Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(42): E9792-E9801, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30185561

RESUMEN

Autophagy is an enigmatic cellular process in which double-membrane compartments, called "autophagosomes, form de novo adjacent to the endoplasmic reticulum (ER) and package cytoplasmic contents for delivery to lysosomes. Expansion of the precursor membrane phagophore requires autophagy-related 2 (ATG2), which localizes to the PI3P-enriched ER-phagophore junction. We combined single-particle electron microscopy, chemical cross-linking coupled with mass spectrometry, and biochemical analyses to characterize human ATG2A in complex with the PI3P effector WIPI4. ATG2A is a rod-shaped protein that can bridge neighboring vesicles through interactions at each of its tips. WIPI4 binds to one of the tips, enabling the ATG2A-WIPI4 complex to tether a PI3P-containing vesicle to another PI3P-free vesicle. These data suggest that the ATG2A-WIPI4 complex mediates ER-phagophore association and/or tethers vesicles to the ER-phagophore junction, establishing the required organization for phagophore expansion via the transfer of lipid membranes from the ER and/or the vesicles to the phagophore.


Asunto(s)
Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Complejos Multiproteicos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Secuencia de Aminoácidos , Proteínas Relacionadas con la Autofagia/química , Humanos , Proteínas de la Membrana/química , Complejos Multiproteicos/química , Fosfatos de Fosfatidilinositol/química , Conformación Proteica , Homología de Secuencia
2.
Angew Chem Int Ed Engl ; 60(50): 26105-26114, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34590387

RESUMEN

The autophagic ubiquitin-like protein LC3 functions through interactions with LC3-interaction regions (LIRs) of other autophagy proteins, including autophagy receptors, which stands out as a promising protein-protein interaction (PPI) target for the intervention of autophagy. Post-translational modifications like acetylation of Lys49 on the LIR-interacting surface could disrupt the interaction, offering an opportunity to design covalent small molecules interfering with the interface. Through screening covalent compounds, we discovered a small molecule modulator of LC3A/B that covalently modifies LC3A/B protein at Lys49. Activity-based protein profiling (ABPP) based evaluations reveal that a derivative molecule DC-LC3in-D5 exhibits a potent covalent reactivity and selectivity to LC3A/B in HeLa cells. DC-LC3in-D5 compromises LC3B lipidation in vitro and in HeLa cells, leading to deficiency in the formation of autophagic structures and autophagic substrate degradation. DC-LC3in-D5 could serve as a powerful tool for autophagy research as well as for therapeutic interventions.


Asunto(s)
Autofagia/efectos de los fármacos , Proteínas Asociadas a Microtúbulos/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Células HeLa , Humanos , Modelos Moleculares , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/química
3.
Proc Natl Acad Sci U S A ; 110(47): 18844-9, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24191030

RESUMEN

The autophagic ubiquitin-like protein (ublp) autophagy-related (ATG)12 is a component of the ATG12∼ATG5-ATG16L1 E3 complex that promotes lipid conjugation of members of the LC3 ublp family. A role of ATG12 in the E3 complex is to recruit the E2 enzyme ATG3. Here we report the identification of the ATG12 binding sequence in the flexible region of human ATG3 and the crystal structure of the minimal E3 complexed with the identified binding fragment of ATG3. The structure shows that 13 residues of the ATG3 fragment form a short ß-strand followed by an α-helix on a surface area that is exclusive to ATG12. Mutational analyses of ATG3 confirm that four residues whose side chains make contacts with ATG12 are important for E3 interaction as well as LC3 lipidation. Conservation of these four critical residues is high in metazoan organisms and plants but lower in fungi. A structural comparison reveals that the ATG3 binding surface on ATG12 contains a hydrophobic pocket corresponding to the binding pocket of LC3 that accommodates the leucine of the LC3-interacting region motif. These findings establish the mechanism of ATG3 recruitment by ATG12 in higher eukaryotes and place ATG12 among the members of signaling ublps that bind liner sequences.


Asunto(s)
Autofagia/fisiología , Modelos Moleculares , Conformación Proteica , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/química , Enzimas Ubiquitina-Conjugadoras/química , Proteína 12 Relacionada con la Autofagia , Proteínas Relacionadas con la Autofagia , Western Blotting , Cristalización , Humanos , Inmunoprecipitación , Espectroscopía de Resonancia Magnética , Mutación/genética , Unión Proteica , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Difracción de Rayos X
4.
J Cell Biol ; 174(5): 701-13, 2006 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-16943183

RESUMEN

Diaphanous-related formins (DRFs) are key regulators of actin cytoskeletal dynamics whose in vitro actin assembly activities are thought to be regulated by autoinhibition. However, the in vivo consequences of autoinhibition and the involvement of DRFs in specific biological processes are not well understood. In this study, we show that in the DRFs FRLalpha (formin-related gene in leukocytes alpha) and mouse diaphanous 1, autoinhibition regulates a novel membrane localization activity in vivo as well as actin assembly activity in vitro. In FRLalpha, the Rho family guanosine triphosphatase Cdc42 relieves the autoinhibition of both membrane localization and biochemical actin assembly activities. FRLalpha is required for efficient Fc-gamma receptor-mediated phagocytosis and is recruited to the phagocytic cup by Cdc42. These results suggest that mutual autoinhibition of biochemical activity and cellular localization may be a general regulatory principle for DRFs and demonstrate a novel role for formins in immune function.


Asunto(s)
Actinas/metabolismo , Proteínas Portadoras/metabolismo , Retroalimentación Fisiológica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Animales , Proteínas Portadoras/genética , Línea Celular , Membrana Celular/metabolismo , Citosol/metabolismo , Forminas , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Macrófagos/inmunología , Macrófagos/metabolismo , Mutación , Fagocitosis , Unión Proteica , Estructura Terciaria de Proteína , Interferencia de ARN , Ratas , Receptores de IgG/metabolismo , Transfección , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo
5.
Nature ; 433(7025): 488-94, 2005 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-15635372

RESUMEN

The conserved formin homology 2 (FH2) domain nucleates actin filaments and remains bound to the barbed end of the growing filament. Here we report the crystal structure of the yeast Bni1p FH2 domain in complex with tetramethylrhodamine-actin. Each of the two structural units in the FH2 dimer binds two actins in an orientation similar to that in an actin filament, suggesting that this structure could function as a filament nucleus. Biochemical properties of heterodimeric FH2 mutants suggest that the wild-type protein equilibrates between two bound states at the barbed end: one permitting monomer binding and the other permitting monomer dissociation. Interconversion between these states allows processive barbed-end polymerization and depolymerization in the presence of bound FH2 domain. Kinetic and/or thermodynamic differences in the conformational and binding equilibria can explain the variable activity of different FH2 domains as well as the effects of the actin-binding protein profilin on FH2 function.


Asunto(s)
Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/metabolismo , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Dimerización , Cinética , Proteínas de Microfilamentos/genética , Modelos Biológicos , Modelos Moleculares , Mutación/genética , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Rodaminas/química , Proteínas de Saccharomyces cerevisiae/genética , Relación Estructura-Actividad , Termodinámica
6.
Proc Natl Acad Sci U S A ; 105(35): 12797-802, 2008 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-18728185

RESUMEN

General methods to engineer genetically encoded, reversible, light-mediated control over protein function would be useful in many areas of biomedical research and technology. We describe a system that yields such photo-control over actin assembly. We fused the Rho family GTPase Cdc42 in its GDP-bound form to the photosensory domain of phytochrome B (PhyB) and fused the Cdc42 effector, the Wiskott-Aldrich Syndrome Protein (WASP), to the light-dependent PhyB-binding domain of phytochrome interacting factor 3 (Pif3). Upon red light illumination, the fusion proteins bind each other, activating WASP, and consequently stimulating actin assembly by the WASP target, the Arp2/3 complex. Binding and WASP activation are reversed by far-red illumination. Our approach, in which the biochemical specificity of the nucleotide switch in Cdc42 is overridden by the light-dependent PhyB-Pif3 interaction, should be generally applicable to other GTPase-effector pairs.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/metabolismo , Ingeniería Genética , Fototransducción , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Guanosina Difosfato/metabolismo , Luz , Fototransducción/efectos de la radiación , Fitocromo B/metabolismo , Unión Proteica
7.
Nat Struct Mol Biol ; 27(12): 1194-1201, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33106659

RESUMEN

De novo formation of the double-membrane compartment autophagosome is seeded by small vesicles carrying membrane protein autophagy-related 9 (ATG9), the function of which remains unknown. Here we find that ATG9A scrambles phospholipids of membranes in vitro. Cryo-EM structures of human ATG9A reveal a trimer with a solvated central pore, which is connected laterally to the cytosol through the cavity within each protomer. Similarities to ABC exporters suggest that ATG9A could be a transporter that uses the central pore to function. Moreover, molecular dynamics simulation suggests that the central pore opens laterally to accommodate lipid headgroups, thereby enabling lipids to flip. Mutations in the pore reduce scrambling activity and yield markedly smaller autophagosomes, indicating that lipid scrambling by ATG9A is essential for membrane expansion. We propose ATG9A acts as a membrane-embedded funnel to facilitate lipid flipping and to redistribute lipids added to the outer leaflet of ATG9 vesicles, thereby enabling growth into autophagosomes.


Asunto(s)
Autofagosomas/química , Proteínas Relacionadas con la Autofagia/química , Proteínas de la Membrana/química , Fosfolípidos/química , Proteolípidos/química , Proteínas de Transporte Vesicular/química , Animales , Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Sitios de Unión , Transporte Biológico , Línea Celular , Microscopía por Crioelectrón , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Expresión Génica , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Células HeLa , Humanos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Simulación de Dinámica Molecular , Fosfolípidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteolípidos/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteína Fluorescente Roja
8.
Elife ; 82019 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-31271352

RESUMEN

An enigmatic step in de novo formation of the autophagosome membrane compartment is the expansion of the precursor membrane phagophore, which requires the acquisition of lipids to serve as building blocks. Autophagy-related 2 (ATG2), the rod-shaped protein that tethers phosphatidylinositol 3-phosphate (PI3P)-enriched phagophores to the endoplasmic reticulum (ER), is suggested to be essential for phagophore expansion, but the underlying mechanism remains unclear. Here, we demonstrate that human ATG2A is a lipid transfer protein. ATG2A can extract lipids from membrane vesicles and unload them to other vesicles. Lipid transfer by ATG2A is more efficient between tethered vesicles than between untethered vesicles. The PI3P effectors WIPI4 and WIPI1 associate ATG2A stably to PI3P-containing vesicles, thereby facilitating ATG2A-mediated tethering and lipid transfer between PI3P-containing vesicles and PI3P-free vesicles. Based on these results, we propose that ATG2-mediated transfer of lipids from the ER to the phagophore enables phagophore expansion.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Metabolismo de los Lípidos , Membranas/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Unión Proteica
9.
Methods Mol Biol ; 1880: 57-75, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30610689

RESUMEN

Members of the autophagy-related protein 8 (Atg8) family of ubiquitin-like proteins (ublps), including mammalian LC3 and GABARAP proteins, play crucial roles in autophagosome biogenesis, as well as selective autophagy. Upon induction of autophagy, the autophagic ublps are covalently attached to a phosphatidylethanolamine (PE) molecule of the autophagosomal membrane. This unique lipid conjugation of the autophagic ublps, which is essential for their functions, occurs in a ubiquitination-like reaction cascade consisting of the E1 enzyme ATG7, the E2 ATG3, and the E3 ATG12~ATG5-ATG16L1 complex (~denotes a covalent linkage). These enzymes are structurally unique among those of the canonical ubiquitination cascades, necessitating structural and biochemical studies of these molecules for understanding the molecular mechanisms underlying the lipidation cascade. Here, we will describe methods that were employed in our previous studies (Otomo et al., Nat Struct Mol Biol 20:59-66, 2013; Metlagel et al., Proc Natl Acad Sci U S A 110:18844-18849, 2013; Ohashi and Otomo, Biochem Biophys Res Commun 463:447-452, 2015), including the production of recombinant enzymes, in vitro enzymatic reactions, the crystallization of the E3 complexes, and the NMR-based investigations of E1-E2 and E2-E3 interactions.


Asunto(s)
Proteínas Relacionadas con la Autofagia/química , Clonación Molecular/métodos , Resonancia Magnética Nuclear Biomolecular/métodos , Fosfatidiletanolaminas/química , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas Reguladoras de la Apoptosis , Autofagia , Proteína 12 Relacionada con la Autofagia/química , Proteína 12 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/química , Proteína 5 Relacionada con la Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/química , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/genética , Baculoviridae/genética , Línea Celular , Cristalización/métodos , Escherichia coli/genética , Humanos , Insectos , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Conformación Proteica , Transfección/métodos , Enzimas Ubiquitina-Conjugadoras/química , Enzimas Ubiquitina-Conjugadoras/genética
10.
Autophagy ; 10(3): 522-3, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24413923

RESUMEN

The members of the LC3/Atg8 family of proteins are covalently attached to phagophore and autophagosomal membranes. At the last step of the LC3 lipidation cascade, LC3 is transferred from the E2 enzyme ATG3 to phosphatidylethanolamine (PE). This transfer is stimulated by the ATG12-ATG5-ATG16L1 E3 complex, but the mechanism is not fully understood. We recently found that ATG12 of the E3 binds to a short sequence in the flexible region (FR) of ATG3 with high affinity, and that this interaction is critical for E2-E3 complex formation. These findings, together with detailed structural analyses of this interaction, define the properties of ATG12 and provide new insights of how LC3 transfer begins with ATG3 recruitment by ATG12.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia/fisiología , Metabolismo de los Lípidos , Proteínas de Microfilamentos/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Humanos , Unión Proteica/fisiología
11.
Nat Struct Mol Biol ; 20(1): 59-66, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23202584

RESUMEN

The autophagy factor ATG12~ATG5 conjugate exhibits E3 ligase-like activity which facilitates the lipidation of members of the LC3 family. The crystal structure of the human ATG12~ATG5 conjugate bound to the N-terminal region of ATG16L1, the factor that recruits the conjugate to autophagosomal membranes, reveals an integrated architecture in which ATG12 docks onto ATG5 through conserved residues. ATG12 and ATG5 are oriented such that other conserved residues on each molecule, including the conjugation junction, form a continuous surface patch. Mutagenesis data support the importance of both the interface between ATG12 and ATG5 and the continuous patch for E3 activity. The ATG12~ATG5 conjugate interacts with the E2 enzyme ATG3 with high affinity through another surface location that is exclusive to ATG12, suggesting a different role of the continuous patch in E3 activity. These findings provide a foundation for understanding the mechanism of LC3 lipidation.


Asunto(s)
Autofagia , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/química , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Animales , Proteína 12 Relacionada con la Autofagia , Proteína 5 Relacionada con la Autofagia , Proteínas Relacionadas con la Autofagia , Sitios de Unión , Proteínas Portadoras/metabolismo , Línea Celular , Cristalografía por Rayos X , Células HEK293 , Humanos , Ratones , Mutación , Enzimas Ubiquitina-Conjugadoras/metabolismo
12.
PLoS One ; 5(9)2010 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-20927343

RESUMEN

BACKGROUND: Formin proteins utilize a conserved formin homology 2 (FH2) domain to nucleate new actin filaments. In mammalian diaphanous-related formins (DRFs) the FH2 domain is inhibited through an unknown mechanism by intramolecular binding of the diaphanous autoinhibitory domain (DAD) and the diaphanous inhibitory domain (DID). METHODOLOGY/PRINCIPAL FINDINGS: Here we report the crystal structure of a complex between DID and FH2-DAD fragments of the mammalian DRF, mDia1 (mammalian diaphanous 1 also called Drf1 or p140mDia). The structure shows a tetrameric configuration (4 FH2 + 4 DID) in which the actin-binding sites on the FH2 domain are sterically occluded. However biochemical data suggest the full-length mDia1 is a dimer in solution (2 FH2 + 2 DID). Based on the crystal structure, we have generated possible dimer models and found that architectures of all of these models are incompatible with binding to actin filament but not to actin monomer. Furthermore, we show that the minimal functional monomeric unit in the FH2 domain, termed the bridge element, can be inhibited by isolated monomeric DID. NMR data on the bridge-DID system revealed that at least one of the two actin-binding sites on the bridge element is accessible to actin monomer in the inhibited state. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that autoinhibition in the native DRF dimer involves steric hindrance with the actin filament. Although the structure of a full-length DRF would be required for clarification of the presented models, our work here provides the first structural insights into the mechanism of the DRF autoinhibition.


Asunto(s)
Proteínas Portadoras/química , Homeostasis , Actinas/química , Actinas/metabolismo , Secuencia de Aminoácidos , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cristalografía por Rayos X , Dimerización , Forminas , Conformación Molecular , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína
13.
Mol Cell ; 18(3): 273-81, 2005 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-15866170

RESUMEN

Diaphanous-related formins (DRFs) regulate dynamics of unbranched actin filaments during cell contraction and cytokinesis. DRFs are autoinhibited through intramolecular binding of a Diaphanous autoinhibitory domain (DAD) to a conserved N-terminal regulatory element. Autoinhibition is relieved through binding of the GTPase RhoA to the N-terminal element. We report the crystal structure of the dimeric regulatory domain of the DRF, mDia1. Dimerization is mediated by an intertwined six-helix bundle, from which extend two Diaphanous inhibitory domains (DIDs) composed of five armadillo repeats. NMR and biochemical mapping indicate the RhoA and DAD binding sites on the DID partially overlap, explaining activation of mDia1 by the GTPase. RhoA binding also requires an additional structurally independent segment adjacent to the DID. This regulatory construction, involving a GTPase binding site spanning a flexibly tethered arm and the inhibitory module, is observed in many autoinhibited effectors of Ras superfamily GTPases, suggesting evolutionary pressure for this design.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Estructura Terciaria de Proteína , Proteínas de Unión al GTP rho/metabolismo , Animales , Sitios de Unión , Proteínas Portadoras/genética , Cristalografía por Rayos X , Forminas , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Mutación Puntual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA