Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38829448

RESUMEN

The relationship between infectious agents and autoimmune diseases is a complex issue. In recent years, increasing clinical cases have indicated that infectious agents play an important role in the development of autoimmune diseases. Molecular mimicry is currently widely regarded as the primary pathogenic mechanism of various autoimmune diseases in humans. Components of infectious agents can undergo molecular mimicry with components in patients' bodies, leading to the development of various autoimmune diseases. In this article, we provide a brief overview of current research of the current research status on the relationship between infectious agents and autoimmune diseases, and describe our current understanding of their mechanisms of action in order to better understand the pathogenesis, diagnosis, and treatment of autoimmune diseases.

2.
J Immunol ; 209(2): 238-249, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35705251

RESUMEN

Primary Sjögren's syndrome (pSS) is a chronic autoimmune disease that is estimated to affect 35 million people worldwide and is characterized by lymphocytic infiltration, elevated circulating autoantibodies, and proinflammatory cytokines. The key immune cell subset changes and the TCR/BCR repertoire alterations in pSS patients remain unclear. In this study, we sought to comprehensively characterize the transcriptional changes in PBMCs of pSS patients by single-cell RNA sequencing and single-cell V(D)J sequencing. Naive CD8+ T cells and mucosal-associated invariant T cells were markedly decreased but regulatory T cells were increased in pSS patients. There were a large number of differentially expressed genes shared by multiple subpopulations of T cells and B cells. Abnormal signaling pathways, including Ag processing and presentation, the BCR signaling pathway, the TCR signaling pathway, and Epstein-Barr virus infection, were highly enriched in pSS patients. Moreover, there were obvious differences in the CD30, FLT3, IFN-II, IL-1, IL-2, IL-6, IL-10, RESISTIN, TGF-ß, TNF, and VEGF signaling networks between pSS patients and healthy controls. Single-cell TCR and BCR repertoire analysis showed that there was a lower diversity of T cells in pSS patients than in healthy controls; however, there was no significant difference in the degree of clonal expansion, CDR3 length distribution, or degree of sequence sharing. Notably, our results further emphasize the functional importance of αß pairing in determining Ag specificity. In conclusion, our analysis provides a comprehensive single-cell map of gene expression and TCR/BCR profiles in pSS patients for a better understanding of the pathogenesis, diagnosis, and treatment of pSS.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Síndrome de Sjögren , Linfocitos T CD8-positivos/metabolismo , Expresión Génica , Perfilación de la Expresión Génica , Herpesvirus Humano 4/genética , Humanos , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos T/genética
3.
Clin Immunol ; 245: 109162, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36243349

RESUMEN

PURPOSE: The dynamic immunity of kidney transplant patients has not been fully elucidated. In this study, we explored the repertoire features of B/T cell receptor (BCR/TCR) of kidney transplant patients. METHODS: Using combined multiplex PCR amplification and high-throughput sequencing technique, we analyzed the uremic patients' BCR H chain and TCR beta chain repertoire which obtained 1 day before kidney transplantation (PRE-1), 1 day and 7 day after kidney transplantation (POST-1 and POST-7). RESULTS: Our analysis results showed the diversity of TCRß CDR3 in POST-7 group was highest. In addition, there were specific skewed usage of TRBV gene subfamilies, and V-J combinations in different time points during kidney transplantation. Moreover, the overlap degrees of BCR-H (TCR-ß) CDR3 repertoire among each group were identified. Notably, the abundance of some TCR-ß CDR3 sequences changed regularly in the time point of kidney transplantation. CONCLUSIONS: The BCR-H (TCR-ß) CDR3 repertoire of kidney transplant patients changed dynamically.


Asunto(s)
Regiones Determinantes de Complementariedad , Trasplante de Riñón , Receptores de Antígenos de Linfocitos B , Receptores de Antígenos de Linfocitos T , Humanos , Regiones Determinantes de Complementariedad/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos T/genética
4.
Hereditas ; 159(1): 37, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36167571

RESUMEN

BACKGROUND: C-C chemokine receptor 5 (CCR5) has recently been recognized as an underlying therapeutic target for various malignancies. However, the association of CCR5 with prognosis in the head and neck squamous cell carcinoma (HNSC) patients and tumor-infiltrating lymphocytes (TILs) is unclear. METHODS: In the current experiment, methods such as the Tumor Immune Estimation Resource Analysis (TIMER), Gene Expression Profiling Interactive Analysis (GEPIA), UALCAN, and Kaplan-Meier plotter Analysis were used to comprehensively evaluate the expression of CCR5 in human various malignancies and the clinical prognosis in HNSC patients. Subsequently, we used the TIMER database and the TISIDB platform to investigate the correlation between CCR5 expression levels and immune cell infiltration in the HNSC tumor microenvironment. Furthermore, immunomodulatory and chemokine profiling were performed using the TISIDB platform to analyse the correlation between CCR5 expression levels and immunomodulation in HNSC patients. RESULTS: We found that CCR5 expression in HNSC tumor tissues was significantly upregulated than in normal tissues. In HNSC, patients with high CCR5 expression levels had worse overall survival (OS, HR = 0.59, p = 0.00015) and worse recurrence-free survival (RFS, HR = 3.27, p = 0.00098). Upregulation of CCR5 expression is closely associated with immunomodulators, chemokines, and infiltrating levels of CD4+ T cells, neutrophils, macrophages, and myeloid dendritic cells. Furthermore, upregulated CCR5 was significantly associated with different immune markers in the immune cell subsets of HNSC. CONCLUSIONS: High expression of CCR5 plays an important prognostic role in HNSC patients and may serve as a prognostic biomarker correlated with immune infiltration, and further studies are still needed to investigate therapeutic targeting HNSC patients in the future.


Asunto(s)
Biología Computacional , Neoplasias de Cabeza y Cuello , Biología Computacional/métodos , Neoplasias de Cabeza y Cuello/genética , Humanos , Factores Inmunológicos , Pronóstico , Receptores CCR5/genética , Receptores de Quimiocina , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Microambiente Tumoral
5.
Hereditas ; 158(1): 40, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34702373

RESUMEN

BACKGROUND: Autosomal dominant osteopetrosis type II (ADO2) is a genetically and phenotypically metabolic bone disease, caused by osteoclast abnormalities. The pathways dysregulated in ADO2 could lead to the defects in osteoclast formation and function. However, the mechanism remains elusive. MATERIALS AND METHODS: To systematically explore the molecular characterization of ADO2, we performed a multi-omics profiling from the autosomal dominant osteopetrosis type II iPSCs (ADO2-iPSCs) and healthy normal control iPSCs (NC-iPSCs) using whole genome re-sequencing, DNA methylation and N6-methyladenosine (m6A) analysis in this study. RESULTS: Totally, we detected 7,095,817 single nucleotide polymorphisms (SNPs) and 1,179,573 insertion and deletions (InDels), 1,001,943 differentially methylated regions (DMRs) and 2984 differential m6A peaks, and the comprehensive multi-omics profile was generated from the two cells. Interestingly, the ISG15 m6A level in ADO2-iPSCs is higher than NC-iPSCs by IGV software, and the differentially expressed m6A-modified genes (DEMGs) were highly enriched in the osteoclast differentiation and p53 signaling pathway, which associated with the development of osteopetrosis. In addition, combining our previously published transcriptome and proteome datasets, we found that the change in DNA methylation levels correlates inversely with some gene expression levels. CONCLUSION: Our results indicate that the global multi-omics landscape not only provides a high-quality data resource but also reveals a dynamic pattern of gene expression, and found that the pathogenesis of ADO2 may begin early in life.


Asunto(s)
Células Madre Pluripotentes Inducidas , Osteopetrosis , Canales de Cloruro , Humanos , Osteoclastos , Osteopetrosis/genética , Proteoma
6.
Genomics ; 112(6): 4547-4551, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32781204

RESUMEN

Embryonic development is a complex process that is regulated by a series of precise cellular behaviours. The limited number of cells in the early stages of embryonic development represents a challenge for studying early gene regulation and maintaining cell sternness. Single-cell sequencing is a new technology for high-throughput sequencing analysis at the single-cell level that not only reflects the heterogeneity between cells but also reveals gene expression characteristics in different cells from limited samples. Currently, the widespread application of single-cell RNA sequencing technology is gradually changing our understanding of disease pathogenesis. This article reviews the application of single-cell RNA sequencing in embryonic development in recent years and provides innovative ideas for research on embryonic development and the treatment of diseases related to embryonic development.


Asunto(s)
Desarrollo Embrionario/genética , RNA-Seq , Análisis de la Célula Individual , Animales , Enfermedad/genética , Humanos , Vertebrados/genética
7.
Carcinogenesis ; 41(1): 56-66, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-31046116

RESUMEN

The forkhead box A1 (FOXA1), one of the forkhead class of DNA-binding proteins, functions as a transcription factor and plays a vital role in cellular control of embryonic development and cancer progression. Downregulation of FOXA1 has reported in several types of cancer, which contributes to cancer cell survival and chemoresistance. However, the mechanism for FOXA1 downregulation in cancer remains unclear. Here, we report that the ubiquitination enzyme zinc finger protein 91 (ZFP91) ubiquitinates and destabilizes FOXA1, which promotes cancer cell growth. High level of ZFP91 expression correlates with low level of FOXA1 protein in human gastric cancer (GC) cell lines and patient samples. Furthermore, ZFP91 knockdown reduces FOXA1 polyubiquitination, which decreases FOXA1 turnover and enhances cellular sensitivity to chemotherapy. Taken together, our findings reveal ZFP91-FOXA1 axis plays an important role in promoting GC progression and provides us a potential therapeutic intervention in the treatment of GC.


Asunto(s)
Resistencia a Antineoplásicos/genética , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Neoplasias Gástricas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Supervivencia Celular/genética , Regulación hacia Abajo , Femenino , Mucosa Gástrica/patología , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Estabilidad Proteica , Proteolisis , ARN Interferente Pequeño/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/genética , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Cytogenet Genome Res ; 159(2): 55-65, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31630146

RESUMEN

Klinefelter syndrome (KS) is one of the most common congenital disorders of male infertility. Given its high heterogeneity in clinical and genetic presentation, the relationship between transcriptome, clinical phenotype, and associated co-morbidities seen in KS has not been fully clarified. Here, we report a 47,XXY Chinese male with infertility and analyzed the differences in gene expression patterns of peripheral blood mononuclear cells (PBMCs) with regard to a Chinese male and a female control with normal karyotype by single-cell sequencing. A total of 24,439 cells were analyzed and divided into 5 immune cell types (including B cells, T cells, macrophage cells, dendritic cells, and natural killer cells) according to marker genes. Using unsupervised dimensionality reduction and clustering algorithms, we identified molecularly distinct subpopulations of cells between the KS patient and both controls. Gene ontology enrichment analyses yielded terms associated with well-known comorbidities seen in KS as well as an affected immune system and type I diabetes mellitus. Based on our data, we identified several candidate genes which may be implicated in regulating the phenotype of KS. Overall, this analysis provides a comprehensive map of the cell types of PBMCs in a KS patient at the single-cell level, which will contribute to the prevention of comorbidity and improvement of the life quality of KS patients.


Asunto(s)
Síndrome de Klinefelter/genética , Femenino , Expresión Génica/genética , Expresión Génica/inmunología , Genotipo , Humanos , Sistema Inmunológico/inmunología , Infertilidad Masculina/genética , Infertilidad Masculina/inmunología , Síndrome de Klinefelter/inmunología , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/fisiología , Masculino , Fenotipo , Análisis de la Célula Individual/métodos , Transcriptoma/genética , Transcriptoma/inmunología
9.
Ren Fail ; 38(1): 96-9, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26554293

RESUMEN

OBJECTIVE: The objective of this study was to measure the 3'-untranslated region (3'-UTR) polymorphism lengths in peripheral blood mononuclear cells (PBMCs) from uremia patients. METHOD: We sequenced the alternative polyadenylation sites in the 3'-UTR of PBMCs from 10 uremic patients and 10 healthy people to detect different gene expression levels between uremia patients and healthy controls. Quantitative reverse transcription polymerase chain reaction was used as validation. RESULT: Compared with the healthy control group, 691 genes in uremic patients had significantly different 3'-UTR lengths. Of these genes, 475 genes showed shortened 3'-UTRs, and the 3'-UTRs of 216 genes were lengthened. The verification results matched the original sequencing results. CONCLUSION: There were significant differences in 3'-UTR lengths between uremic patients and healthy controls, and analysis of the differential genes may contribute to the understanding of uremia pathogenesis.


Asunto(s)
Regiones no Traducidas 3' , Polimorfismo Genético , Uremia/genética , Adulto , Anciano , Estudios de Casos y Controles , Biología Computacional , Femenino , Humanos , Leucocitos Mononucleares , Masculino , Persona de Mediana Edad
10.
Ren Fail ; 36(6): 937-45, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24697287

RESUMEN

BACKGROUND: Treatment of uremia is now dominated by dialysis; in some cases, patients are treated with dialysis for decades, but overall outcomes are disappointing. A number of studies have confirmed the relevance of several experimental insights to the pathogenesis of uremia, but the specific biomarkers of uremia have not been fully elucidated. To date, our knowledge about the alterations in DNA 5-hydroxymethylcytosine (5-hmC) in uremia is unclear, to investigate the role of DNA 5-hmC in the onset of uremia, we performed hMeDIP-chip between the uremia patients and the normal controls from the experiment to identify differentially expressed 5-hmC in uremia-associated samples. METHODS: Extract genomic DNA, using hMeDIP-chip technology of Active Motif companies for the analysis of genome-wide DNA 5-hmC, and quantitative real-time PCR confirmation to identify differentially expressed 5-hmC level in uremia-associated samples. RESULTS: There were 1875 genes in gene Promoter, which displayed significant 5-hmC differences in uremia patients compared with normal controls. Among these genes, 960 genes displayed increased 5-hmC and 915 genes decreased 5-hmC. 4063 genes in CpG Islands displayed significant 5-hmC differences in uremia patients compared with normal controls. Among these genes, 1780 genes displayed increased 5-hmC and 2283 genes decreased 5-hmC. Three positive genes, HMGCR, THBD, and STAT3 were confirmed by quantitative real-time PCR. CONCLUSION: Our studies indicate the significant alterations of 5-hmC. There is a correlation of gene modification 5-hmC in uremia patients. Such novel findings show the significance of 5-hmC as a potential biomarker or promising target for epigenetic-based uremia therapies.


Asunto(s)
Metilación de ADN , Uremia/sangre , 5-Metilcitosina/análogos & derivados , Estudios de Casos y Controles , Islas de CpG , Citosina/análogos & derivados , Citosina/análisis , Estudio de Asociación del Genoma Completo , Humanos , Regiones Promotoras Genéticas
11.
Oncol Lett ; 27(2): 53, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38192666

RESUMEN

The Nck-associated protein 5-like (NCKAP5L) gene, also known as Cep169, is associated with certain cancers. However, the diagnosis and prognosis value of NCKAP5L in several types of human cancer, including colorectal cancer, is not fully understood. In the present study, a comprehensive pan-cancer analysis of NCKAP5L was performed using several approaches, including gene expression and alteration, protein phosphorylation, immune infiltration, survival prognosis analyses and gene enrichment using the following: The University of California Santa Cruz Genome Browser Human Dec. 2013 (GRCh38/hg38) Assembly, Tumor Immune Estimation Resource (version 2), Human Protein Atlas, Gene Expression Profiling Interactive Analysis (version 2), University of Alabama at Birmingham Cancer Data Analysis portal, the Kaplan-Meier Plotter, cBioportal, Search Tool for the Retrieval of Interacting Genes/Proteins, Jvenn and the Metascape server. The role of NCKAP5L in colorectal cancer was further assessed by reverse transcription-quantitative PCR. The results demonstrated that NCKAP5L was upregulated in the majority of cancer types, including colorectal cancer. The high expression of NCKAP5L was significantly correlated with patient survival prognosis and immune infiltration of cancer-associated fibroblasts in numerous types of cancer, including colorectal cancer. Furthermore, Gene Ontology analysis identified that NCKAP5L may serve an important role in metabolic and cellular processes in human cancers. In summary, the data from the present study demonstrate that NCKAP5L is a potential tumor biomarker for the diagnosis and prognosis of human cancers, especially colorectal cancer.

12.
Rheumatol Ther ; 11(2): 349-362, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38315401

RESUMEN

INTRODUCTION: Rheumatoid arthritis (RA) is an incurable autoimmune disease. The role of interleukin-38 (IL-38), an anti-inflammatory cytokine, in RA is not fully understood, and its clinical relevance in RA remains unclear. This study aims to investigate the correlation of IL-38 with disease activity and the clinical manifestation of RA. METHODS: In this cross-sectional study, patients with treatment-naïve RA (n = 63) and healthy controls (HC) (n = 60) were consecutively enrolled over a 15-month period. Patients with RA were categorized into three subgroups-low disease activity (LDA), moderate disease activity (MDA) and high disease activity (HDA)-using the Disease Activity Score in 28 joints based on C-reactive protein (DAS28-CRP). Circulating levels of IL-38, tumour necrosis factor (TNF), IL-6, IL-17, IL-1ß, and 25(OH)D were assessed using enzyme-linked immunosorbent assay (ELISA). Clinical data, including duration, tender joints count (TJC), swollen joints count (SJC), patient global assessment (PGA), evaluator global assessment (EGA), bone mineral density (BMD), clinical disease activity index (CDAI), simplified disease activity index (SDAI), DAS28-CRP, joint musculoskeletal ultrasound (MSUS), and serological indicators were recorded. We determined the correlation between IL-38 and disease activity, as well as clinical manifestation in RA. RESULTS: At the macroscopic level, musculoskeletal ultrasonography of joints in different stages of disease activity in RA suggests that, as the disease progresses, arthritis in the hand becomes more severe, accompanied by synovial thickening and pronounced blood flow signals in the joint area. The expression of IL-38, TNF, IL-6, IL-17 and IL-1ß significantly increased in patients with RA compared to HC. Noteworthy differences were observed in the blood flow signal score, synovial signal score, IL-38, TNF, IL-6, IL-17 and IL-1ß among the three subgroups (LDA, MDA and HDA). As disease activity increased in patients with RA, the blood flow signal score, synovial signal score and expression of TNF, IL-6, IL-17 and IL-1ß exhibited a gradual increase, while the expression of IL-38 showed the opposite pattern. Inverse correlations were identified between IL-38 and pro-inflammatory cytokines (IL-6, IL-17), as well as key clinical parameters, including disease duration, SJC, TJC and DAS28-CRP score. CONCLUSION: IL-38, intricately linked to the pathogenesis of RA, emerges as a promising therapeutic target for the management of this debilitating disease.

13.
Clin Immunol ; 148(2): 186-97, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23770628

RESUMEN

Systemic lupus erythematosus (SLE) is an autoimmune disease that is characterized by multi-organ involvement leading to significant morbidity and mortality in predominantly young women. The underlying pathogenesis involves the emergence of autoreactive T and B lymphocytes, production of autoantibodies, formation and deposition of immune complexes in various tissues leading to inflammation and organ damage. Recently, growing evidence suggests that the functions of hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) are disrupted in SLE pathology. And HSC or MSC transplantation (HSCT/MSCT) can offer an effective and safe therapy for the severe SLE patients, resulting in disease clinical remission and improvement of organ dysfunction. In this article, we provide a brief overview of current research of autologous or allogeneic HSCT/MSCT in SLE and describe our current understanding of the mechanisms by which it plays a part in treating SLE, for better understanding of the pathogenesis, diagnosis and treatment for SLE.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Lupus Eritematoso Sistémico/terapia , Trasplante de Células Madre Mesenquimatosas , Animales , Humanos
14.
Heliyon ; 9(2): e13470, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36814615

RESUMEN

Anti-myelin oligodendrocyte glycoprotein (MOG)-immunoglobulin G (IgG) associated disorder (MOGAD) is an immune-mediated central nervous system (CNS) inflammatory demyelinating disorder that has been widely recognized in recent years. It is distinct from multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD), which are separate disease spectrums. Here we report the case of a 5-year-old boy who was admitted for 3 days with fever, headache, and vomiting. Magnetic resonance imaging revealed abnormal hyperintensity in the left thalamus and positive serum IgM for M. pneumoniae. After treatment with azithromycin, the headache gradually disappeared, but paralysis and urinary retention occurred on the 6th day after admission. MRI re-examination showed that the original abnormal signal in the left thalamus was significantly weakened, but new abnormal signals appeared in the brain and cerebrospinal cord, and the serum MOG-IgG was positive. After treatment, the child has fully recovered and is still receiving follow-up care. We believe that this is a case of MOGAD in a child with a biphasic ADEM phenotype secondary to M. pneumoniae infection, which has potential value in elucidating the pathophysiology of MOGAD.

15.
J Pers Med ; 13(3)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36983731

RESUMEN

BACKGROUND: Rotundine is an herbal medicine with anti-cancer effects. However, little is known about the anti-cancer effect of rotundine on colorectal cancer. Therefore, our study aimed to investigate the specific molecular mechanism of rotundine inhibition of colorectal cancer. METHODS: MTT and cell scratch assay were performed to investigate the effects of rotundine on the viability, migration, and invasion ability of SW480 cells. Changes in cell apoptosis were analyzed by flow cytometry. DEGs were detected by high-throughput sequencing after the action of rotundine on SW480 cells, and the DEGs were subjected to function enrichment analysis. Bioinformatics analyses were performed to screen out prognosis-related DEGs of COAD. Followed by enrichment analysis of prognosis-related DEGs. Furthermore, prognostic models were constructed, including ROC analysis, risk curve analysis, PCA and t-SNE, Nomo analysis, and Kaplan-Meier prognostic analysis. RESULTS: In this study, we showed that rotundine concentrations of 50 µM, 100 µM, 150 µM, and 200 µM inhibited the proliferation, migration, and invasion of SW480 cells in a time- and concentration-dependent manner. Rotundine does not induce SW480 cell apoptosis. Compared to the control group, high-throughput results showed that there were 385 DEGs in the SW480 group. And DEGs were associated with the Hippo signaling pathway. In addition, 16 of the DEGs were significantly associated with poorer prognosis in COAD, with MEF2B, CCDC187, PSD2, RGS16, PLXDC1, HELB, ASIC3, PLCH2, IGF2BP3, CLHC1, DNHD1, SACS, H1-4, ANKRD36, and ZNF117 being highly expressed in COAD and ARV1 being lowly expressed. Prognosis-related DEGs were mainly enriched in cancer-related pathways and biological functions, such as inositol phosphate metabolism, enterobactin transmembrane transporter activity, and enterobactin transport. Prognostic modeling also showed that these 16 DEGs could be used as predictors of overall survival prognosis in COAD patients. CONCLUSIONS: Rotundine inhibits the development and progression of colorectal cancer by regulating the expression of these prognosis-related genes. Our findings could further provide new directions for the treatment of colorectal cancer.

16.
Front Biosci (Landmark Ed) ; 28(6): 131, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37395026

RESUMEN

BACKGROUND: Osteopetrosis represents a rare genetic disease with a wide range of clinical and genetic heterogeneity, which results from osteoclast failure. Although up to 10 genes have been identified to be related with osteopetrosis, the pathogenesis of osteopetrosis remains foggy. Disease-specific induced pluripotent stem cells (iPSCs) and gene-corrected disease specific iPSCs provide a platform to generate attractive in vitro disease cell models and isogenic control cellular models respectively. The purpose of this study is to rescue the disease causative mutation in osteopetrosis specific induced pluripotent stem cells and provide isogenic control cellular models. METHODS: Based on our previously established osteopetrosis-specific iPSCs (ADO2-iPSCs), we repaired the point mutation R286W of the CLCN7 gene in ADO2-iPSCs by the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) mediated homologous recombination. RESULTS: The obtained gene corrected ADO2-iPSCs (GC-ADO2-iPSCs) were characterized in terms of hESC-like morphology, a normal karyotype, expression of pluripotency markers, homozygous repaired sequence of CLCN7 gene, and the ability to differentiate into cells of three germ layers. CONCLUSIONS: We successfully corrected the point mutation R286W of the CLCN7 gene in ADO2-iPSCs. This isogenic iPSC line is an ideal control cell model for deciphering the pathogenesis of osteopetrosis in future studies.


Asunto(s)
Células Madre Pluripotentes Inducidas , Osteopetrosis , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Sistemas CRISPR-Cas , Osteopetrosis/genética , Osteopetrosis/terapia , Osteopetrosis/metabolismo , Mutación , Canales de Cloruro/genética , Canales de Cloruro/metabolismo
17.
ACS Omega ; 8(47): 44905-44919, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38046296

RESUMEN

BACKGROUND: Systemic lupus erythematosus (SLE) is a severe systemic autoimmune disease with multiple manifestations. Lysine crotonylation (Kcr) is a newly discovered posttranslational modification epigenetic pattern that may affect gene expression and is linked to diseases causally. METHODS: We collected blood samples from 11 SLE individuals and 36 healthy subjects. Then, we used highly sensitive liquid chromatography-mass spectrometry technology to carry out proteomics and quantitative crotonylome analysis of SLE peripheral blood mononuclear cells in this investigation, which indicated the unique etiology of SLE. Finally, we verified the expression of critical protein in the leukocyte extravasation pathway by online database analysis and Western blot. RESULTS: There were 618 differentially expressed proteins (DEPs), and 612 crotonylated lysine sites for 272 differentially modified proteins (DMPs) found. These DEPs and DMPs are primarily enriched in the leukocyte extravasation signaling pathway, such as MMP8, MMP9, and ITGAM. CONCLUSIONS: This is the first study of crotonylated modification proteomics in SLE. The leukocyte extravasation signaling pathway had a considerable concentration of DEPs and DMPs, indicating that this pathway may be involved in the pathogenic development of SLE.

18.
BMC Med Genomics ; 16(1): 217, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37710311

RESUMEN

BACKGROUND: Colorectal cancer is a malignant tumor that poses a serious threat to human health. The main objective of this study is to investigate the mechanism by which Jatrorrhizine (JAT), a root extract from Stephania Epigaea Lo, exerts its anticancer effects in colorectal cancer. METHODS: We initially assessed the inhibitory properties of JAT on SW480 cells using MTT and cell scratch assays. Flow cytometry was employed to detect cell apoptosis. Differentially expressed genes were identified through high-throughput sequencing, and they were subjected to functional enrichment and signaling pathway analysis and PPI network construction. RT-qPCR was used to evaluate gene expression and identify critical differentially expressed genes. Finally, the function and role of differentially expressed genes produced by JAT-treated SW480 cells in colorectal cancer will be further analyzed using the TCGA database. RESULTS: Our study demonstrated that JAT exhibits inhibitory effects on SW480 cells at concentrations of 12.5µM, 25µM, 50µM, and 75µM without inducing cell apoptosis. Through high-throughput sequencing, we identified 244 differentially expressed genes. KEGG and GO analysis of high-throughput sequencing results showed that differentially expressed genes were significantly enriched in MAPK, Wnt, and P53 signaling pathways. Notably, JAT significantly altered the expression of genes associated with ferroptosis. Subsequent RT-qPCR showed that the expression of ferroptosis genes SLC2A3 and ASNS was significantly lower in JAT-treated SW480 cells than in the control group. Analysis by TCGA data also showed that ferroptosis genes SLC2A3 and ASNS were significantly highly expressed in COAD. The prognosis of SLC2A3 was significantly worse in COAD compared to the normal group. SLC2A3 may be a core target of JAT for the treatment of COAD. CONCLUSIONS: JAT can inhibit COAD growth by ferroptosis-related genes. And it is a potential natural substance for the treatment of COAD.


Asunto(s)
Neoplasias Colorrectales , Ferroptosis , Humanos , Apoptosis , Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética
19.
Front Biosci (Landmark Ed) ; 28(12): 336, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38179771

RESUMEN

BACKGROUND: Osteogenesis imperfecta (OI) is a rare genetic disorder characterized by recurring bone fractures. Some OI patients have other clinical manifestations such as growth retardation, dental abnormalities, blue sclera, and hearing loss. The relationship between the phenotype and genotype of OI is indistinct, and there is no cure for OI. Therefore, an appropriate disease model is urgently needed to understand the pathophysiology of OI. Induced pluripotent stem cells (iPSCs) are capable of developing into three germ layers and have the same genetic background as the donor cells they were derived from; thus, they are an appropriate disease model. METHODS: Blood samples collected from the proband and her affected children and one unaffected child were used forgenotyping by whole genome sequencing. A patient-specific iPSC line and a healthy donor iPSC line were generated by reprogramming peripheral blood mononuclear cells with episomal plasmids containing seven transcription factors, namely, OCT4, SOX2, NANOG, LIN28, cMYC, KLF4, and SV40LT. RESULTS: The proband and her two affected children were homozygous for a mutation in collagen type I alpha 1 exon 10, c.725G>T, predicting a p.G242V substitution. A patient-specific iPSC line and a healthy donor iPSC line were generated and characterized in terms of their human embryonic stem cell-like morphology, expression of pluripotency markers, and the ability to differentiate into cells of three germ layers. CONCLUSIONS: Here, we report the phenotyping and iPSC disease modeling of an OI family. The detailed phenotyping of the OI family and establishment of iPSCs from an OI patient and healthy family member will provide a powerful tool to evaluate the pathophysiology of OI and develop targeted therapies.


Asunto(s)
Células Madre Pluripotentes Inducidas , Osteogénesis Imperfecta , Humanos , Niño , Femenino , Osteogénesis Imperfecta/genética , Osteogénesis Imperfecta/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Leucocitos Mononucleares , Genotipo , China
20.
Rheumatol Int ; 32(11): 3537-43, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22083613

RESUMEN

In clinical practice, it is difficult to monitor the repeating relapse in patients suffering from systemic lupus erythematosus (SLE), who usually associated with some potential complications, for example, lupus nephritis (LN), repetition renal biopsy is necessary to determine LN flares. To identify and quantify the total proteins in renal tissue of LN patients, isobaric tags for relative and absolute quantification (iTRAQ) technology was performed. Eight-plex iTRAQ coupled with multiple chromatographic fractionation and tandem mass spectrometry were used to analyze total proteins in renal tissue of LN patients and healthy controls. Proteins were identified by mascot, which expressed differentially were noted. A total of 490 distinct proteins were identified, 113 proteins were up-regulation or down-regulation at one fold or more alteration in levels. Among of them, there was significant deviation of four proteins between our present iTRAQ study, which are up-regulated heterogeneous nuclear ribonucleoprotein (hnRNP-), Annexins and down-regulated Argininosuccinate synthetase (ASS), aldolase. iTRAQ-based quantitative proteomic technology is efficiently applicable for identification and relative quantitation of proteome of renal tissue. Differentially expressed proteome profiles of LN patients are determined. And further investigation is necessary using large cohorts of patient samples with long-term clinical follow-up data, to assess the usefulness of the pathogenesis and novel biomarker candidates of LN, which may develop a new way for diagnosis of LN.


Asunto(s)
Riñón/metabolismo , Nefritis Lúpica/metabolismo , Proteómica/métodos , Adulto , Biomarcadores/análisis , Biomarcadores/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA