Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cell ; 157(2): 486-498, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24725413

RESUMEN

Cyclin-dependent kinase 5 regulates numerous neuronal functions with its activator, p35. Under neurotoxic conditions, p35 undergoes proteolytic cleavage to liberate p25, which has been implicated in various neurodegenerative diseases. Here, we show that p25 is generated following neuronal activity under physiological conditions in a GluN2B- and CaMKIIα-dependent manner. Moreover, we developed a knockin mouse model in which endogenous p35 is replaced with a calpain-resistant mutant p35 (Δp35KI) to prevent p25 generation. The Δp35KI mice exhibit impaired long-term depression and defective memory extinction, likely mediated through persistent GluA1 phosphorylation at Ser845. Finally, crossing the Δp35KI mice with the 5XFAD mouse model of Alzheimer's disease (AD) resulted in an amelioration of ß-amyloid (Aß)-induced synaptic depression and cognitive impairment. Together, these results reveal a physiological role of p25 production in synaptic plasticity and memory and provide new insights into the function of p25 in Aß-associated neurotoxicity and AD-like pathology.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Calpaína/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cognición , Quinasa 5 Dependiente de la Ciclina/metabolismo , Modelos Animales de Enfermedad , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Endocitosis , Técnicas de Sustitución del Gen , Hipocampo/metabolismo , Humanos , Potenciación a Largo Plazo , Depresión Sináptica a Largo Plazo , Ratones , Proteínas del Tejido Nervioso/genética , Fosfotransferasas , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis
2.
PLoS Biol ; 13(10): e1002282, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26506154

RESUMEN

Exposure to extreme stress can trigger the development of major depressive disorder (MDD) as well as post-traumatic stress disorder (PTSD). The molecular mechanisms underlying the structural and functional alterations within corticolimbic brain regions, including the prefrontal cortex (PFC) and amygdala of individuals subjected to traumatic stress, remain unknown. In this study, we show that serum and glucocorticoid regulated kinase 1 (SGK1) expression is down-regulated in the postmortem PFC of PTSD subjects. Furthermore, we demonstrate that inhibition of SGK1 in the rat medial PFC results in helplessness- and anhedonic-like behaviors in rodent models. These behavioral changes are accompanied by abnormal dendritic spine morphology and synaptic dysfunction. Together, the results are consistent with the possibility that altered SGK1 signaling contributes to the behavioral and morphological phenotypes associated with traumatic stress pathophysiology.


Asunto(s)
Trastorno Depresivo Mayor/etiología , Represión Enzimática , Proteínas Inmediatas-Precoces/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Trastornos por Estrés Postraumático/metabolismo , Adulto , Animales , Conducta Animal , Estudios de Cohortes , Espinas Dendríticas/enzimología , Espinas Dendríticas/metabolismo , Espinas Dendríticas/patología , Femenino , Técnicas de Transferencia de Gen , Hipocampo/enzimología , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Proteínas Inmediatas-Precoces/antagonistas & inhibidores , Proteínas Inmediatas-Precoces/genética , Masculino , Persona de Mediana Edad , Proteínas del Tejido Nervioso/genética , Neuronas/enzimología , Neuronas/patología , Corteza Prefrontal/enzimología , Corteza Prefrontal/patología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Ratas Sprague-Dawley , Transducción de Señal , Trastornos por Estrés Postraumático/patología , Trastornos por Estrés Postraumático/psicología , Transmisión Sináptica , Bancos de Tejidos
3.
Neurobiol Dis ; 82: 254-261, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26102021

RESUMEN

Clinical studies demonstrate that scopolamine, a non-selective muscarinic acetylcholine receptor (mAchR) antagonist, produces rapid therapeutic effects in depressed patients, and preclinical studies report that the actions of scopolamine require glutamate receptor activation and the mechanistic target of rapamycin complex 1 (mTORC1). The present study extends these findings to determine the role of the medial prefrontal cortex (mPFC) and specific muscarinic acetylcholine receptor (M-AchR) subtypes in the actions of scopolamine. The administration of scopolamine increases the activity marker Fos in the mPFC, including the infralimbic (IL) and prelimbic (PrL) subregions. Microinfusions of scopolamine into either the IL or the PrL produced significant antidepressant responses in the forced swim test, and neuronal silencing of IL or PrL blocked the antidepressant effects of systemic scopolamine. The results also demonstrate that the systemic administration of a selective M1-AChR antagonist, VU0255035, produced an antidepressant response and stimulated mTORC1 signaling in the PFC, similar to the actions of scopolamine. Finally, we used a chronic unpredictable stress model as a more rigorous test of rapid antidepressant actions and found that a single dose of scopolamine or VU0255035 blocked the anhedonic response caused by CUS, an effect that requires the chronic administration of typical antidepressants. Taken together, these findings indicate that mPFC is a critical mediator of the behavioral actions of scopolamine and identify the M1-AChR as a therapeutic target for the development of novel and selective rapid-acting antidepressants.


Asunto(s)
Antidepresivos/farmacología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Receptor Muscarínico M1/metabolismo , Escopolamina/farmacología , Anhedonia/efectos de los fármacos , Anhedonia/fisiología , Animales , Enfermedad Crónica , Sacarosa en la Dieta , Modelos Animales de Enfermedad , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Microinyecciones , Complejos Multiproteicos/metabolismo , Antagonistas Muscarínicos/farmacología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas Sprague-Dawley , Receptor Muscarínico M1/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Sulfonamidas/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Tiadiazoles/farmacología , Factores de Tiempo , Técnicas de Cultivo de Tejidos
4.
J Neurosci ; 33(21): 8951-60, 2013 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-23699506

RESUMEN

Caloric restriction (CR) is a dietary regimen known to promote lifespan by slowing down the occurrence of age-dependent diseases. The greatest risk factor for neurodegeneration in the brain is age, from which follows that CR might also attenuate the progressive loss of neurons that is often associated with impaired cognitive capacities. In this study, we used a transgenic mouse model that allows for a temporally and spatially controlled onset of neurodegeneration to test the potentially beneficial effects of CR. We found that in this model, CR significantly delayed the onset of neurodegeneration and synaptic loss and dysfunction, and thereby preserved cognitive capacities. Mechanistically, CR induced the expression of the known lifespan-regulating protein SIRT1, prompting us to test whether a pharmacological activation of SIRT1 might recapitulate CR. We found that oral administration of a SIRT1-activating compound essentially replicated the beneficial effects of CR. Thus, SIRT1-activating compounds might provide a pharmacological alternative to the regimen of CR against neurodegeneration and its associated ailments.


Asunto(s)
Restricción Calórica/métodos , Trastornos del Conocimiento/terapia , Enfermedades Neurodegenerativas/complicaciones , Sirtuina 1/metabolismo , Análisis de Varianza , Animales , Atrofia/etiología , Atrofia/prevención & control , Encéfalo/efectos de los fármacos , Encéfalo/patología , Encéfalo/ultraestructura , Estudios de Casos y Controles , Trastornos del Conocimiento/etiología , Quinasa 5 Dependiente de la Ciclina/genética , Modelos Animales de Enfermedad , Método Doble Ciego , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Proteínas Fluorescentes Verdes/genética , Inmunoprecipitación , Técnicas In Vitro , Potenciación a Largo Plazo/genética , Potenciación a Largo Plazo/fisiología , Masculino , Trastornos de la Memoria/etiología , Trastornos de la Memoria/prevención & control , Ratones , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Proteínas del Tejido Nervioso/genética , Enfermedades Neurodegenerativas/patología , Fosfopiruvato Hidratasa/metabolismo , Fosfotransferasas , Piperidinas/uso terapéutico , Tinción con Nitrato de Plata , Sirtuina 1/genética , Sinapsis/patología , Tiazoles/uso terapéutico , Proteína p53 Supresora de Tumor/metabolismo , Vitamina E/administración & dosificación
5.
Neurobiol Dis ; 57: 28-37, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22691453

RESUMEN

Atrophy of neurons and gross structural alterations of limbic brain regions, including the prefrontal cortex (PFC) and hippocampus, have been reported in brain imaging and postmortem studies of depressed patients. Preclinical findings have suggested that prolonged negative stress can induce changes comparable to those seen in major depressive disorder (MDD), through dendritic retraction and decreased spine density in PFC and hippocampal CA3 pyramidal neurons. Interestingly, recent studies have suggested that environmental and pharmacological manipulations, including antidepressant medication, exercise, and diet, can block or even reverse many of the molecular changes induced by stress, providing a clear link between these factors and susceptibility to MDD. In this review, we will discuss the environmental and pharmacological factors, as well as the contribution of genetic polymorphisms, involved in the regulation of neuronal morphology and plasticity in MDD and preclinical stress models. In particular, we will highlight the pro-depressive changes incurred by stress and the reversal of these changes by antidepressants, exercise, and diet.


Asunto(s)
Trastorno Depresivo Mayor/patología , Factores de Crecimiento Nervioso/metabolismo , Trastorno Depresivo Mayor/metabolismo , Trastorno Depresivo Mayor/terapia , Terapia por Ejercicio , Ácidos Grasos Omega-3/uso terapéutico , Humanos , Factores de Crecimiento Nervioso/uso terapéutico , Neurogénesis/fisiología , Plasticidad Neuronal/fisiología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores
6.
Brain Behav Immun ; 31: 105-14, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23261775

RESUMEN

Stress is a common occurrence in everyday life and repeated or traumatic stress can be a precipitating factor for illnesses of the central nervous system, as well as peripheral organ systems. For example, severe or long-term psychological stress can not only induce depression, a leading illness worldwide, but can also cause psychosomatic diseases such as asthma and rheumatoid arthritis. Related key questions include how psychological stress influences both brain and peripheral systems, and what detection mechanisms underlie these effects? A clue is provided by the discovery of the pathways underlying the responses to host "danger" substances that cause systemic diseases, but can also contribute to depression. The inflammasome is a protein complex that can detect diverse danger signals and produce the accompanying immune-inflammatory reactions. Interestingly, the inflammasome can detect not only pathogen-associated molecules, but also cell damage-associated molecules such as ATP. Here, we propose a new inflammasome hypothesis of depression and related comorbid systemic illnesses. According to this hypothesis, the inflammasome is a central mediator by which psychological and physical stressors can contribute to the development of depression, and as well as a bridge to systemic diseases. This hypothesis includes an explanation for how psychological stress can influence systemic diseases, and conversely how systemic diseases can lead to psychiatric illnesses. The evidence suggests that the inflammasome may be a new target for the development of treatments for depression, as well as psychosomatic and somato-psycho diseases.


Asunto(s)
Trastorno Depresivo/complicaciones , Inflamación/complicaciones , Estrés Psicológico/complicaciones , Humanos , Modelos Teóricos
7.
Learn Mem ; 17(4): 221-35, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20351057

RESUMEN

We have recently hypothesized that NO-cGMP-PKG signaling in the lateral nucleus of the amygdala (LA) during auditory fear conditioning coordinately regulates ERK-driven transcriptional changes in both auditory thalamic (MGm/PIN) and LA neurons that serve to promote pre- and postsynaptic alterations at thalamo-LA synapses, respectively. In the present series of experiments, we show that N-methyl-D-aspartate receptor (NMDAR)-driven synaptic plasticity and NO-cGMP-PKG signaling in the LA regulate the training-induced expression of ERK and the ERK-driven immediate early genes (IEGs) Arc/Arg3.1, c-Fos, and EGR-1 in the LA and the MGm/PIN. Rats receiving intra-LA infusion of the NR2B selective antagonist Ifenprodil, the NOS inhibitor 7-Ni, or the PKG inhibitor Rp-8-Br-PET-cGMPS exhibited significant decreases in ERK activation and in the training-induced expression of all three IEGs in the LA and MGm/PIN while intra-LA infusion of the PKG activator 8-Br-cGMP had the opposite effect. Remarkably, those rats given intra-LA infusion of the membrane impermeable NO scavenger c-PTIO exhibited significant decreases in ERK activation and ERK-driven IEG expression in the MGm/PIN, but not in the LA. Together with our previous experiments, these results suggest that synaptic plasticity and the NO-cGMP-PKG signaling pathway promote fear memory consolidation, in part, by regulating ERK-driven transcription in both the LA and the MGm/PIN. They further suggest that synaptic plasticity in the LA during fear conditioning promotes ERK-driven transcription in MGm/PIN neurons via NO-driven "retrograde signaling."


Asunto(s)
Amígdala del Cerebelo/fisiología , Condicionamiento Clásico/fisiología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Miedo , Regulación de la Expresión Génica/fisiología , Plasticidad Neuronal/fisiología , Transducción de Señal/fisiología , Tálamo/fisiología , Estimulación Acústica/efectos adversos , Amígdala del Cerebelo/efectos de los fármacos , Animales , Conducta Animal , Condicionamiento Clásico/efectos de los fármacos , GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Inhibidores Enzimáticos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Miedo/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Modelos Biológicos , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/genética , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Tálamo/efectos de los fármacos , Factores de Tiempo
8.
Learn Mem ; 15(10): 792-805, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18832566

RESUMEN

Recent studies have shown that nitric oxide (NO) signaling plays a crucial role in memory consolidation of Pavlovian fear conditioning and in synaptic plasticity in the lateral amygdala (LA). In the present experiments, we examined the role of the cGMP-dependent protein kinase (PKG), a downstream effector of NO, in fear memory consolidation and long-term potentiation (LTP) at thalamic and cortical input pathways to the LA. In behavioral experiments, rats given intra-LA infusions of either the PKG inhibitor Rp-8-Br-PET-cGMPS or the PKG activator 8-Br-cGMP exhibited dose-dependent impairments or enhancements of fear memory consolidation, respectively. In slice electrophysiology experiments, bath application of Rp-8-Br-PET-cGMPS or the guanylyl cyclase inhibitor LY83583 impaired LTP at thalamic, but not cortical inputs to the LA, while bath application of 8-Br-cGMP or the guanylyl cyclase activator YC-1 resulted in enhanced LTP at thalamic inputs to the LA. Interestingly, YC-1-induced enhancement of LTP in the LA was reversed by concurrent application of the MEK inhibitor U0126, suggesting that the NO-cGMP-PKG signaling pathway may promote synaptic plasticity and fear memory formation in the LA, in part by activating the ERK/MAPK signaling cascade. As a test of this hypothesis, we next showed that rats given intra-LA infusion of the PKG inhibitor Rp-8-Br-PET-cGMPS or the PKG activator 8-Br-cGMP exhibit impaired or enhanced activation, respectively, of ERK/MAPK in the LA after fear conditioning. Collectively, our findings suggest that an NO-cGMP-PKG-dependent form of synaptic plasticity at thalamic input synapses to the LA may underlie memory consolidation of Pavlovian fear conditioning, in part, via activation of the ERK/MAPK signaling cascade.


Asunto(s)
Amígdala del Cerebelo/fisiología , Potenciación a Largo Plazo/fisiología , Memoria/fisiología , Óxido Nítrico/metabolismo , Transducción de Señal/fisiología , Animales , Western Blotting , Condicionamiento Clásico , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Miedo/fisiología , Masculino , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Sinapsis/fisiología
9.
Neuropsychopharmacology ; 42(10): 2032-2042, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27922594

RESUMEN

The CACNA1C gene that encodes the L-type Ca2+ channel (LTCC) Cav1.2 subunit has emerged as a candidate risk gene for multiple neuropsychiatric disorders including bipolar disorder, major depressive disorder, and schizophrenia, all marked with depression-related symptoms. Although cacna1c heterozygous (HET) mice have been previously reported to exhibit an antidepressant-like phenotype, the molecular and circuit-level dysfunction remains unknown. Here we report that viral vector-mediated deletion of cacna1c in the adult prefrontal cortex (PFC) of mice recapitulates the antidepressant-like effect observed in cacna1c HET mice using the sucrose preference test (SPT), forced swim test (FST), and tail suspension test (TST). Molecular studies identified lower levels of REDD1, a protein previously linked to depression, in the PFC of HET mice, and viral-mediated REDD1 overexpression in the PFC of these HET mice reversed the antidepressant-like effect in SPT and TST. Examination of downstream REDD1 targets found lower levels of active/phosphorylated Akt (S473) with no change in mTORC1 phosphorylation. Examination of the transcription factor FoxO3a, previously linked to depression-related behavior and shown to be regulated in other systems by Akt, revealed higher nuclear levels in the PFC of cacna1c HET mice that was further increased following REDD1-mediated reversal of the antidepressant-like phenotype. Collectively, these findings suggest that REDD1 in cacna1c HET mice may influence depression-related behavior via regulation of the FoxO3a pathway. Cacna1c HET mice thus serve as a useful mouse model to further study cacna1c-associated molecular signaling and depression-related behaviors relevant to human CACNA1C genetic variants.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Trastorno Depresivo/metabolismo , Corteza Prefrontal/metabolismo , Factores de Transcripción/metabolismo , Anhedonia/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Canales de Calcio Tipo L/genética , Trastorno Depresivo/patología , Sacarosa en la Dieta , Modelos Animales de Enfermedad , Conducta Alimentaria/fisiología , Proteína Forkhead Box O3/metabolismo , Técnicas de Silenciamiento del Gen , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/fisiología , Fosforilación , Corteza Prefrontal/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
10.
Neuropsychopharmacology ; 41(7): 1874-87, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26658303

RESUMEN

Depression and type 2 diabetes (T2D) are highly comorbid disorders that carry a large public health burden. However, there is a clear lack of knowledge of the neural pathological pathways underlying these illnesses. The present study aims to elucidate the molecular mechanisms by which a diet rich in fat can cause multiple complications in the brain, thereby affecting intracellular signaling and gene expression that underlie anxiety and depressive behaviors. The results show that a high-fat diet (HFD; ~16 weeks) causes anxiety and anhedonic behaviors. Importantly, the results also show that 4 months of HFD causes disruption of intracellular cascades involved in synaptic plasticity and insulin signaling/glucose homeostasis (ie, Akt, extracellular signal-regulated kinase (ERK), P70S6K), as well as increased corticosterone levels and activation of the innate immune system, including elevation of inflammatory cytokines (ie, IL-6, IL-1ß, TNFα). Interestingly, the rapid acting antidepressant ketamine reverses the behavioral deficits caused by HFD and activates ERK and P70S6 kinase signaling in the prefrontal cortex. In addition, we found that pharmacological blockade of the innate immune inflammasome system by repeated administration of an inhibitor of the purinergic P2X7 receptor blocks the anxiety caused by HFD. Together these studies further elucidate the signaling pathways that underlie chronic HFD exposure on anxiety and depressive behaviors, and identify novel therapeutic targets for patients with metabolic disorder or T2D who suffer from anxiety and depression.


Asunto(s)
Anhedonia/efectos de los fármacos , Ansiedad , Encéfalo/metabolismo , Dieta Alta en Grasa/efectos adversos , Inflamación/etiología , Animales , Ansiedad/complicaciones , Ansiedad/etiología , Ansiedad/patología , Peso Corporal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Corticosterona/sangre , Modelos Animales de Enfermedad , Conducta Exploratoria/efectos de los fármacos , Conducta Alimentaria , Preferencias Alimentarias/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Guanidinas/farmacología , Hiperglucemia/inducido químicamente , Masculino , Quinolinas/farmacología , Ratas , Ratas Sprague-Dawley , Reconocimiento en Psicología/efectos de los fármacos , Transducción de Señal/efectos de la radiación
11.
Biol Psychiatry ; 80(1): 12-22, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-26831917

RESUMEN

BACKGROUND: The mechanisms underlying stress-induced inflammation that contribute to major depressive disorder are unknown. We examine the role of the adenosine triphosphate (ATP)/purinergic type 2X7 receptor (P2X7R) pathway and the NLRP3 (nucleotide-binding, leucine-rich repeat, pyrin domain containing 3) inflammasome in interleukin (IL)-1ß and depressive behavioral responses to stress. METHODS: The influence of acute restraint stress on extracellular ATP, glutamate, IL-1ß, and tumor necrosis factor alpha in hippocampus was determined by microdialysis, and the influence of acute restraint stress on the NLRP3 inflammasome was determined by western blot analysis. The influence of P2X7R antagonist administration on IL-1ß and tumor necrosis factor alpha and on anxiety and depressive behaviors was determined in the chronic unpredictable stress rodent model. The role of the NLRP3 inflammasome was determined by analysis of Nlrp3 null mice. RESULTS: Acute restraint stress rapidly increased extracellular ATP, an endogenous agonist of P2X7R; the inflammatory cytokine IL-1ß; and the active form of the NLRP3 inflammasome in the hippocampus. Administration of a P2X7R antagonist completely blocked the release of IL-1ß and tumor necrosis factor alpha, another stress-induced cytokine, and activated NLRP3. Moreover, P2X7R antagonist administration reversed the anhedonic and anxiety behaviors caused by chronic unpredictable stress exposure, and deletion of the Nlrp3 gene rendered mice resistant to development of depressive behaviors caused by chronic unpredictable stress. CONCLUSIONS: These findings demonstrate that psychological "stress" is sensed by the innate immune system in the brain via the ATP/P2X7R-NLRP3 inflammasome cascade, and they identify novel therapeutic targets for the treatment of stress-related mood disorders and comorbid illnesses.


Asunto(s)
Adenosina Trifosfato/metabolismo , Ansiedad/metabolismo , Conducta Animal/fisiología , Depresión/metabolismo , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Estrés Psicológico/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Anhedonia/fisiología , Animales , Ansiedad/etiología , Ansiedad/inmunología , Depresión/etiología , Depresión/inmunología , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Noqueados , Agonistas del Receptor Purinérgico P2Y/metabolismo , Antagonistas del Receptor Purinérgico P2Y/metabolismo , Ratas , Ratas Sprague-Dawley , Estrés Psicológico/complicaciones , Estrés Psicológico/inmunología
12.
Neuropsychopharmacology ; 40(3): 711-8, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25178406

RESUMEN

Major depressive disorder (MDD) is a debilitating and widespread illness that exerts significant personal and socioeconomic consequences. Recent genetic and brain-imaging studies suggest that bicaudal C homolog 1 gene (BICC1), which codes for an RNA-binding protein, may be associated with depression. Here, we show that BICC1 mRNA is upregulated in the dorsolateral prefrontal cortex and dentate gyrus of human postmortem MDD patients. We also show that BICC1 is increased in the prefrontal cortex and hippocampus in the rat chronic unpredictable stress (CUS) model of depression. In addition, we show in vivo that a single acute antidepressant dose of ketamine leads to a rapid decrease of BICC1 mRNA, while in vitro, we show that this is likely due to neuronal activity-induced downregulation of BICC1. Finally, we show that BICC1 knockdown in the hippocampus protects rats from CUS-induced anhedonia. Taken together, these findings identify a role for increased levels of BICC1 in the pathophysiology of depressive behavior.


Asunto(s)
Trastorno Depresivo Mayor/metabolismo , Proteínas de Unión al ARN/metabolismo , Regulación hacia Arriba , Anhedonia/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Estudios de Casos y Controles , Giro Dentado/metabolismo , Trastorno Depresivo Mayor/genética , Técnicas de Silenciamiento del Gen , Hipocampo/metabolismo , Humanos , Inmovilización/psicología , Ketamina/farmacología , Masculino , Corteza Prefrontal/metabolismo , Cultivo Primario de Células , Proteínas de Unión al ARN/genética , Ratas , Regulación hacia Arriba/efectos de los fármacos
13.
Neuropsychopharmacology ; 40(9): 2066-75, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25759300

RESUMEN

A single sub-anesthetic dose of ketamine, a short-acting NMDA receptor blocker, induces a rapid and prolonged antidepressant effect in treatment-resistant major depression. In animal models, ketamine (24 h) reverses depression-like behaviors and associated deficits in excitatory postsynaptic currents (EPSCs) generated in apical dendritic spines of layer V pyramidal cells of medial prefrontal cortex (mPFC). However, little is known about the effects of ketamine on basal dendrites. The basal dendrites of layer V cells receive an excitatory input from pyramidal cells of the basolateral amygdala (BLA), neurons that are activated by the stress hormone CRF. Here we found that CRF induces EPSCs in PFC layer V cells and that ketamine enhanced this effect through the mammalian target of rapamycin complex 1 synaptogenic pathway; the CRF-induced EPSCs required an intact BLA input and were generated primarily in basal dendrites. In contrast to its detrimental effects on apical dendritic structure and function, chronic stress did not induce a loss of CRF-induced EPSCs in basal dendrites, thereby creating a relative imbalance in favor of amygdala inputs. The effects of ketamine were complex: ketamine enhanced apical EPSC responses in all mPFC subregions, anterior cingulate (AC), prelimbic (PL), and infralimbic (IL) but enhanced CRF-induced EPSCs only in AC and PL-responses were unchanged in IL, a critical area for suppression of stress responses. We propose that by restoring the strength of apical inputs relative to basal amygdala inputs, especially in IL, ketamine would ameliorate the hypothesized disproportional negative influence of the amygdala in chronic stress and major depression.


Asunto(s)
Amígdala del Cerebelo/fisiología , Hormona Liberadora de Corticotropina/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Ketamina/farmacología , Corteza Prefrontal/citología , Células Piramidales/efectos de los fármacos , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Amígdala del Cerebelo/citología , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/lesiones , Animales , Dendritas/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Técnicas In Vitro , Sistema Límbico/citología , Sistema Límbico/efectos de los fármacos , Sistema Límbico/fisiología , Masculino , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Técnicas de Placa-Clamp , Células Piramidales/citología , Ratas , Ratas Sprague-Dawley
14.
Eur Neuropsychopharmacol ; 24(12): 1896-906, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25464894

RESUMEN

Tic disorders produce substantial morbidity, but their pathophysiology remains poorly understood. Convergent evidence suggests that dysregulation of the cortico-basal ganglia circuitry is central to the pathogenesis of tics. Tourette syndrome (TS), the most severe end of the continuum of tic disorders, is substantially genetic, but causative mutations have been elusive. We recently described a mouse model, the histidine decarboxylase (Hdc) knockout mouse, that recapitulates a rare, highly penetrant mutation found in a single family; these mice exhibit TS-like phenomenology. These animals have a global deficit in brain histamine and a consequent dysregulation of DA in the basal ganglia. Histamine modulation of DA effects is increasingly appreciated, but the mechanisms underlying this modulation remain unclear; the consequences of modest DA elevation in the context of profound HA deficiency are difficult to predict, but understanding them in the Hdc knockout mouse may provide generalizable insights into the pathophysiology of TS. Here we characterized signaling pathways in striatal cells in this model system, at baseline and after amphetamine challenge. In vivo microdialysis confirms elevated DA in Hdc-KO mice. We find dephosphorylation of Akt and its target GSK3ß and activation of the MAPK signaling cascade and its target rpS6; these are characteristic of the effects of DA on D2- and D1-expressing striatal neurons, respectively. Strikingly, there is no alteration in mTOR signaling, which can be regulated by DA in both cell types. These cellular effects help elucidate striatal signaling abnormalities in a uniquely validated mouse model of TS and move towards the identification of new potential therapeutic targets for tic disorders.


Asunto(s)
Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Histidina Descarboxilasa/genética , Transducción de Señal/efectos de los fármacos , Síndrome de Tourette/metabolismo , Anfetamina/farmacología , Animales , Cuerpo Estriado/efectos de los fármacos , Modelos Animales de Enfermedad , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Neuronas/metabolismo , Proteína Oncogénica v-akt/metabolismo , Fosforilación , Proteína S6 Ribosómica/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
15.
PLoS One ; 9(3): e91530, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24618807

RESUMEN

Chronic exposure to stress has been widely implicated in the development of anxiety disorders, yet relatively little is known about the long-term effects of chronic stress on amygdala-dependent memory formation. Here, we examined the effects of a history of chronic exposure to the stress-associated adrenal steroid corticosterone (CORT) on the consolidation of a fear memory and the expression of memory-related immediate early genes (IEGs) in the lateral nucleus of the amygdala (LA). Rats received chronic exposure to CORT (50 µg/ml) in their drinking water for 2 weeks and were then titrated off the CORT for an additional 6 days followed by a 2 week 'wash-out' period consisting of access to plain water. Rats were then either sacrificed to examine the expression of memory-related IEG expression in the LA or given auditory Pavlovian fear conditioning. We show that chronic exposure to CORT leads to a persistent elevation in the expression of the IEGs Arc/Arg3.1 and Egr-1 in the LA. Further, we show that rats with a history of chronic CORT exposure exhibit enhanced consolidation of a fear memory; short-term memory (STM) is not affected, while long-term memory (LTM) is significantly enhanced. Treatment with the selective serotonin reuptake inhibitor (SSRI) fluoxetine following the chronic CORT exposure period was observed to effectively reverse both the persistent CORT-related increases in memory-related IEG expression in the LA and the CORT-related enhancement in fear memory consolidation. Our findings suggest that chronic exposure to CORT can regulate memory-related IEG expression and fear memory consolidation processes in the LA in a long-lasting manner and that treatment with fluoxetine can reverse these effects.


Asunto(s)
Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/metabolismo , Corticosterona/administración & dosificación , Miedo/psicología , Regulación de la Expresión Génica/efectos de los fármacos , Memoria , Animales , Conducta Animal/efectos de los fármacos , Fluoxetina/administración & dosificación , Genes Inmediatos-Precoces , Masculino , Ratas , Transducción de Señal , Estrés Psicológico , Sinapsis/metabolismo
16.
Nat Med ; 20(5): 531-5, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24728411

RESUMEN

Major depressive disorder (MDD) affects up to 17% of the population, causing profound personal suffering and economic loss. Clinical and preclinical studies have revealed that prolonged stress and MDD are associated with neuronal atrophy of cortical and limbic brain regions, but the molecular mechanisms underlying these morphological alterations have not yet been identified. Here, we show that stress increases levels of REDD1 (regulated in development and DNA damage responses-1), an inhibitor of mTORC1 (mammalian target of rapamycin complex-1; ref. 10), in rat prefrontal cortex (PFC). This is concurrent with a decrease in phosphorylation of signaling targets of mTORC1, which is implicated in protein synthesis-dependent synaptic plasticity. We also found that REDD1 levels are increased in the postmortem PFC of human subjects with MDD relative to matched controls. Mutant mice with a deletion of the gene encoding REDD1 are resilient to the behavioral, synaptic and mTORC1 signaling deficits caused by chronic unpredictable stress, whereas viral-mediated overexpression of REDD1 in rat PFC is sufficient to cause anxiety- and depressive-like behaviors and neuronal atrophy. Taken together, these postmortem and preclinical findings identify REDD1 as a critical mediator of the atrophy of neurons and depressive behavior caused by chronic stress exposure.


Asunto(s)
Trastornos de Ansiedad/genética , Trastorno Depresivo Mayor/genética , Sinapsis/patología , Factores de Transcripción/genética , Animales , Trastornos de Ansiedad/etiología , Trastornos de Ansiedad/patología , Trastorno Depresivo Mayor/etiología , Trastorno Depresivo Mayor/patología , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Neuronas/metabolismo , Neuronas/patología , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Ratas , Transducción de Señal , Sinapsis/genética , Sinapsis/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/metabolismo
17.
PLoS One ; 6(5): e19958, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21625500

RESUMEN

Epigenetic mechanisms, including histone acetylation and DNA methylation, have been widely implicated in hippocampal-dependent learning paradigms. Here, we have examined the role of epigenetic alterations in amygdala-dependent auditory Pavlovian fear conditioning and associated synaptic plasticity in the lateral nucleus of the amygdala (LA) in the rat. Using Western blotting, we first show that auditory fear conditioning is associated with an increase in histone H3 acetylation and DNMT3A expression in the LA, and that training-related alterations in histone acetylation and DNMT3A expression in the LA are downstream of ERK/MAPK signaling. Next, we show that intra-LA infusion of the histone deacetylase (HDAC) inhibitor TSA increases H3 acetylation and enhances fear memory consolidation; that is, long-term memory (LTM) is enhanced, while short-term memory (STM) is unaffected. Conversely, intra-LA infusion of the DNA methyltransferase (DNMT) inhibitor 5-AZA impairs fear memory consolidation. Further, intra-LA infusion of 5-AZA was observed to impair training-related increases in H3 acetylation, and pre-treatment with TSA was observed to rescue the memory consolidation deficit induced by 5-AZA. In our final series of experiments, we show that bath application of either 5-AZA or TSA to amygdala slices results in significant impairment or enhancement, respectively, of long-term potentiation (LTP) at both thalamic and cortical inputs to the LA. Further, the deficit in LTP following treatment with 5-AZA was observed to be rescued at both inputs by co-application of TSA. Collectively, these findings provide strong support that histone acetylation and DNA methylation work in concert to regulate memory consolidation of auditory fear conditioning and associated synaptic plasticity in the LA.


Asunto(s)
Amígdala del Cerebelo/fisiología , Epigénesis Genética , Miedo , Memoria , Plasticidad Neuronal/genética , Acetilación , Animales , Metilación de ADN , Histonas/metabolismo , Ratas
18.
PLoS One ; 5(6): e11236, 2010 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-20574537

RESUMEN

In vertebrate models of synaptic plasticity, signaling via the putative "retrograde messenger" nitric oxide (NO) has been hypothesized to serve as a critical link between functional and structural alterations at pre- and postsynaptic sites. In the present study, we show that auditory Pavlovian fear conditioning is associated with significant and long-lasting increases in the expression of the postsynaptically-localized protein GluR1 and the presynaptically-localized proteins synaptophysin and synapsin in the lateral amygdala (LA) within 24 hrs following training. Further, we show that rats given intra-LA infusion of either the NR2B-selective antagonist Ifenprodil, the NOS inhibitor 7-Ni, or the PKG inhibitor Rp-8-Br-PET-cGMPS exhibit significant decreases in training-induced expression of GluR1, synaptophysin, and synapsin immunoreactivity in the LA, while those rats infused with the PKG activator 8-Br-cGMP exhibit a significant increase in these proteins in the LA. In contrast, rats given intra-LA infusion of the NO scavenger c-PTIO exhibit a significant decrease in synapsin and synaptophysin expression in the LA, but no significant impairment in the expression of GluR1. Finally, we show that intra-LA infusions of the ROCK inhibitor Y-27632 or the CaMKII inhibitor KN-93 impair training-induced expression of GluR1, synapsin, and synaptophysin in the LA. These findings suggest that the NO-cGMP-PKG, Rho/ROCK, and CaMKII signaling pathways regulate fear memory consolidation, in part, by promoting both pre- and post-synaptic alterations at LA synapses. They further suggest that synaptic plasticity in the LA during auditory fear conditioning promotes alterations at presynaptic sites via NO-driven "retrograde signaling".


Asunto(s)
Amígdala del Cerebelo/citología , Amígdala del Cerebelo/fisiología , Condicionamiento Psicológico , Miedo , Plasticidad Neuronal , Transducción de Señal , Sinapsis/metabolismo , Amígdala del Cerebelo/metabolismo , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Regulación de la Expresión Génica , Masculino , Óxido Nítrico/metabolismo , Transporte de Proteínas , Ratas , Ratas Sprague-Dawley , Receptores AMPA/metabolismo , Sinapsinas/metabolismo , Sinaptofisina/metabolismo , Quinasas Asociadas a rho/metabolismo
19.
Artículo en Inglés | MEDLINE | ID: mdl-20161806

RESUMEN

In both invertebrate and vertebrate models of synaptic plasticity, signaling via the putative "retrograde messenger" nitric oxide (NO) has been hypothesized to serve as a critical link between functional and structural alterations at pre- and postsynaptic sites. However, while in vitro models of synaptic plasticity have consistently implicated NO signaling in linking postsynaptic induction mechanisms with accompanying presynaptic changes, a convincing role of such "retrograde signaling" in mammalian memory formation has remained elusive. Using auditory Pavlovian fear conditioning, we show that synaptic plasticity and NO signaling in the lateral nucleus of the amygdala (LA) regulate the expression of the ERK-driven immediate early gene early growth response gene I (EGR-1) in regions of the auditory thalamus that are presynaptic to the LA. Further, antisense knockdown of EGR-1 in the auditory thalamus impairs both fear memory consolidation and the training-induced elevation of two presynaptically localized proteins in the LA. These findings indicate that synaptic plasticity and NO signaling in the LA during auditory fear conditioning promote alterations in ERK-driven gene expression in auditory thalamic neurons that are required for both fear memory consolidation as well as presynaptic correlates of fear memory formation in the LA, and provide general support for a role of NO as a "retrograde signal" in mammalian memory formation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA