Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 85: 77-101, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-26789594

RESUMEN

Mitochondria are essential organelles of endosymbiotic origin that are responsible for oxidative phosphorylation within eukaryotic cells. Independent evolution between species has generated mitochondrial genomes that are extremely diverse, with the composition of the vestigial genome determining their translational requirements. Typically, translation within mitochondria is restricted to a few key subunits of the oxidative phosphorylation complexes that are synthesized by dedicated ribosomes (mitoribosomes). The dramatically rearranged mitochondrial genomes, the limited set of transcripts, and the need for the synthesized proteins to coassemble with nuclear-encoded subunits have had substantial consequences for the translation machinery. Recent high-resolution cryo-electron microscopy has revealed the effect of coevolution on the mitoribosome with the mitochondrial genome. In this review, we place the new structural information in the context of the molecular mechanisms of mitochondrial translation and focus on the novel ways protein synthesis is organized and regulated in mitochondria.


Asunto(s)
ADN Mitocondrial/genética , Genoma Mitocondrial , Mitocondrias/genética , Proteínas Mitocondriales/genética , Biosíntesis de Proteínas , Animales , Evolución Biológica , ADN Mitocondrial/metabolismo , Regulación de la Expresión Génica , Humanos , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/química , Ribosomas Mitocondriales/metabolismo , Modelos Moleculares , Biogénesis de Organelos , Fosforilación Oxidativa , Transducción de Señal
2.
Mol Cell ; 83(19): 3470-3484.e8, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37751741

RESUMEN

Folding of newly synthesized proteins poses challenges for a functional proteome. Dedicated protein quality control (PQC) systems either promote the folding of nascent polypeptides at ribosomes or, if this fails, ensure their degradation. Although well studied for cytosolic protein biogenesis, it is not understood how these processes work for mitochondrially encoded proteins, key subunits of the oxidative phosphorylation (OXPHOS) system. Here, we identify dedicated hubs in proximity to mitoribosomal tunnel exits coordinating mitochondrial protein biogenesis and quality control. Conserved prohibitin (PHB)/m-AAA protease supercomplexes and the availability of assembly chaperones determine the fate of newly synthesized proteins by molecular triaging. The localization of these competing activities in the vicinity of the mitoribosomal tunnel exit allows for a prompt decision on whether newly synthesized proteins are fed into OXPHOS assembly or are degraded.


Asunto(s)
Mitocondrias , Triaje , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Ribosomas/metabolismo , Biosíntesis de Proteínas , Fosforilación Oxidativa , Proteínas Ribosómicas/metabolismo
3.
Mol Cell ; 79(6): 1051-1065.e10, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32877643

RESUMEN

Mitochondria contain their own gene expression systems, including membrane-bound ribosomes dedicated to synthesizing a few hydrophobic subunits of the oxidative phosphorylation (OXPHOS) complexes. We used a proximity-dependent biotinylation technique, BioID, coupled with mass spectrometry to delineate in baker's yeast a comprehensive network of factors involved in biogenesis of mitochondrial encoded proteins. This mitochondrial gene expression network (MiGENet) encompasses proteins involved in transcription, RNA processing, translation, or protein biogenesis. Our analyses indicate the spatial organization of these processes, thereby revealing basic mechanistic principles and the proteins populating strategically important sites. For example, newly synthesized proteins are directly handed over to ribosomal tunnel exit-bound factors that mediate membrane insertion, co-factor acquisition, or their mounting into OXPHOS complexes in a special early assembly hub. Collectively, the data reveal the connectivity of mitochondrial gene expression, reflecting a unique tailoring of the mitochondrial gene expression system.


Asunto(s)
Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas Ribosómicas/genética , Proteínas de Saccharomyces cerevisiae/genética , Regulación Fúngica de la Expresión Génica , Proteínas de la Membrana/genética , Fosforilación Oxidativa , Biosíntesis de Proteínas/genética , Saccharomyces cerevisiae/genética
4.
Mol Cell ; 77(4): 887-900.e5, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31883951

RESUMEN

The mitochondrial oxidative phosphorylation system comprises complexes assembled from subunits derived from mitochondrial and nuclear gene expression. Both genetic systems are coordinated by feedback loops, which control the synthesis of specific mitochondrial encoded subunits. Here, we studied how this occurs in the case of cytochrome b, a key subunit of mitochondrial complex III. Our data suggest the presence of a molecular rheostat consisting of two translational activators, Cbp3-Cbp6 and Cbs1, which operates at the mitoribosomal tunnel exit to connect translational output with assembly efficiency. When Cbp3-Cbp6 is engaged in assembly of cytochrome b, Cbs1 binds to the tunnel exit to sequester the cytochrome b-encoding mRNA, repressing its translation. After mediating complex III assembly, binding of Cbp3-Cbp6 to the tunnel exit replaces Cbs1 and the bound mRNA to permit cytochrome b synthesis. Collectively, the data indicate the molecular wiring of a feedback loop to regulate synthesis of a mitochondrial encoded protein.


Asunto(s)
Regulación de la Expresión Génica , Mitocondrias/genética , Proteínas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Citocromos b/biosíntesis , Citocromos b/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Chaperonas Moleculares/metabolismo , ARN Mensajero/análisis , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transactivadores/metabolismo
5.
EMBO Rep ; 24(11): e57092, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37828827

RESUMEN

The mitochondrial respiratory chain (MRC) is a key energy transducer in eukaryotic cells. Four respiratory chain complexes cooperate in the transfer of electrons derived from various metabolic pathways to molecular oxygen, thereby establishing an electrochemical gradient over the inner mitochondrial membrane that powers ATP synthesis. This electron transport relies on mobile electron carries that functionally connect the complexes. While the individual complexes can operate independently, they are in situ organized into large assemblies termed respiratory supercomplexes. Recent structural and functional studies have provided some answers to the question of whether the supercomplex organization confers an advantage for cellular energy conversion. However, the jury is still out, regarding the universality of these claims. In this review, we discuss the current knowledge on the functional significance of MRC supercomplexes, highlight experimental limitations, and suggest potential new strategies to overcome these obstacles.


Asunto(s)
Mitocondrias , Membranas Mitocondriales , Membranas Mitocondriales/metabolismo , Transporte de Electrón , Mitocondrias/metabolismo
6.
IUBMB Life ; 76(3): 125-139, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37712772

RESUMEN

The complexes mediating oxidative phosphorylation (OXPHOS) in the inner mitochondrial membrane consist of proteins encoded in the nuclear or the mitochondrial DNA. The mitochondrially encoded membrane proteins (mito-MPs) represent the catalytic core of these complexes and follow complicated pathways for biogenesis. Owing to their overall hydrophobicity, mito-MPs are co-translationally inserted into the inner membrane by the Oxa1 insertase. After insertion, OXPHOS biogenesis factors mediate the assembly of mito-MPs into complexes and participate in the regulation of mitochondrial translation, while protein quality control factors recognize and degrade faulty or excess proteins. This review summarizes the current understanding of these early steps occurring during the assembly of mito-MPs by concentrating on results obtained in the model organism baker's yeast.


Asunto(s)
Mitocondrias , Fosforilación Oxidativa , Mitocondrias/genética , Membranas Mitocondriales/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
7.
Bioinformatics ; 38(21): 4908-4918, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36106996

RESUMEN

MOTIVATION: Cells respond to environments by regulating gene expression to exploit resources optimally. Recent advances in technologies allow for measuring the abundances of RNA, proteins, lipids and metabolites. These highly complex datasets reflect the states of the different layers in a biological system. Multi-omics is the integration of these disparate methods and data to gain a clearer picture of the biological state. Multi-omic studies of the proteome and metabolome are becoming more common as mass spectrometry technology continues to be democratized. However, knowledge extraction through the integration of these data remains challenging. RESULTS: Connections between molecules in different omic layers were discovered through a combination of machine learning and model interpretation. Discovered connections reflected protein control (ProC) over metabolites. Proteins discovered to control citrate were mapped onto known genetic and metabolic networks, revealing that these protein regulators are novel. Further, clustering the magnitudes of ProC over all metabolites enabled the prediction of five gene functions, each of which was validated experimentally. Two uncharacterized genes, YJR120W and YDL157C, were accurately predicted to modulate mitochondrial translation. Functions for three incompletely characterized genes were also predicted and validated, including SDH9, ISC1 and FMP52. A website enables results exploration and also MIMaL analysis of user-supplied multi-omic data. AVAILABILITY AND IMPLEMENTATION: The website for MIMaL is at https://mimal.app. Code for the website is at https://github.com/qdickinson/mimal-website. Code to implement MIMaL is at https://github.com/jessegmeyerlab/MIMaL. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Aprendizaje Automático , Redes y Vías Metabólicas , Análisis por Conglomerados , Proteoma
8.
Proc Natl Acad Sci U S A ; 117(5): 2412-2421, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31964824

RESUMEN

Mitochondria have a characteristic ultrastructure with invaginations of the inner membrane called cristae that contain the protein complexes of the oxidative phosphorylation system. How this particular morphology of the respiratory membrane impacts energy conversion is currently unknown. One proposed role of cristae formation is to facilitate the establishment of local proton gradients to fuel ATP synthesis. Here, we determined the local pH values at defined sublocations within mitochondria of respiring yeast cells by fusing a pH-sensitive GFP to proteins residing in different mitochondrial subcompartments. Only a small proton gradient was detected over the inner membrane in wild type or cristae-lacking cells. Conversely, the obtained pH values did barely permit ATP synthesis in a reconstituted system containing purified yeast F1F0 ATP synthase, although, thermodynamically, a sufficiently high driving force was applied. At higher driving forces, where robust ATP synthesis was observed, a P-side pH value of 6 increased the ATP synthesis rate 3-fold compared to pH 7. In contrast, when ATP synthase was coreconstituted with an active proton-translocating cytochrome oxidase, ATP synthesis readily occurred at the measured, physiological pH values. Our study thus reveals that the morphology of the inner membrane does not influence the subcompartmental pH values and is not necessary for robust oxidative phosphorylation in mitochondria. Instead, it is likely that the dense packing of the oxidative phosphorylation complexes in the cristae membranes assists kinetic coupling between proton pumping and ATP synthesis.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Membranas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Protones , Transporte de Electrón , Concentración de Iones de Hidrógeno , Cinética , Mitocondrias/química , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Membranas Mitocondriales/química , Membranas Mitocondriales/enzimología , ATPasas de Translocación de Protón Mitocondriales/genética , Fosforilación Oxidativa , Proteolípidos/metabolismo , Bombas de Protones/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
9.
EMBO Rep ; 21(12): e51015, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33016568

RESUMEN

Respiratory chains are crucial for cellular energy conversion and consist of multi-subunit complexes that can assemble into supercomplexes. These structures have been intensively characterized in various organisms, but their physiological roles remain unclear. Here, we elucidate their function by leveraging a high-resolution structural model of yeast respiratory supercomplexes that allowed us to inhibit supercomplex formation by mutation of key residues in the interaction interface. Analyses of a mutant defective in supercomplex formation, which still contains fully functional individual complexes, show that the lack of supercomplex assembly delays the diffusion of cytochrome c between the separated complexes, thus reducing electron transfer efficiency. Consequently, competitive cellular fitness is severely reduced in the absence of supercomplex formation and can be restored by overexpression of cytochrome c. In sum, our results establish how respiratory supercomplexes increase the efficiency of cellular energy conversion, thereby providing an evolutionary advantage for aerobic organisms.


Asunto(s)
Citocromos c , Proteínas de Saccharomyces cerevisiae , Citocromos c/genética , Transporte de Electrón , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
EMBO Rep ; 20(10): e47865, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31531937

RESUMEN

The eukaryotic cell is morphologically and functionally organized as an interconnected network of organelles that responds to stress and aging. Organelles communicate via dedicated signal transduction pathways and the transfer of information in form of metabolites and energy levels. Recent data suggest that the communication between organellar proteostasis systems is a cornerstone of cellular stress responses in eukaryotic cells. Here, we discuss the integration of proteostasis and energy fluxes in the regulation of cellular stress and aging. We emphasize the molecular architecture of the regulatory transcriptional pathways that both sense and control metabolism and proteostasis. A special focus is placed on mechanistic insights gained from the model organism budding yeast in signaling from mitochondria to the nucleus and how this shapes cellular fitness.


Asunto(s)
Mitocondrias/metabolismo , Proteostasis , Estrés Fisiológico , Animales , Núcleo Celular/metabolismo , Humanos , Agregado de Proteínas , Transcripción Genética
11.
J Biol Chem ; 294(45): 16663-16671, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31537648

RESUMEN

Assembly of the mitochondrial respiratory chain requires the coordinated synthesis of mitochondrial and nuclear encoded subunits, redox co-factor acquisition, and correct joining of the subunits to form functional complexes. The conserved Cbp3-Cbp6 chaperone complex binds newly synthesized cytochrome b and supports the ordered acquisition of the heme co-factors. Moreover, it functions as a translational activator by interacting with the mitoribosome. Cbp3 consists of two distinct domains: an N-terminal domain present in mitochondrial Cbp3 homologs and a highly conserved C-terminal domain comprising a ubiquinol-cytochrome c chaperone region. Here, we solved the crystal structure of this C-terminal domain from a bacterial homolog at 1.4 Å resolution, revealing a unique all-helical fold. This structure allowed mapping of the interaction sites of yeast Cbp3 with Cbp6 and cytochrome b via site-specific photo-cross-linking. We propose that mitochondrial Cbp3 homologs carry an N-terminal extension that positions the conserved C-terminal domain at the ribosomal tunnel exit for an efficient interaction with its substrate, the newly synthesized cytochrome b protein.


Asunto(s)
Citocromos b/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Brucella abortus/metabolismo , Cristalografía por Rayos X , Citocromos b/química , Citocromos b/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/química , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia
12.
J Chem Inf Model ; 60(10): 4560-4568, 2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-32966076

RESUMEN

Prediction of whether a compound is "aromatic" is at first glance a relatively simple task-does it obey Hückel's rule (planar cyclic π-system with 4n + 2 electrons) or not? However, aromaticity is far from a binary property, and there are distinct variations in the chemical and biological behavior of different systems which obey Hückel's rule and are thus classified as aromatic. To that end, the aromaticity of each molecule in a large public dataset was quantified by an extension of the work of Raczynska et al. Building on this data, a method is proposed for machine learning the degree of aromaticity of each aromatic ring in a molecule. Categories are derived from the numeric results, allowing the differentiation of structural patterns between them and thus a better representation of the underlying chemical and biological behavior in expert and (Q)SAR systems.


Asunto(s)
Electrones , Aprendizaje Automático
13.
Proc Natl Acad Sci U S A ; 113(31): E4476-85, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27432958

RESUMEN

The respiratory supercomplex factors (Rcf) 1 and 2 mediate supramolecular interactions between mitochondrial complexes III (ubiquinol-cytochrome c reductase; cyt. bc1) and IV (cytochrome c oxidase; CytcO). In addition, removal of these polypeptides results in decreased activity of CytcO, but not of cyt. bc1 In the present study, we have investigated the kinetics of ligand binding, the single-turnover reaction of CytcO with O2, and the linked cyt. bc1-CytcO quinol oxidation-oxygen-reduction activities in mitochondria in which Rcf1 or Rcf2 were removed genetically (strains rcf1Δ and rcf2Δ, respectively). The data show that in the rcf1Δ and rcf2Δ strains, in a significant fraction of the population, ligand binding occurs over a time scale that is ∼100-fold faster (τ ≅ 100 µs) than observed with the wild-type mitochondria (τ ≅ 10 ms), indicating structural changes. This effect is specific to removal of Rcf and not dissociation of the cyt. bc1-CytcO supercomplex. Furthermore, in the rcf1Δ and rcf2Δ strains, the single-turnover reaction of CytcO with O2 was incomplete. This observation indicates that the lower activity of CytcO is caused by a fraction of inactive CytcO rather than decreased CytcO activity of the entire population. Furthermore, the data suggest that the Rcf1 polypeptide mediates formation of an electron-transfer bridge from cyt. bc1 to CytcO via a tightly bound cyt. c We discuss the significance of the proposed regulatory mechanism of Rcf1 and Rcf2 in the context of supramolecular interactions between cyt. bc1 and CytcO.


Asunto(s)
Complejo III de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte de Electrón/genética , Complejo III de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/genética , Cinética , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación , Oxidación-Reducción , Unión Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Espectrofotometría
14.
Biochim Biophys Acta Bioenerg ; 1859(9): 699-704, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29746825

RESUMEN

Respiration in Saccharomyces cerevisiae is regulated by small proteins such as the respiratory supercomplex factors (Rcf). One of these factors (Rcf1) has been shown to interact with complexes III (cyt. bc1) and IV (cytochrome c oxidase, CytcO) of the respiratory chain and to modulate the activity of the latter. Here, we investigated the effect of deleting Rcf1 on the functionality of CytcO, purified using a protein C-tag on core subunit 1 (Cox1). Specifically, we measured the kinetics of ligand binding to the CytcO catalytic site, the O2-reduction activity and changes in light absorption spectra. We found that upon removal of Rcf1 a fraction of the CytcO is incorrectly assembled with structural changes at the catalytic site. The data indicate that Rcf1 modulates the assembly and activity of CytcO by shifting the equilibrium of structural sub-states toward the fully active, intact form.


Asunto(s)
Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/metabolismo , Mutación , Oxígeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Dominio Catalítico , Complejo IV de Transporte de Electrones/genética , Cinética , Membranas Mitocondriales/metabolismo , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/genética , Relación Estructura-Actividad
15.
Biochim Biophys Acta Bioenerg ; 1858(2): 182-188, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27871795

RESUMEN

Kinetic methods used to investigate electron and proton transfer within cytochrome c oxidase (CytcO) are often based on the use of light to dissociate small ligands, such as CO, thereby initiating the reaction. Studies of intact mitochondria using these methods require identification of proteins that may bind CO and determination of the ligand-binding kinetics. In the present study we have investigated the kinetics of CO-ligand binding to S. cerevisiae mitochondria and cellular extracts. The data indicate that CO binds to two proteins, CytcO and a (yeast) flavohemoglobin (yHb). The latter has been shown previously to reside in both the cell cytosol and the mitochondrial matrix. Here, we found that yHb resides also in the intermembrane space and binds CO in its reduced state. As observed previously, we found that the yHb population in the mitochondrial matrix binds CO, but only after removal of the inner membrane. The mitochondrial yHb (in both the intermembrane space and the matrix) recombines with CO with τ≅270ms, which is significantly slower than observed with the cytosolic yHb (main component τ≅1.3ms). The data indicate that the yHb populations in the different cell compartments differ in structure.


Asunto(s)
Monóxido de Carbono/metabolismo , Dioxigenasas/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Hemoproteínas/metabolismo , Mitocondrias/metabolismo , Oxígeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Citosol/metabolismo , Membranas Intracelulares/metabolismo , Cinética , Ligandos , Membranas Mitocondriales/metabolismo , Protones
16.
Cell Tissue Res ; 367(1): 21-31, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27425851

RESUMEN

Mitochondria are organelles critical for the functionality of eukaryotic cells. One of their most prominent functions is energy conversion, thereby producing most of the cellular ATP. Energy conversion relies on the oxidative phosphorylation system, an ensemble of large protein complexes that include the respiratory chain and the ATP synthase. Biogenesis of this machinery requires the coordination of two separate genetic systems, namely nuclear and mitochondrial gene expression. Recent research into the molecular causes of aging have revealed a prominent contribution of mitochondrial gene expression on many aspects of degenerative processes that typically involve cellular stress signaling pathways. In this review, we summarize recent developments in attempting to identify the molecular mechanism by which dysfunction of mitochondrial gene expression activates cellular stress signaling pathways and how this affects organismal aging. By comparing data obtained in various model organisms, we identify conserved and species-specific aspects of this mitochondria-to-nucleus signaling.


Asunto(s)
Mitocondrias/metabolismo , Biosíntesis de Proteínas , Estrés Fisiológico , Animales , Núcleo Celular/metabolismo , Humanos , Modelos Biológicos , Transducción de Señal
18.
Regul Toxicol Pharmacol ; 90: 22-28, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28822875

RESUMEN

The ICH M7 Option 4 control of (potentially) mutagenic impurities is based on the use of scientific principles in lieu of routine analytical testing. This approach can reduce the burden of analytical testing without compromising patient safety, provided a scientifically rigorous approach is taken which is backed up by sufficient theoretical and/or analytical data. This paper introduces a consortium-led initiative and offers a proposal on the supporting evidence that could be presented in regulatory submissions.


Asunto(s)
Contaminación de Medicamentos/prevención & control , Pruebas de Mutagenicidad/normas , Mutágenos/toxicidad , Preparaciones Farmacéuticas/normas , Tecnología Farmacéutica/normas , Simulación por Computador , Humanos , Pruebas de Mutagenicidad/métodos , Preparaciones Farmacéuticas/síntesis química , Guías de Práctica Clínica como Asunto , Control de Calidad , Relación Estructura-Actividad Cuantitativa , Medición de Riesgo
19.
Hum Mol Genet ; 23(23): 6356-65, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25008109

RESUMEN

Complex III (cytochrome bc1) is a protein complex of the mitochondrial inner membrane that transfers electrons from ubiquinol to cytochrome c. Its assembly requires the coordinated expression of mitochondrial-encoded cytochrome b and nuclear-encoded subunits and assembly factors. Complex III deficiency is a severe multisystem disorder caused by mutations in subunit genes or assembly factors. Sequence-profile-based orthology predicts C11orf83, hereafter named UQCC3, to be the ortholog of the fungal complex III assembly factor CBP4. We describe a homozygous c.59T>A missense mutation in UQCC3 from a consanguineous patient diagnosed with isolated complex III deficiency, displaying lactic acidosis, hypoglycemia, hypotonia and delayed development without dysmorphic features. Patient fibroblasts have reduced complex III activity and lower levels of the holocomplex and its subunits than controls. They have no detectable UQCC3 protein and have lower levels of cytochrome b protein. Furthermore, in patient cells, cytochrome b is absent from a high-molecular-weight complex III. UQCC3 is reduced in cells depleted for the complex III assembly factors UQCC1 and UQCC2. Conversely, absence of UQCC3 in patient cells does not affect UQCC1 and UQCC2. This suggests that UQCC3 functions in the complex III assembly pathway downstream of UQCC1 and UQCC2 and is consistent with what is known about the function of Cbp4 and of the fungal orthologs of UQCC1 and UQCC2, Cbp3 and Cbp6. We conclude that UQCC3 functions in complex III assembly and that the c.59T>A mutation has a causal role in complex III deficiency.


Asunto(s)
Proteínas Portadoras/genética , Citocromos b/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Proteínas de Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Consanguinidad , Complejo III de Transporte de Electrones/deficiencia , Complejo III de Transporte de Electrones/genética , Estabilidad de Enzimas , Femenino , Fibroblastos/metabolismo , Humanos , Recién Nacido , Proteínas de la Membrana/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Mutación Missense
20.
J Magn Reson Imaging ; 44(5): 1238-1243, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-26969852

RESUMEN

PURPOSE: To compare the quality and diagnostic value of routine single-shot, echo-planar imaging, diffusion-weighted imaging (ss-EPI-DWI) to those of quiet readout segmented EPI-DWI (q-DWI) in magnetic resonance imaging (MRI) of acute stroke. MATERIALS AND METHODS: Twenty-six patients with acute stroke underwent a 1.5T MRI including diffusion-weighted ss-EPI and q-DWI. The two sequences were protocolled to have identical spatial resolution and spatial coverage. q-DWI was tested with (regular q-DWI) and without (fast q-DWI) averaging in 13 patients each. The acoustic noise generated by each sequence was measured. Quantitative and qualitative assessments regarding signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), lesion conspicuity, level of artifacts, overall image quality as well as diagnostic content were performed. RESULTS: SNR and CNR values of the q-DWI scans were considerably higher than those of ss-EPI DWI (P ≤ 0.0078). No statistical difference was found for lesion conspicuity (P ≥ 0.125). Statistical differences were found for level of artifacts (P ≥ 0.0078) and overall image quality (P ≥ 0.002). Both were evaluated better in the ss-EPI DWI than in the regular and fast q-DWI. Apart from one fast q-DWI patient, radiologists voted the images to have the same diagnostic content, with upper 90% confidence limits of 0.238 for regular q-DWI and 0.429 for fast q-DWI. CONCLUSION: If the acoustic burden is critical to the patient, q-DWI is an equivalent quiet alternative to ss-EPI DWI for use in stroke patients. J. Magn. Reson. Imaging 2016;44:1238-1243.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Imagen Eco-Planar/métodos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Ruido/prevención & control , Procesamiento de Señales Asistido por Computador , Accidente Cerebrovascular/diagnóstico por imagen , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Reproducibilidad de los Resultados , Factor de Transcripción STAT1 , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA