Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662782

RESUMEN

Neurological monogenic loss-of-function diseases are hereditary disorders resulting from gene mutations that decrease or abolish the normal function of the encoded protein. These conditions pose significant therapeutic challenges, which may be resolved through the development of innovative therapeutic strategies. RNA-based technologies, such as mRNA replacement therapy, have emerged as promising and increasingly viable treatments. Notably, mRNA therapy exhibits significant potential as a mutation-agnostic approach that can address virtually any monogenic loss-of-function disease. Therapeutic mRNA carries the information for a healthy copy of the defective protein, bypassing the problem of targeting specific genetic variants. Moreover, unlike conventional gene therapy, mRNA-based drugs are delivered through a simplified process that requires only transfer to the cytoplasm, thereby reducing the mutagenic risks related to DNA integration. Additionally, mRNA therapy exerts a transient effect on target cells, minimizing the risk of long-term unintended consequences. The remarkable success of mRNA technology for developing COVID-19 vaccines has rekindled interest in mRNA as a cost-effective method for delivering therapeutic proteins. However, further optimization is required to enhance mRNA delivery, particularly to the central nervous system, while minimizing adverse drug reactions and toxicity. In this comprehensive review, we delve into past, present, and ongoing applications of mRNA therapy for neurological monogenic loss-of-function diseases. We also discuss the promises and potential challenges presented by mRNA therapeutics in this rapidly advancing field. Ultimately, we underscore the full potential of mRNA therapy as a game-changing therapeutic approach for neurological disorders.

2.
Bioorg Chem ; 147: 107365, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636436

RESUMEN

Protein prenylation is one example of a broad class of post-translational modifications where proteins are covalently linked to various hydrophobic moieties. To globally identify and monitor levels of all prenylated proteins in a cell simultaneously, our laboratory and others have developed chemical proteomic approaches that rely on the metabolic incorporation of isoprenoid analogues bearing bio-orthogonal functionality followed by enrichment and subsequent quantitative proteomic analysis. Here, several improvements in the synthesis of the alkyne-containing isoprenoid analogue C15AlkOPP are reported to improve synthetic efficiency. Next, metabolic labeling with C15AlkOPP was optimized to obtain useful levels of metabolic incorporation of the probe in several types of primary cells. Those conditions were then used to study the prenylomes of motor neurons (ES-MNs), astrocytes (ES-As), and their embryonic stem cell progenitors (ESCs), which allowed for the identification of 54 prenylated proteins from ESCs, 50 from ES-MNs, and 84 from ES-As, representing all types of prenylation. Bioinformatic analysis revealed specific enriched pathways, including nervous system development, chemokine signaling, Rho GTPase signaling, and adhesion. Hierarchical clustering showed that most enriched pathways in all three cell types are related to GTPase activity and vesicular transport. In contrast, STRING analysis showed significant interactions in two populations that appear to be cell type dependent. The data provided herein demonstrates that robust incorporation of C15AlkOPP can be obtained in ES-MNs and related primary cells purified via magnetic-activated cell sorting allowing the identification and quantification of numerous prenylated proteins. These results suggest that metabolic labeling with C15AlkOPP should be an effective approach for investigating the role of prenylated proteins in primary cells in both normal cells and disease pathologies, including ALS.


Asunto(s)
Alquinos , Astrocitos , Neuronas Motoras , Prenilación de Proteína , Astrocitos/metabolismo , Astrocitos/citología , Animales , Alquinos/química , Alquinos/síntesis química , Neuronas Motoras/metabolismo , Neuronas Motoras/citología , Terpenos/química , Terpenos/síntesis química , Terpenos/metabolismo , Ratones , Estructura Molecular , Células Cultivadas
3.
Cell Mol Life Sci ; 80(8): 241, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37543540

RESUMEN

Spinal muscular atrophy (SMA) is a neurodegenerative disorder caused by mutations in the SMN1 gene resulting in reduced levels of the SMN protein. Nusinersen, the first antisense oligonucleotide (ASO) approved for SMA treatment, binds to the SMN2 gene, paralogue to SMN1, and mediates the translation of a functional SMN protein. Here, we used longitudinal high-resolution mass spectrometry (MS) to assess both global proteome and metabolome in cerebrospinal fluid (CSF) from ten SMA type 3 patients, with the aim of identifying novel readouts of pharmacodynamic/response to treatment and predictive markers of treatment response. Patients had a median age of 33.5 [29.5; 38.25] years, and 80% of them were ambulant at time of the enrolment, with a median HFMSE score of 37.5 [25.75; 50.75]. Untargeted CSF proteome and metabolome were measured using high-resolution MS (nLC-HRMS) on CSF samples obtained before treatment (T0) and after 2 years of follow-up (T22). A total of 26 proteins were found to be differentially expressed between T0 and T22 upon VSN normalization and LIMMA differential analysis, accounting for paired replica. Notably, key markers of the insulin-growth factor signaling pathway were upregulated after treatment together with selective modulation of key transcription regulators. Using CombiROC multimarker signature analysis, we suggest that detecting a reduction of SEMA6A and an increase of COL1A2 and GRIA4 might reflect therapeutic efficacy of nusinersen. Longitudinal metabolome profiling, analyzed with paired t-Test, showed a significant shift for some aminoacid utilization induced by treatment, whereas other metabolites were largely unchanged. Together, these data suggest perturbation upon nusinersen treatment still sustained after 22 months of follow-up and confirm the utility of CSF multi-omic profiling as pharmacodynamic biomarker for SMA type 3. Nonetheless, validation studies are needed to confirm this evidence in a larger sample size and to further dissect combined markers of response to treatment.


Asunto(s)
Multiómica , Atrofia Muscular Espinal , Humanos , Estudios Retrospectivos , Estudios de Seguimiento , Proteoma , Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo
4.
Cell Mol Life Sci ; 80(12): 373, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38007410

RESUMEN

Mitofusin-2 (MFN2) is an outer mitochondrial membrane protein essential for mitochondrial networking in most cells. Autosomal dominant mutations in the MFN2 gene cause Charcot-Marie-Tooth type 2A disease (CMT2A), a severe and disabling sensory-motor neuropathy that impacts the entire nervous system. Here, we propose a novel therapeutic strategy tailored to correcting the root genetic defect of CMT2A. Though mutant and wild-type MFN2 mRNA are inhibited by RNA interference (RNAi), the wild-type protein is restored by overexpressing cDNA encoding functional MFN2 modified to be resistant to RNAi. We tested this strategy in CMT2A patient-specific human induced pluripotent stem cell (iPSC)-differentiated motor neurons (MNs), demonstrating the correct silencing of endogenous MFN2 and replacement with an exogenous copy of the functional wild-type gene. This approach significantly rescues the CMT2A MN phenotype in vitro, stabilizing the altered axonal mitochondrial distribution and correcting abnormal mitophagic processes. The MFN2 molecular correction was also properly confirmed in vivo in the MitoCharc1 CMT2A transgenic mouse model after cerebrospinal fluid (CSF) delivery of the constructs into newborn mice using adeno-associated virus 9 (AAV9). Altogether, our data support the feasibility of a combined RNAi and gene therapy strategy for treating the broad spectrum of human diseases associated with MFN2 mutations.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Células Madre Pluripotentes Inducidas , Humanos , Ratones , Animales , Interferencia de ARN , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/terapia , Enfermedad de Charcot-Marie-Tooth/metabolismo , Mutación , Hidrolasas/genética , Ratones Transgénicos
5.
J Virol ; 96(19): e0112222, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36121298

RESUMEN

Zika virus (ZIKV) is an arbovirus member of the Flaviviridae family that causes severe congenital brain anomalies in infected fetuses. The key target cells of ZIKV infection, human neural progenitor cells (hNPCs), are highly permissive to infection that causes the inhibition of cell proliferation and induces cell death. We have previously shown that pharmaceutical-grade heparin inhibits virus-induced cell death with negligible effects on in vitro virus replication in ZIKV-infected hNPCs at the "high" multiplicity of infection (MOI) of 1. Here, we show that heparin inhibits formation of ZIKV-induced intracellular vacuoles, a signature of paraptosis, and inhibits necrosis and apoptosis of hNPCs grown as neurospheres (NS). To test whether heparin preserved the differentiation of ZIKV-infected hNPCs into neuroglial cells, hNPCs were infected at the MOI of 0.001. In this experimental condition, heparin inhibited ZIKV replication by ca. 2 log10, mostly interfering with virion attachment, while maintaining its protective effect against ZIKV-induced cytopathicity. Heparin preserved differentiation into neuroglial cells of hNPCs that were obtained from either human-induced pluripotent stem cells (hiPSC) or by fetal tissue. Quite surprisingly, multiple additions of heparin to hNPCs enabled prolonged virus replication while preventing virus-induced cytopathicity. Collectively, these results highlight the potential neuroprotective effect of heparin that could serve as a lead compound to develop novel agents for preventing the damage of ZIKV infection on the developing brain. IMPORTANCE ZIKV is a neurotropic virus that invades neural progenitor cells (NPCs), causing inhibition of their proliferation and maturation into neurons and glial cells. We have shown previously that heparin, an anticoagulant also used widely during pregnancy, prevents ZIKV-induced cell death with negligible inhibition of virus replication. Here, we demonstrate that heparin also exerts antiviral activity against ZIKV replication using a much lower infectious inoculum. Moreover, heparin interferes with different modalities of virus-induced cell death. Finally, heparin-induced prevention of virus-induced NPC death allows their differentiation into neuroglial cells despite the intracellular accumulation of virions. These results highlight the potential use of heparin, or pharmacological agents derived from it, in pregnant women to prevent the devastating effects of ZIKV infection on the developing brain of their fetuses.


Asunto(s)
Heparina , Células-Madre Neurales , Fármacos Neuroprotectores , Virus Zika , Anticoagulantes/farmacología , Antivirales/farmacología , Muerte Celular/efectos de los fármacos , Diferenciación Celular , Heparina/farmacología , Humanos , Células-Madre Neurales/citología , Células-Madre Neurales/virología , Neuroglía/citología , Neuroglía/virología , Fármacos Neuroprotectores/farmacología , Replicación Viral , Virus Zika/efectos de los fármacos , Virus Zika/fisiología , Infección por el Virus Zika/tratamiento farmacológico
6.
BMC Neurosci ; 24(1): 33, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37286983

RESUMEN

The cross-talk between T cells and astrocytes occurring under physiological and, even more, neuroinflammatory conditions may profoundly impact the generation of adaptive immune responses in the nervous tissue. In this study, we used a standardized in vitro co-culture assay to investigate the immunomodulatory properties of astrocytes differing for age, sex, and species. Mouse neonatal astrocytes enhanced T cell vitality but suppressed T lymphocyte proliferation in response to mitogenic stimuli or myelin antigens, regardless of the Th1, Th2 or Th17 T cell phenotype. Studies comparing glia cells from adult and neonatal animals showed that adult astrocytes were more efficient in inhibiting T lymphocyte activation than neonatal astrocytes, regardless of their sex. Differently from primary cultures, mouse and human astrocytes derived from reprogrammed fibroblasts did not interfere with T cell proliferation. Overall, we describe a standardized astrocyte-T cell interaction in vitro assay and demonstrate that primary astrocytes and iAstrocytes may differ in modulating T cell function.


Asunto(s)
Activación de Linfocitos , Células Th17 , Animales , Humanos , Ratones , Astrocitos , Proliferación Celular , Neuroglía , Masculino , Femenino
7.
J Neurosci ; 40(4): 784-795, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31818979

RESUMEN

Differently from other myeloid cells, microglia derive exclusively from precursors originating within the yolk sac and migrate to the CNS under development, without any contribution from fetal liver or postnatal hematopoiesis. Consistent with their unique ontology, microglia may express specific physiological markers, which have been partly described in recent years. Here we wondered whether profiles distinguishing microglia from peripheral macrophages vary with age and under pathology. To this goal, we profiled transcriptomes of microglia throughout the lifespan and included a parallel comparison with peripheral macrophages under physiological and neuroinflammatory settings using age- and sex-matched wild-type and bone marrow chimera mouse models. This comprehensive approach demonstrated that the phenotypic differentiation between microglia and peripheral macrophages is age-dependent and that peripheral macrophages do express some of the most commonly described microglia-specific markers early during development, such as Fcrls, P2ry12, Tmem119, and Trem2. Further, during chronic neuroinflammation CNS-infiltrating macrophages and not peripheral myeloid cells acquire microglial markers, indicating that the CNS niche may instruct peripheral myeloid cells to gain the phenotype and, presumably, the function of the microglia cell. In conclusion, our data provide further evidence about the plasticity of the myeloid cell and suggest caution in the strict definition and application of microglia-specific markers.SIGNIFICANCE STATEMENT Understanding the respective role of microglia and infiltrating monocytes in neuroinflammatory conditions has recently seemed possible by the identification of a specific microglia signature. Here instead we provide evidence that peripheral macrophages may express some of the most commonly described microglia markers at some developmental stages or pathological conditions, in particular during chronic neuroinflammation. Further, our data support the hypothesis about phenotypic plasticity and convergence among distinct myeloid cells so that they may act as a functional unit rather than as different entities, boosting their mutual functions in different phases of disease. This holds relevant implications in the view of the growing use of myeloid cell therapies to treat brain disease in humans.


Asunto(s)
Encéfalo/metabolismo , Diferenciación Celular/fisiología , Macrófagos/metabolismo , Microglía/metabolismo , Transcriptoma , Animales , Encéfalo/citología , Plasticidad de la Célula/fisiología , Inflamación/metabolismo , Macrófagos/citología , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Microglía/citología , Fenotipo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Receptores Purinérgicos P2Y12/genética , Receptores Purinérgicos P2Y12/metabolismo
8.
Acta Neuropathol ; 140(5): 715-736, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32894330

RESUMEN

Multiple sclerosis (MS) is the most frequent demyelinating disease in young adults and despite significant advances in immunotherapy, disease progression still cannot be prevented. Promotion of remyelination, an endogenous repair mechanism resulting in the formation of new myelin sheaths around demyelinated axons, represents a promising new treatment approach. However, remyelination frequently fails in MS lesions, which can in part be attributed to impaired differentiation of oligodendroglial progenitor cells into mature, myelinating oligodendrocytes. The reasons for impaired oligodendroglial differentiation and defective remyelination in MS are currently unknown. To determine whether intrinsic oligodendroglial factors contribute to impaired remyelination in relapsing-remitting MS (RRMS), we compared induced pluripotent stem cell-derived oligodendrocytes (hiOL) from RRMS patients and controls, among them two monozygous twin pairs discordant for MS. We found that hiOL from RRMS patients and controls were virtually indistinguishable with respect to remyelination-associated functions and proteomic composition. However, while analyzing the effect of extrinsic factors we discovered that supernatants of activated peripheral blood mononuclear cells (PBMCs) significantly inhibit oligodendroglial differentiation. In particular, we identified CD4+ T cells as mediators of impaired oligodendroglial differentiation; at least partly due to interferon-gamma secretion. Additionally, we observed that blocked oligodendroglial differentiation induced by PBMC supernatants could not be restored by application of oligodendroglial differentiation promoting drugs, whereas treatment of PBMCs with the immunomodulatory drug teriflunomide prior to supernatant collection partly rescued oligodendroglial differentiation. In summary, these data indicate that the oligodendroglial differentiation block is not due to intrinsic oligodendroglial factors but rather caused by the inflammatory environment in RRMS lesions which underlines the need for drug screening approaches taking the inflammatory environment into account. Combined, these findings may contribute to the development of new remyelination promoting strategies.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Esclerosis Múltiple Recurrente-Remitente/inmunología , Oligodendroglía/patología , Remielinización/inmunología , Diferenciación Celular/fisiología , Humanos , Células Madre Pluripotentes Inducidas , Interferón gamma/inmunología , Células Precursoras de Oligodendrocitos/patología
9.
Molecules ; 25(22)2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33218208

RESUMEN

Astrocytes greatly participate to inflammatory and neurotoxic reactions occurring in neurodegenerative diseases and are valuable pharmacological targets to support neuroprotection. Here we used human astrocytes generated from reprogrammed fibroblasts as a cellular model to study the effect of the compound Laquinimod and its active metabolite de-Laquinimod on astrocyte functions and the astrocyte-neuron interaction. We show that human iAstrocytes expressed the receptor for the inflammatory mediator IL1 and responded to it via nuclear translocation of NFκB, an event that did not occur if cells were treated with Laquinimod, indicating a direct anti-inflammatory activity of the drug on the human astrocyte. Similarly, while exposure to IL1 downregulated glial glutamate transporters GLAST and GLT1, treatment with Laquinimod supported maintenance of physiological levels of these proteins despite the inflammatory milieu. Laquinimod also induced nuclear translocation of the aryl hydrocarbon receptor (AHR), suggesting that drug action was mediated by activation of the AHR pathway. However, the drug was effective despite AHR inhibition via CH223191, indicating that AHR signaling in the astrocyte is dispensable for drug responses. Finally, in vitro experiments with rat spinal neurons showed that laquinimod did not exert neuroprotection directly on the neuron but dampened astrocyte-induced neurodegeneration. Our findings indicate that fibroblast-derived human astrocytes represent a suitable model to study astrocyte-neuron crosstalk and demonstrate indirect, partial neuroprotective efficacy for laquinimod.


Asunto(s)
Astrocitos/metabolismo , Inflamación/patología , Neurotoxinas/toxicidad , Quinolonas/farmacología , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Animales , Astrocitos/efectos de los fármacos , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Interleucina-1beta/metabolismo , FN-kappa B/metabolismo , Degeneración Nerviosa/patología , Quinolonas/química , Ratas Sprague-Dawley , Receptores de Hidrocarburo de Aril/metabolismo , Transducción de Señal/efectos de los fármacos
10.
Ann Neurol ; 78(1): 115-27, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25914168

RESUMEN

OBJECTIVE: A proportion of multiple sclerosis (MS) patients experience disease activity despite treatment. The early identification of the most effective drug is critical to impact long-term outcome and to move toward a personalized approach. The aim of the present study is to identify biomarkers for further clinical development and to yield insights into the pathophysiology of disease activity. METHODS: We performed a genome-wide association study in interferon-ß (IFNß)-treated MS patients followed by validation in 3 independent cohorts. The role of the validated variant was examined in several RNA data sets, and the function of the presumed target gene was explored using an RNA interference approach in primary T cells in vitro. RESULTS: We found an association between rs9828519(G) and nonresponse to IFNß (pdiscovery = 4.43 × 10(-8)) and confirmed it in a meta-analysis across 3 replication data sets (preplication = 7.78 × 10(-4)). Only 1 gene is found in the linkage disequilibrium block containing rs9828519: SLC9A9. Exploring the function of this gene, we see that SLC9A9 mRNA expression is diminished in MS subjects who are more likely to have relapses. Moreover, SLC9A9 knockdown in T cells in vitro leads an increase in expression of IFNγ, which is a proinflammatory molecule. INTERPRETATION: This study identifies and validates the role of rs9828519, an intronic variant in SLC9A9, in IFNß-treated subjects, demonstrating a successful pharmacogenetic screen in MS. Functional characterization suggests that SLC9A9, an Na(+) -H(+) exchanger found in endosomes, appears to influence the differentiation of T cells to a proinflammatory fate and may have a broader role in MS disease activity, outside of IFNß treatment.


Asunto(s)
Adyuvantes Inmunológicos/uso terapéutico , Citocinas/inmunología , Interferón beta/uso terapéutico , Esclerosis Múltiple Recurrente-Remitente/genética , Intercambiadores de Sodio-Hidrógeno/genética , Linfocitos T/inmunología , Adolescente , Adulto , Diferenciación Celular/genética , Células Cultivadas , Estudios de Cohortes , Citocinas/genética , Citocinas/metabolismo , Femenino , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Técnicas In Vitro , Interferón beta-1a , Interferon beta-1b , Leucocitos Mononucleares/metabolismo , Masculino , Persona de Mediana Edad , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Esclerosis Múltiple Recurrente-Remitente/inmunología , ARN Interferente Pequeño , Linfocitos T/metabolismo , Adulto Joven
11.
Pacing Clin Electrophysiol ; 37(1): 63-72, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24219117

RESUMEN

INTRODUCTION: Sudden cardiac death is a well-documented public health problem and the implantable cardioverter defibrillator (ICD) has demonstrated benefit in reducing mortality. Prospective patients must identify and evaluate the ICD's pros and cons and produce a personal decision. The purpose of this study was to create and evaluate a measure of patient-evaluated pros and cons of the ICD, and its relationship to patient decision regarding ICD implantation. METHODS AND RESULTS: The ICD-decision analysis scale (ICD-DAS) was created and tested in prospective ICD recipients (N = 104). Factor analysis was performed to evaluate interitem relationships, and subsequently, identified subscales; additional psychosocial measures were used to predict the ICD decision. A two-factor measure for ICD decision making was established with two subscales: ICD Pros and ICD Cons. The subscales have high internal consistency and were strong predictors of intent to choose an ICD. Other psychosocial measures were not significantly predictive of ICD Choice, yet simultaneous entry of ICD Pros and Cons subscales resulted in a significant increase in R(2) , F(2, 59) = 19.36, P < 0.001. The full model was significantly greater than zero, F(11, 70) = 5.017, P < 0.001, R(2)  = 0.48. CONCLUSION: The ICD-DAS provides the first empirically tested and clinically useful approach to understanding the specific pros and cons for prospective ICD patients. The measure can assist clinicians with patient-centered discussions regarding sudden cardiac arrest treatments. The ICD-DAS will allow for the provision of tailored education or counseling and may be used to predict postdecision outcomes.


Asunto(s)
Muerte Súbita Cardíaca/prevención & control , Toma de Decisiones , Técnicas de Apoyo para la Decisión , Desfibriladores Implantables , Participación del Paciente , Psicometría/métodos , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , North Carolina , Adulto Joven
12.
Mol Neurobiol ; 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38334812

RESUMEN

Brain organoids, three-dimensional cell structures derived from pluripotent stem cells, closely mimic key aspects of the human brain in vitro, providing a powerful tool for studying neurodevelopment and disease. The neuroectodermal induction protocol employed for brain organoid generation primarily gives rise to the neural cellular component but lacks the vital vascular system, which is crucial for the brain functions by regulating differentiation, migration, and circuit formation, as well as delivering oxygen and nutrients. Many neurological diseases are caused by dysfunctions of cerebral microcirculation, making vascularization of human brain organoids an important tool for pathogenetic and translational research. Experimentally, the creation of vascularized brain organoids has primarily focused on the fusion of vascular and brain organoids, on organoid transplantation in vivo, and on the use of microfluidic devices to replicate the intricate microenvironment of the human brain in vitro. This review summarizes these efforts and highlights the importance of studying the neurovascular unit in a forward-looking perspective of leveraging their use for understanding and treating neurological disorders.

13.
bioRxiv ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38496415

RESUMEN

Protein prenylation is one example of a broad class of post-translational modifications where proteins are covalently linked to various hydrophobic moieties. To globally identify and monitor levels of all prenylated proteins in a cell simultaneously, our laboratory and others have developed chemical proteomic approaches that rely on the metabolic incorporation of isoprenoid analogues bearing bio-orthogonal functionality followed by enrichment and subsequent quantitative proteomic analysis. Here, several improvements in the synthesis of the alkyne-containing isoprenoid analogue C15AlkOPP are reported to improve synthetic efficiency. Next, metabolic labeling with C15AlkOPP was optimized to obtain useful levels of metabolic incorporation of the probe in several types of primary cells. Those conditions were then used to study the prenylomes of motor neurons (ES-MNs), astrocytes (ES-As), and their embryonic stem cell progenitors (ESCs), which allowed for the identification of 54 prenylated proteins from ESCs, 50 from ES-MNs and 84 from ES-As, representing all types of prenylation. Bioinformatic analysis revealed specific enriched pathways, including nervous system development, chemokine signaling, Rho GTPase signaling, and adhesion. Hierarchical clustering showed that most enriched pathways in all three cell types are related to GTPase activity and vesicular transport. In contrast, STRING analysis showed significant interactions in two populations that appear to be cell type dependent. The data provided herein demonstrates that robust incorporation of C15AlkOPP can be obtained in ES-MNs and related primary cells purified via magnetic-activated cell sorting allowing the identification and quantification of numerous prenylated proteins. These results suggest that metabolic labeling with C15AlkOPP should be an effective approach for investigating the role of prenylated proteins in primary cells in both normal cells and disease pathologies, including ALS.

14.
Biomedicines ; 11(5)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37238925

RESUMEN

Spinal muscular atrophy (SMA) is a neuromuscular disease resulting from mutations or deletions in SMN1 that lead to progressive death of alpha motor neurons, ultimately leading to severe muscle weakness and atrophy, as well as premature death in the absence of treatment. Recent approval of SMN-increasing medications as SMA therapy has altered the natural course of the disease. Thus, accurate biomarkers are needed to predict SMA severity, prognosis, drug response, and overall treatment efficacy. This article reviews novel non-targeted omics strategies that could become useful clinical tools for patients with SMA. Proteomics and metabolomics can provide insights into molecular events underlying disease progression and treatment response. High-throughput omics data have shown that untreated SMA patients have different profiles than controls. In addition, patients who clinically improved after treatment have a different profile than those who did not. These results provide a glimpse on potential markers that could assist in identifying therapy responders, in tracing the course of the disease, and in predicting its outcome. These studies have been restricted by the limited number of patients, but the approaches are feasible and can unravel severity-specific neuro-proteomic and metabolic SMA signatures.

15.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37895856

RESUMEN

Zika virus (ZIKV) infection during pregnancy can result in severe birth defects, such as microcephaly, as well as a range of other related health complications. Heparin, a clinical-grade anticoagulant, is shown to protect neural progenitor cells from death following ZIKV infection. Although heparin can be safely used during pregnancy, it retains off-target anticoagulant effects if directly employed against ZIKV infection. In this study, we investigated the effects of chemically modified heparin derivatives with reduced anticoagulant activities. These derivatives were used as experimental probes to explore the structure-activity relationships. Precursor fractions of porcine heparin, obtained during the manufacture of conventional pharmaceutical heparin with decreased anticoagulant activities, were also explored. Interestingly, these modified heparin derivatives and precursor fractions not only prevented cell death but also inhibited the ZIKV replication of infected neural progenitor cells grown as neurospheres. These effects were observed regardless of the specific sulfation position or overall charge. Furthermore, the combination of heparin with Sofosbuvir, an antiviral licensed for the treatment of hepatitis C (HCV) that also belongs to the same Flaviviridae family as ZIKV, showed a synergistic effect. This suggested that a combination therapy approach involving heparin precursors and Sofosbuvir could be a potential strategy for the prevention or treatment of ZIKV infections.

16.
Ageing Res Rev ; 92: 102126, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37972860

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder and the most common motor neuron disease. ALS shows substantial clinical and molecular heterogeneity. In vitro and in vivo models coupled with multiomic techniques have provided important contributions to unraveling the pathomechanisms underlying ALS. To date, despite promising results and accumulating knowledge, an effective treatment is still lacking. Here, we provide an overview of the literature on the use of genomics, epigenomics, transcriptomics and microRNAs to deeply investigate the molecular mechanisms developing and sustaining ALS. We report the most relevant genes implicated in ALS pathogenesis, discussing the use of different high-throughput sequencing techniques and the role of epigenomic modifications. Furthermore, we present transcriptomic studies discussing the most recent advances, from microarrays to bulk and single-cell RNA sequencing. Finally, we discuss the use of microRNAs as potential biomarkers and promising tools for molecular intervention. The integration of data from multiple omic approaches may provide new insights into pathogenic pathways in ALS by shedding light on diagnostic and prognostic biomarkers, helping to stratify patients into clinically relevant subgroups, revealing novel therapeutic targets and supporting the development of new effective therapies.


Asunto(s)
Esclerosis Amiotrófica Lateral , MicroARNs , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/terapia , Transcriptoma/genética , Perfilación de la Expresión Génica/métodos , MicroARNs/genética , MicroARNs/metabolismo , Biomarcadores , Epigenómica
17.
Nat Med ; 29(1): 75-85, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36624312

RESUMEN

Innovative pro-regenerative treatment strategies for progressive multiple sclerosis (PMS), combining neuroprotection and immunomodulation, represent an unmet need. Neural precursor cells (NPCs) transplanted in animal models of multiple sclerosis have shown preclinical efficacy by promoting neuroprotection and remyelination by releasing molecules sustaining trophic support and neural plasticity. Here we present the results of STEMS, a prospective, therapeutic exploratory, non-randomized, open-label, single-dose-finding phase 1 clinical trial ( NCT03269071 , EudraCT 2016-002020-86), performed at San Raffaele Hospital in Milan, Italy, evaluating the feasibility, safety and tolerability of intrathecally transplanted human fetal NPCs (hfNPCs) in 12 patients with PMS (with evidence of disease progression, Expanded Disability Status Scale ≥6.5, age 18-55 years, disease duration 2-20 years, without any alternative approved therapy). The safety primary outcome was reached, with no severe adverse reactions related to hfNPCs at 2-year follow-up, clearly demonstrating that hfNPC therapy in PMS is feasible, safe and tolerable. Exploratory secondary analyses showed a lower rate of brain atrophy in patients receiving the highest dosage of hfNPCs and increased cerebrospinal fluid levels of anti-inflammatory and neuroprotective molecules. Although preliminary, these results support the rationale and value of future clinical studies with the highest dose of hfNPCs in a larger cohort of patients.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Esclerosis Múltiple , Células-Madre Neurales , Adolescente , Adulto , Humanos , Persona de Mediana Edad , Adulto Joven , Esclerosis Múltiple/terapia , Estudios Prospectivos , Trasplante de Células Madre/métodos
18.
Lab Invest ; 92(10): 1492-502, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22906986

RESUMEN

Conventional histopathology with hematoxylin & eosin (H&E) has been the gold standard for histopathological diagnosis of a wide range of diseases. However, it is not performed in vivo and requires thin tissue sections obtained after tissue biopsy, which carries risk, particularly in the central nervous system. Here we describe the development of an alternative, multicolored way to visualize tissue in real-time through the use of coherent Raman imaging (CRI), without the use of dyes. CRI relies on intrinsic chemical contrast based on vibrational properties of molecules and intrinsic optical sectioning by nonlinear excitation. We demonstrate that multicolor images originating from CH(2) and CH(3) vibrations of lipids and protein, as well as two-photon absorption of hemoglobin, can be obtained with subcellular resolution from fresh tissue. These stain-free histopathological images show resolutions similar to those obtained by conventional techniques, but do not require tissue fixation, sectioning or staining of the tissue analyzed.


Asunto(s)
Rastreo Celular/métodos , Técnicas de Preparación Histocitológica , Espectrometría Raman/métodos , Tomografía de Coherencia Óptica/métodos , Animales , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Hemoglobinas/química , Humanos , Lípidos/química , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Proteínas/química , Coloración y Etiquetado , Accidente Cerebrovascular/patología , Tomografía de Coherencia Óptica/instrumentación
19.
Proc Natl Acad Sci U S A ; 106(13): 5264-9, 2009 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-19237575

RESUMEN

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system associated with demyelination and axonal loss. A whole genome association scan suggested that allelic variants in the CD58 gene region, encoding the costimulatory molecule LFA-3, are associated with risk of developing MS. We now report additional genetic evidence, as well as resequencing and fine mapping of the CD58 locus in patients with MS and control subjects. These efforts identify a CD58 variant that provides further evidence of association with MS (P = 1.1 x 10(-6), OR 0.82) and the single protective effect within the CD58 locus is captured by the rs2300747(G) allele. This protective rs2300747(G) allele is associated with a dose-dependent increase in CD58 mRNA expression in lymphoblastic cell lines (P = 1.1 x 10(-10)) and in peripheral blood mononuclear cells from MS subjects (P = 0.0037). This protective effect of enhanced CD58 expression on circulating mononuclear cells in patients with MS is supported by finding that CD58 mRNA expression is higher in MS subjects during clinical remission. Functional investigations suggest a potential mechanism whereby increases in CD58 expression, mediated by the protective allele, up-regulate the expression of transcription factor FoxP3 through engagement of the CD58 receptor, CD2, leading to the enhanced function of CD4(+)CD25(high) regulatory T cells that are defective in subjects with MS.


Asunto(s)
Antígenos CD58/genética , Esclerosis Múltiple/genética , ARN Mensajero/análisis , Alelos , Antígenos CD2 , Estudios de Casos y Controles , Mapeo Cromosómico , Factores de Transcripción Forkhead , Humanos , Leucocitos Mononucleares , Inducción de Remisión , Análisis de Secuencia , Linfocitos T Reguladores/inmunología , Regulación hacia Arriba
20.
Biomedicines ; 10(2)2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35203608

RESUMEN

In vivo cell reprogramming of glial cells offers a promising way to generate new neurons in the adult mammalian nervous system. This approach might compensate for neuronal loss occurring in neurological disorders, but clinically viable tools are needed to advance this strategy from bench to bedside. Recently published work has described the successful neuronal conversion of glial cells through the repression of a single gene, polypyrimidine tract-binding protein 1 (Ptbp1), which encodes a key RNA-binding protein. Newly converted neurons not only express correct markers but they also functionally integrate into endogenous brain circuits and modify disease symptoms in in vivo models of neurodegenerative diseases. However, doubts about the nature of "converted" neurons, in particular in vivo, have been raised, based on concerns about tracking reporter genes in converted cells. More robust lineage tracing is needed to draw definitive conclusions about the reliability of this strategy. In vivo reprogramming and the possibility of implementing it with approaches that could be translated into the clinic with antisense oligonucleotides targeting a single gene like Ptbp1 are hot topics. They warrant further investigation with stringent methods and criteria of evaluation for the ultimate treatment of neurological diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA