficient embryos exhibit drastic reduction of nascent PGCs. Dppa2, Otx2 and Utf1 are de-repressed whereas mesoderm development-related genes, including BMP4 signaling-related genes, are downregulated by Setdb1 knockdown during PGC-like cell (PGCLC) induction. In addition, binding of SETDB1 is observed at the flanking regions of Dppa2, Otx2 and Utf1 in cell aggregates containing PGCLCs, and trimethylation of lysine 9 of histone H3 is reduced by Setdb1 knockdown at those regions. Furthermore, DPPA2, OTX2 and UTF1 binding is increased in genes encoding BMP4 signaling-related proteins, including SMAD1. Finally, overexpression of Dppa2, Otx2 and Utf1 in cell aggregates containing PGCLCs results in the repression of BMP4 signaling-related genes and PGC determinant genes. We propose that the localization of SETDB1 to Dppa2, Otx2 and Utf1, and subsequent repression of their expression, are crucial for PGC determination by ensuring BMP4 signaling.


Asunto(s)
Proteína Morfogenética Ósea 4/metabolismo , Linaje de la Célula , Células Germinativas/citología , Células Germinativas/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Transducción de Señal , Animales , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , N-Metiltransferasa de Histona-Lisina/deficiencia , N-Metiltransferasa de Histona-Lisina/genética , Mesodermo/embriología , Mesodermo/metabolismo , Ratones , Factores de Transcripción/metabolismo , Regulación hacia Arriba/genética
9.
Int J Mol Sci ; 22(24)2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34947998

RESUMEN

Bisphenol A (BPA) is an environmental risk factor for autism spectrum disorder (ASD). BPA exposure dysregulates ASD-related genes in the hippocampus and neurological functions of offspring. However, whether prenatal BPA exposure has an impact on genes in the prefrontal cortex, another brain region highly implicated in ASD, and through what mechanisms have not been investigated. Here, we demonstrated that prenatal BPA exposure disrupts the transcriptome-interactome profiles of the prefrontal cortex of neonatal rats. Interestingly, the list of BPA-responsive genes was significantly enriched with known ASD candidate genes, as well as genes that were dysregulated in the postmortem brain tissues of ASD cases from multiple independent studies. Moreover, several differentially expressed genes in the offspring's prefrontal cortex were the targets of ASD-related transcription factors, including AR, ESR1, and RORA. The hypergeometric distribution analysis revealed that BPA may regulate the expression of such genes through these transcription factors in a sex-dependent manner. The molecular docking analysis of BPA and ASD-related transcription factors revealed novel potential targets of BPA, including RORA, SOX5, TCF4, and YY1. Our findings indicated that prenatal BPA exposure disrupts ASD-related genes in the offspring's prefrontal cortex and may increase the risk of ASD through sex-dependent molecular mechanisms, which should be investigated further.


Asunto(s)
Trastorno del Espectro Autista/genética , Compuestos de Bencidrilo/efectos adversos , Perfilación de la Expresión Génica/métodos , Fenoles/efectos adversos , Corteza Prefrontal/química , Efectos Tardíos de la Exposición Prenatal/genética , Factores de Transcripción/genética , Animales , Trastorno del Espectro Autista/inducido químicamente , Modelos Animales de Enfermedad , Receptor alfa de Estrógeno/genética , Femenino , Regulación de la Expresión Génica , Simulación del Acoplamiento Molecular , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Ratas , Receptores Androgénicos/genética , Análisis de Secuencia de ARN , Caracteres Sexuales
10.
Dev Dyn ; 249(6): 698-710, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32012381

RESUMEN

BACKGROUND: During development, Cajal-Retzius (CR) cells are the first generated and essential pioneering neurons that control neuronal migration and arealization in the mammalian cortex. CR cells are derived from specific regions within the telencephalon, that is, the pallial septum in the rostromedial cortex, the pallial-subpallial boundary, and the cortical hem (CH) in the caudomedial cortex. However, the molecular mechanism underlying the generation of CR cell subtypes in distinct regions of origin is poorly understood. RESULTS: We found that double-sex and mab-3 related transcription factor (Dmrt) genes, that is, Dmrta1 and Dmrt3, were expressed in the progenitor domains that produce CR cells. The number of CH-derived CR cells was severely decreased in Dmrt3 mutants, especially in Dmrta1 and Dmrt3 double mutants. The reduced production of the CR cells was consistent with the developmental impairment of the CH structures in the medial telencephalon from which the CR cells are produced. CONCLUSION: Dmrta1 and Dmrt3 cooperatively regulate patterning of the CH structure and production of the CR cells from the CH during cortical development.


Asunto(s)
Neuronas/metabolismo , Telencéfalo/citología , Factores de Transcripción/metabolismo , Animales , Linaje de la Célula , Movimiento Celular/fisiología , Neurogénesis/fisiología , Factores de Transcripción/genética
11.
Glia ; 68(7): 1435-1444, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32057146

RESUMEN

Upon infection or brain damage, microglia are activated to play roles in immune responses, including phagocytosis and soluble factor release. However, little is known whether the event of phagocytosis could be a trigger for releasing soluble factors from microglia. In this study, we tested if microglia secrete a neurovascular mediator matrix metalloproteinase-9 (MMP-9) after phagocytosis in vitro. Primary microglial cultures were prepared from neonatal rat brains. Cultured microglia phagocytosed Escherichia coli bioparticles within 2 hr after incubation and started to secrete MMP-9 at around 12 hr after the phagocytosis. A TLR4 inhibitor TAK242 suppressed the E. coli-bioparticle-induced MMP-9 secretion. However, TAK242 did not change the engulfment of E. coli bioparticles in microglial cultures. Because lipopolysaccharides (LPS), the major component of the outer membrane of E. coli, also induced MMP-9 secretion in a dose-response manner and because the response was inhibited by TAK242 treatment, we assumed that the LPS-TLR4 pathway, which was activated by adhering to the substance, but not through the engulfing process of phagocytosis, would play a role in releasing MMP-9 from microglia after E. coli bioparticle treatment. To support the finding that the engulfing step would not be a critical trigger for MMP-9 secretion after the event of phagocytosis in microglia, we confirmed that cell debris and amyloid beta were both captured into microglia via phagocytosis, but neither of them induced MMP-9 secretion from microglia. Taken together, these data demonstrate that microglial response in MMP-9 secretion after phagocytosis differs depending on the types of particles/substances that microglia encountered.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Microglía/metabolismo , Fagocitosis/fisiología , Animales , Células Cultivadas , Escherichia coli/metabolismo , Lipopolisacáridos/farmacología , Ratas
12.
Tohoku J Exp Med ; 252(3): 199-208, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33087680

RESUMEN

Ependymal cells have an essential role in regulating the dynamics of the cerebrospinal fluid flow by the movement of their multiple cilia. Impaired generation or function of cilia could cause hydrocephalus due to the disordered dynamics of the cerebrospinal fluid flow. However, molecular bases regulating differentiation of the ependymal cells and their ciliogenesis have not been fully elucidated. We report here that bone morphogenetic proteins (BMPs), growth factors orchestrating tissue architecture throughout the body, inhibit ciliogenesis during ependymal cell differentiation in primary cell culture. Previous in vitro study has reported that ectopic expression of Smad6 and Smad7 promotes differentiation of embryonic stem cells into multi-ciliated ependymal-like cells. Since Smad6 and Smad7 have been known as the intracellular inhibitory factors of the BMP signaling pathway, the activation of the pathway could cause a deficit in ciliogenesis of ependymal cells. To examine whether activation of the pathway affects ciliogenesis, we investigated the effects of two BMPs, BMP2 and BMP4, on the ependymal differentiation of the primary cultured cells prepared from the neonatal mouse brain. Supplementation of BMP2 or BMP4 in culture media significantly reduced the number of cells with multiple cilia among the total cells, while most of the cells expressed FoxJ1, a master regulator of ciliogenesis. Activation of the pathway was confirmed by the phosphorylation of intracellular Smad1/5/8, downstream factors of the BMP receptors. These in vitro results suggest that inhibition of the BMP signaling pathway might be essential for ciliogenesis during the ependymal cell differentiation in vivo.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Cilios/metabolismo , Epéndimo/citología , Animales , Proteína Morfogenética Ósea 2/biosíntesis , Proteína Morfogenética Ósea 4/biosíntesis , Encéfalo/metabolismo , Diferenciación Celular , Células Cultivadas , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Fosforilación , Transducción de Señal/efectos de los fármacos , Proteína smad6/biosíntesis , Proteína smad7/biosíntesis
13.
Tohoku J Exp Med ; 250(4): 253-262, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32321870

RESUMEN

The Tohoku Medical Megabank Project was designed as part of the national reconstruction project for addressing the damage from the 2011 Great East Japan Earthquake. It is an integrated project involving the genome cohort study of 150,000 participants, integrated biobank construction, and multi-omics analyses. Public relations and communication activities emerged to be extremely important in the successful development of this project. To gain insights into the contributions of these activities, we divided the public relations and communication activities for the project into three phases based on the situations surrounding the project. Prior to the start of the cohort study (Phase I), a cooperative relationship was established with a focus on concluding cooperation agreements with local governments. Until the participants reached the target number (Phase II), we actively communicated with the media to publicize the project. During the phase in which use of the constructed biobank is promoted (Phase III), for ensuring the industrial utilization of the biobank, visits from the industry are promoted. Throughout the execution of these activities, we explored the best strategies for building relationships with multiple stakeholders like local government, media and industry. By paying attention to these phases that have been changing according to the project's progress, we were able to adapt the strategies and methods of public relations and communication. The success of these activities has enabled the overall project to progress smoothly. We hope that the process of designing our project's public relations and communication activities will be useful for other similar initiatives.


Asunto(s)
Bancos de Muestras Biológicas , Comunicación , Relaciones Públicas , Estudios de Cohortes , Conducta Cooperativa , Geografía , Humanos , Japón , Medios de Comunicación de Masas , Participación de los Interesados
14.
Genes Cells ; 2018 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-29984875

RESUMEN

Fabp7 gene encodes a brain-specific fatty acid-binding protein that is widely used as a marker for neural stem cells. Here, we report that the activity of rat Fabp7 promoter was regulated directly by a transcription factor, Pax6. Deletion analyses identified an essential region (-837 to -64 from transcription start site) in the rat Fabp7 promoter. This region controls promoter activity in rat embryos and in the mouse cultured cell line MEB5. Over-expressing wild-type Pax6 or a dominant-negative Pax6 mutant enhanced and suppressed, respectively, the promoter activity. Pax6 can bind the region directly, although the region contains no clear binding motif for Pax6. The rat Fabp7 promoter also contains conserved binding sites for Pbx/POU (-384 to -377) and CBF1 (-270 to -262). However, specific deletion of the sites showed no significant reduction in the promoter activity, although a gel mobility shift assay confirmed that CBF1 binds the conserved sequence. Taken together, these results suggest that the rat Fabp7 promoter is mainly regulated by Pax6. The Pax6-dependent regulation of the rat Fabp7 expression might have an evolutionary aspect between rat and mouse; the former may need to efficiently use fatty acids to make the brain bigger than the latter.

16.
Nature ; 555(7697): S59, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32034357
17.
Adv Exp Med Biol ; 1012: 75-81, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29956196

RESUMEN

Sincethe theory of DOHaD has been thrown in the spotlight, most attention has focused on environmental effects of the uterus on developing embryos/fetuses. However, the ontogenesis traces back to gametogenesis. Compared to oogenesis, spermatogenesis goes through far more cell divisions and is therefore more prone to genetic variation and epigenetic alterations. This article will mainly discuss recent findings about the effects of the advanced paternal age on the next generation, in relation to the onset of psychiatric disorders such as autism spectrum disorder. We would like to advocate for further exploration on the DOHaD theory in a wider view.


Asunto(s)
Epigénesis Genética/fisiología , Trastornos del Neurodesarrollo/etiología , Edad Paterna , Efectos Tardíos de la Exposición Prenatal , Espermatozoides/metabolismo , Envejecimiento/genética , Envejecimiento/fisiología , Trastorno del Espectro Autista/genética , Metilación de ADN/fisiología , Padre , Femenino , Humanos , Masculino , Trastornos del Neurodesarrollo/genética , Embarazo , Efectos Tardíos de la Exposición Prenatal/genética , Factores de Riesgo , Espermatozoides/patología
18.
J Anat ; 230(3): 373-380, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28026856

RESUMEN

The anterior pituitary originates from the adenohypophyseal placode. Both the preplacode region and neural crest (NC) derive from subdivision of the neural border region, and further individualization of the placode domain is established by a reciprocal interaction between placodal precursors and NC cells (NCCs). It has long been known that NCCs are present in the adenohypophysis as interstitial cells. A recent report demonstrated that NCCs also contribute to the formation of pericytes in the developing pituitary. Here, we attempt to further clarify the role of NCCs in pituitary development using P0-Cre/EGFP reporter mice. Spatiotemporal analyses revealed that GFP-positive NCCs invaded the adenohypophysis in a stepwise manner. The first wave was detected on mouse embryonic day 9.5 (E9.5), when the pituitary primordium begins to be formed by adenohypophyseal placode cells; the second wave occurred on E14.5, when vasculogenesis proceeds from Atwell's recess. Finally, fate tracing of NCCs demonstrated that NC-derived cells in the adenohypophysis terminally differentiate into all hormone-producing cell lineages as well as pericytes. Our data suggest that NCCs contribute to pituitary organogenesis and vasculogenesis in conjunction with placode-derived pituitary stem/progenitor cells.


Asunto(s)
Cresta Neural/crecimiento & desarrollo , Organogénesis/fisiología , Hipófisis/embriología , Animales , Embrión de Mamíferos , Inmunohistoquímica , Ratones , Ratones Transgénicos , Modelos Animales
19.
Dev Growth Differ ; 59(9): 701-712, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29124740

RESUMEN

The anterior part of the embryonic telencephalon gives rise to several brain regions that are important for animal behavior, including the frontal cortex (FC) and the olfactory bulb. The FC plays an important role in decision-making behaviors, such as social and cognitive behavior, and the olfactory bulb is involved in olfaction. Here, we show the organizing activity of fibroblast growth factor 8 (Fgf8) in the regionalization of the anterior telencephalon, specifically the FC and the olfactory bulb. Misexpression of Fgf8 in the most anterior part of the mouse telencephalon at embryonic day 11.5 (E11.5) by ex utero electroporation resulted in a lateral shift of dorsal FC subdivision markers and a lateral expansion of the dorsomedial part of the FC, the future anterior cingulate and prelimbic cortex. Fgf8-transfected brains had lacked ventral FC, including the future orbital cortex, which was replaced by the expanded olfactory bulb. The olfactory region occupied a larger area of the FC when transfection efficiency of Fgf8 was higher. These results suggest that Fgf8 regulates the proportions of the FC and olfactory bulb in the anterior telencephalon and has a medializing effect on the formation of FC subdivisions.


Asunto(s)
Factor 8 de Crecimiento de Fibroblastos/metabolismo , Telencéfalo/metabolismo , Animales , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Factor 8 de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Bulbo Olfatorio/embriología , Bulbo Olfatorio/metabolismo , Telencéfalo/embriología
20.
Dev Growth Differ ; 59(8): 657-673, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28945921

RESUMEN

The hippocampal formation (HF) is morphologically and functionally distinguishable into the subdivisions, such as the dentate gyrus (DG), subiculum, and Ammon's horn. The Ammon's horn is further divided into the CA (Cornu Ammonis)1, CA2, and CA3. The Reelin-Dab1 signal is essential for the morphogenesis of the mammalian brain. In the neocortex of Reelin-Dab1 signal mutants the laminar pattern of the neurons is disrupted along the radial axis. Morphological abnormalities in the HF of the Reelin-Dab1 mutants were known, but how these abnormalities appear during development had not been extensively studied. We examined the morphology of the well-developed Dab1 deficient HF by staining with a silver impregnation method in this report, and found that disruption of lamination in the CA1, CA3, and DG was different. Abnormalities observed in the development of Dab1 deficient CA1 were similar to those reported in the neocortical development, while Dab1 deficient CA3 neuronal progenitors radially spreaded beyond presumptive pyramidal layer. The intermediate progenitor cells ectopically located in the Dab1 deficient DG, but neurogenesis was normal in the CA1 and CA3. These observations suggest that the morphogenesis in these HF subdivisions employs different developmental mechanisms involving Dab1 function.


Asunto(s)
Región CA1 Hipocampal/embriología , Región CA3 Hipocampal/embriología , Embrión de Mamíferos/embriología , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Animales , Región CA1 Hipocampal/citología , Región CA3 Hipocampal/citología , Embrión de Mamíferos/citología , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales/citología , Proteína Reelina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA