Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Chem Biol ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951648

RESUMEN

Capsules are long-chain carbohydrate polymers that envelop the surfaces of many bacteria, protecting them from host immune responses. Capsule biosynthesis enzymes are potential drug targets and valuable biotechnological tools for generating vaccine antigens. Despite their importance, it remains unknown how structurally variable capsule polymers of Gram-negative pathogens are linked to the conserved glycolipid anchoring these virulence factors to the bacterial membrane. Using Actinobacillus pleuropneumoniae as an example, we demonstrate that CpsA and CpsC generate a poly(glycerol-3-phosphate) linker to connect the glycolipid with capsules containing poly(galactosylglycerol-phosphate) backbones. We reconstruct the entire capsule biosynthesis pathway in A. pleuropneumoniae serotypes 3 and 7, solve the X-ray crystal structure of the capsule polymerase CpsD, identify its tetratricopeptide repeat domain as essential for elongating poly(glycerol-3-phosphate) and show that CpsA and CpsC stimulate CpsD to produce longer polymers. We identify the CpsA and CpsC product as a wall teichoic acid homolog, demonstrating similarity between the biosynthesis of Gram-positive wall teichoic acid and Gram-negative capsules.

2.
Proc Natl Acad Sci U S A ; 120(29): e2301302120, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37428935

RESUMEN

Carbapenemase and extended ß-lactamase-producing Klebsiella pneumoniae isolates represent a major health threat, stimulating increasing interest in immunotherapeutic approaches for combating Klebsiella infections. Lipopolysaccharide O antigen polysaccharides offer viable targets for immunotherapeutic development, and several studies have described protection with O-specific antibodies in animal models of infection. O1 antigen is produced by almost half of clinical Klebsiella isolates. The O1 polysaccharide backbone structure is known, but monoclonal antibodies raised against the O1 antigen showed varying reactivity against different isolates that could not be explained by the known structure. Reinvestigation of the structure by NMR spectroscopy revealed the presence of the reported polysaccharide backbone (glycoform O1a), as well as a previously unknown O1b glycoform composed of the O1a backbone modified with a terminal pyruvate group. The activity of the responsible pyruvyltransferase (WbbZ) was confirmed by western immunoblotting and in vitro chemoenzymatic synthesis of the O1b terminus. Bioinformatic data indicate that almost all O1 isolates possess genes required to produce both glycoforms. We describe the presence of O1ab-biosynthesis genes in other bacterial species and report a functional O1 locus on a bacteriophage genome. Homologs of wbbZ are widespread in genetic loci for the assembly of unrelated glycostructures in bacteria and yeast. In K. pneumoniae, simultaneous production of both O1 glycoforms is enabled by the lack of specificity of the ABC transporter that exports the nascent glycan, and the data reported here provide mechanistic understanding of the capacity for evolution of antigenic diversity within an important class of biomolecules produced by many bacteria.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Animales , Klebsiella pneumoniae/genética , Lipopolisacáridos , Antígenos O , Klebsiella , Western Blotting , Infecciones por Klebsiella/prevención & control
3.
J Biol Chem ; 299(5): 104609, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36924942

RESUMEN

KpsC is a dual-module glycosyltransferase (GT) essential for "group 2" capsular polysaccharide biosynthesis in Escherichia coli and other Gram-negative pathogens. Capsules are vital virulence determinants in high-profile pathogens, making KpsC a viable target for intervention with small-molecule therapeutic inhibitors. Inhibitor development can be facilitated by understanding the mechanism of the target enzyme. Two separate GT modules in KpsC transfer 3-deoxy-ß-d-manno-oct-2-ulosonic acid (ß-Kdo) from cytidine-5'-monophospho-ß-Kdo donor to a glycolipid acceptor. The N-terminal and C-terminal modules add alternating Kdo residues with ß-(2→4) and ß-(2→7) linkages, respectively, generating a conserved oligosaccharide core that is further glycosylated to produce diverse capsule structures. KpsC is a retaining GT, which retains the donor anomeric carbon stereochemistry. Retaining GTs typically use an SNi (substitution nucleophilic internal return) mechanism, but recent studies with WbbB, a retaining ß-Kdo GT distantly related to KpsC, strongly suggest that this enzyme uses an alternative double-displacement mechanism. Based on the formation of covalent adducts with Kdo identified here by mass spectrometry and X-ray crystallography, we determined that catalytically important active site residues are conserved in WbbB and KpsC, suggesting a shared double-displacement mechanism. Additional crystal structures and biochemical experiments revealed the acceptor binding mode of the ß-(2→4)-Kdo transferase module and demonstrated that acceptor recognition (and therefore linkage specificity) is conferred solely by the N-terminal α/ß domain of each GT module. Finally, an Alphafold model provided insight into organization of the modules and a C-terminal membrane-anchoring region. Altogether, we identified key structural and mechanistic elements providing a foundation for targeting KpsC.


Asunto(s)
Cápsulas Bacterianas , Glicosiltransferasas , Cápsulas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glucolípidos/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/química , Lipopolisacáridos/metabolismo , Azúcares Ácidos/metabolismo , Transferasas/metabolismo , Polisacáridos Bacterianos/metabolismo
4.
J Biol Chem ; 298(1): 101486, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34896394

RESUMEN

Salmonella enterica serovar Typhi causes typhoid fever. It possesses a Vi antigen capsular polysaccharide coat that is important for virulence and is the basis of a current glycoconjugate vaccine. Vi antigen is also produced by environmental Bordetella isolates, while mammal-adapted Bordetella species (such as Bordetella bronchiseptica) produce a capsule of undetermined structure that cross-reacts with antibodies recognizing Vi antigen. The Vi antigen backbone is composed of poly-α-(1→4)-linked N-acetylgalactosaminuronic acid, modified with O-acetyl residues that are necessary for vaccine efficacy. Despite its biological and biotechnological importance, some central aspects of Vi antigen production are poorly understood. Here we demonstrate that TviE and TviD, two proteins encoded in the viaB (Vi antigen production) locus, interact and are the Vi antigen polymerase and O-acetyltransferase, respectively. Structural modeling and site-directed mutagenesis reveal that TviE is a GT4-family glycosyltransferase. While TviD has no identifiable homologs beyond Vi antigen systems in other bacteria, structural modeling suggests that it belongs to the large SGNH hydrolase family, which contains other O-acetyltransferases. Although TviD possesses an atypical catalytic triad, its O-acetyltransferase function was verified by antibody reactivity and 13C NMR data for tviD-mutant polysaccharide. The B. bronchiseptica genetic locus predicts a mode of synthesis distinct from classical S. enterica Vi antigen production, but which still involves TviD and TviE homologs that are both active in a reconstituted S. Typhi system. These findings provide new insight into Vi antigen production and foundational information for the glycoengineering of Vi antigen production in heterologous bacteria.


Asunto(s)
Polisacáridos Bacterianos , Salmonella typhi , Fiebre Tifoidea , Acetiltransferasas/metabolismo , Animales , Polisacáridos Bacterianos/biosíntesis , Polisacáridos Bacterianos/metabolismo , Salmonella typhi/metabolismo , Salmonella typhi/patogenicidad , Fiebre Tifoidea/microbiología , Fiebre Tifoidea/prevención & control , Virulencia
5.
Nat Chem Biol ; 16(4): 450-457, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32152541

RESUMEN

Lipopolysaccharide O-antigen is an attractive candidate for immunotherapeutic strategies targeting antibiotic-resistant Klebsiella pneumoniae. Several K. pneumoniae O-serotypes are based on a shared O2a-antigen backbone repeating unit: (→ 3)-α-Galp-(1 → 3)-ß-Galf-(1 →). O2a antigen is synthesized on undecaprenol diphosphate in a pathway involving the O2a polymerase, WbbM, before its export by an ATP-binding cassette transporter. This dual domain polymerase possesses a C-terminal galactopyranosyltransferase resembling known GT8 family enzymes, and an N-terminal DUF4422 domain identified here as a galactofuranosyltransferase defining a previously unrecognized family (GT111). Functional assignment of DUF4422 explains how galactofuranose is incorporated into various polysaccharides of importance in vaccine production and the food industry. In the 2.1-Å resolution structure, three WbbM protomers associate to form a flattened triangular prism connected to a central stalk that orients the active sites toward the membrane. The biochemical, structural and topological properties of WbbM offer broader insight into the mechanisms of assembly of bacterial cell-surface glycans.


Asunto(s)
Glicosiltransferasas/metabolismo , Antígenos O/metabolismo , Antígenos O/ultraestructura , Transportadoras de Casetes de Unión a ATP/metabolismo , Secuencia de Aminoácidos , Membrana Celular/metabolismo , Glicosiltransferasas/fisiología , Hexosiltransferasas , Klebsiella pneumoniae/metabolismo , Lipopolisacáridos/química , Polisacáridos Bacterianos/química
6.
Nat Chem Biol ; 15(6): 632-640, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31036922

RESUMEN

Several important Gram-negative bacterial pathogens possess surface capsular layers composed of hypervariable long-chain polysaccharides linked via a conserved 3-deoxy-ß-D-manno-oct-2-ulosonic acid (ß-Kdo) oligosaccharide to a phosphatidylglycerol residue. The pathway for synthesis of the terminal glycolipid was elucidated by determining the structures of reaction intermediates. In Escherichia coli, KpsS transfers a single Kdo residue to phosphatidylglycerol; this primer is extended using a single enzyme (KpsC), possessing two cytidine 5'-monophosphate (CMP)-Kdo-dependent glycosyltransferase catalytic centers with different linkage specificities. The structure of the N-terminal ß-(2→4) Kdo transferase from KpsC reveals two α/ß domains, supplemented by several helices. The N-terminal Rossmann-like domain, typically responsible for acceptor binding, is severely reduced in size compared with canonical GT-B folds in glycosyltransferases. The similar structure of the C-terminal ß-(2→7) Kdo transferase indicates a past gene duplication event. Both Kdo transferases have a narrow active site tunnel, lined with key residues shared with GT99 ß-Kdo transferases. This enzyme provides the prototype for the GT107 family.


Asunto(s)
Cápsulas Bacterianas/metabolismo , Glucolípidos/biosíntesis , Bacterias Gramnegativas/metabolismo , Transferasas/metabolismo , Modelos Moleculares , Estructura Molecular , Transferasas/química
7.
Anal Bioanal Chem ; 413(10): 2747-2754, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33025035

RESUMEN

The ability to spatially resolve the chemical distribution of compounds on a surface is important in many applications ranging from biological to material science. To this extent, we have recently introduced a hybrid atomic force microscopy (AFM)-mass spectrometry (MS) system for direct thermal desorption and pyrolysis of material with nanoscale chemical resolution. However, spatially resolved direct surface heating using local thermal desorption becomes challenging on material surfaces with low melting points, because the material will undergo a melting phase transition due to heat dissipation prior to onset of thermal desorption. Therefore, we developed an approach using mechanical sampling and collection of surface materials on an AFM cantilever probe tip for real-time analysis directly from the AFM tip. This approach allows for material to be concentrated directly onto the probe for subsequent MS analysis. We evaluate the performance metrics of the technique and demonstrate localized MS sampling from a candelilla wax matrix containing UV stabilizers avobenzone and oxinoxate from areas down to 250 nm × 250 nm. Overall, this approach removes heat dissipation into the bulk material allowing for a faster desorption and concentration of the gas phase analyte from a single heating pulse enabling higher signal levels from a given amount of material in a single sampling spot.Graphical abstract.

8.
J Chem Phys ; 154(1): 014202, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33412885

RESUMEN

Nanoscale hyperspectral techniques-such as electron energy loss spectroscopy (EELS)-are critical to understand the optical response in plasmonic nanostructures, but as systems become increasingly complex, the required sampling density and acquisition times become prohibitive for instrumental and specimen stability. As a result, there has been a recent push for new experimental methodologies that can provide comprehensive information about a complex system, while significantly reducing the duration of the experiment. Here, we present a pan-sharpening approach to hyperspectral EELS analysis, where we acquire two datasets from the same region (one with high spatial resolution and one with high spectral fidelity) and combine them to achieve a single dataset with the beneficial properties of both. This work outlines a straightforward, reproducible pathway to reduced experiment times and higher signal-to-noise ratios, while retaining the relevant physical parameters of the plasmonic response, and is generally applicable to a wide range of spectroscopy modalities.

9.
J Biol Chem ; 294(41): 14978-14990, 2019 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-31416837

RESUMEN

Escherichia coli serotype O9a provides a model for export of lipopolysaccharide (LPS) O-antigen polysaccharide (O-PS) via ABC transporters. In O9a biosynthesis, a chain-terminator enzyme, WbdD, caps the nonreducing end of the glycan with a methylphosphate moiety and thereby establishes chain-length distribution. A carbohydrate-binding module (CBM) in the ABC transporter recognizes terminated glycans, ensuring that only mature O-PS is exported and incorporated into LPS. Here, we addressed two questions arising from this model. Are both residues in the binary terminator necessary for termination and export? And is a terminal methylphosphate moiety sufficient for export of heterologous glycans? To answer the first question, we uncoupled WbdD kinase and methyltransferase activities. WbdD mutants revealed that although the kinase activity is solely responsible for chain-length regulation, both activities are essential for CBM recognition and export. Consistent with this observation, a saturation transfer difference NMR experiment revealed a direct interaction between the CBM and the terminal methyl group. To determine whether methylphosphate is the sole determinant of substrate recognition by the CBM, we exploited Klebsiella pneumoniae O7, whose O-PS repeat-unit structure differs from O9a, but, as shown here, offers the second confirmed example of a terminal methylphosphate serving in substrate recognition. In vitro and in vivo experiments indicated that each CBM can bind the O-PS only with the native repeat unit, revealing that methylphosphate is essential but not sufficient for substrate recognition and export. Our findings provide important new insight into the structural determinants in a prototypical quality control system for glycan assembly and export.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Metabolismo de los Hidratos de Carbono , Escherichia coli/metabolismo , Antígenos O/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Secuencia de Carbohidratos , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Antígenos O/química , Organofosfatos/metabolismo , Polimerizacion , Unión Proteica , Conformación Proteica
10.
J Biol Chem ; 294(28): 10863-10876, 2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31138653

RESUMEN

A limited range of different structures is observed in O-antigenic polysaccharides (OPSs) from Klebsiella pneumoniae lipopolysaccharides. Among these, several are based on modifications of a conserved core element of serotype O2a OPS, which has a disaccharide repeat structure [→3)-α-d-Galp-(1→3)-ß-d-Galf-(1→]. Here, we describe the enzymatic pathways for a highly unusual modification strategy involving the attachment of a second glycan repeat-unit structure to the nonreducing terminus of O2a. This occurs by the addition of the O1 [→3)-α-d-Galp-(1→3)-ß-d-Galp-(1→] or O2c [→3)-ß-d-GlcpNAc-(1→5)-ß-d-Galf-(1→] antigens. The organization of the enzyme activities performing these modifications differs, with the enzyme WbbY possessing two glycosyltransferase catalytic sites solely responsible for O1 antigen polymerization and forming a complex with the O2a glycosyltransferase WbbM. In contrast, O2c polymerization requires glycosyltransferases WbmV and WbmW, which interact with one another but apparently not with WbbM. Using defined synthetic acceptors and site-directed mutants to assign the activities of the WbbY catalytic sites, we found that the C-terminal WbbY domain is a UDP-Galp-dependent GT-A galactosyltransferase adding ß-(1→3)-linked d-Galp, whereas the WbbY N terminus includes a GT-B enzyme adding α-(1→3)-linked d-Galp These activities build the O1 antigen on a terminal Galp in the O2a domain. Using similar approaches, we identified WbmV as the UDP-GlcNAc transferase and noted that WbmW represents a UDP-Galf-dependent enzyme and that both are GT-A members. WbmVW polymerizes the O2c antigen on a terminal Galf. Our results provide mechanistic and conceptual insights into an important strategy for polysaccharide antigen diversification in bacteria.


Asunto(s)
Diversidad de Anticuerpos/inmunología , Klebsiella pneumoniae/enzimología , Antígenos O/inmunología , Diversidad de Anticuerpos/fisiología , Proteínas Bacterianas/metabolismo , Galactanos/metabolismo , Galactosiltransferasas/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Lipopolisacáridos/química , Lipopolisacáridos/inmunología , Lipopolisacáridos/metabolismo , Familia de Multigenes/genética , Antígenos O/química , Antígenos O/metabolismo , Serotipificación/métodos
12.
Proc Natl Acad Sci U S A ; 114(7): E1215-E1223, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28137848

RESUMEN

Lipopolysaccharides (LPS) are essential outer membrane glycolipids in most gram-negative bacteria. Biosynthesis of the O-antigenic polysaccharide (OPS) component of LPS follows one of three widely distributed strategies, and similar processes are used to assemble other bacterial surface glycoconjugates. This study focuses on the ATP-binding cassette (ABC) transporter-dependent pathway, where glycans are completed on undecaprenyl diphosphate carriers at the cytosol:membrane interface, before export by the ABC transporter. We describe Raoultella terrigena WbbB, a prototype for a family of proteins that, remarkably, integrates several key activities in polysaccharide biosynthesis into a single polypeptide. WbbB contains three glycosyltransferase (GT) modules. Each of the GT102 and GT103 modules characterized here represents a previously unrecognized GT family. They form a polymerase, generating a polysaccharide of [4)-α-Rhap-(1→3)-ß-GlcpNAc-(1→] repeat units. The polymer chain is terminated by a ß-linked Kdo (3-deoxy-d-manno-oct-2-ulosonic acid) residue added by a third GT module belonging to the recently discovered GT99 family. The polymerase GT modules are separated from the GT99 chain terminator by a coiled-coil structure that forms a molecular ruler to determine product length. Different GT modules in the polymerase domains of other family members produce diversified OPS structures. These findings offer insight into glycan assembly mechanisms and the generation of antigenic diversity as well as potential tools for glycoengineering.


Asunto(s)
Proteínas Bacterianas/metabolismo , Enterobacteriaceae/metabolismo , Lipopolisacáridos/metabolismo , Antígenos O/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Vías Biosintéticas/genética , Secuencia de Carbohidratos , Enterobacteriaceae/genética , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Lipopolisacáridos/química , Estructura Molecular , Antígenos O/química , Polimerizacion , Polisacáridos/química , Polisacáridos/metabolismo , Control de Calidad , Homología de Secuencia de Aminoácido
13.
J Biol Chem ; 293(13): 4666-4679, 2018 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-29602878

RESUMEN

Klebsiella pneumoniae is a major health threat. Vaccination and passive immunization are considered as alternative therapeutic strategies for managing Klebsiella infections. Lipopolysaccharide O antigens are attractive candidates because of the relatively small range of known O-antigen polysaccharide structures, but immunotherapeutic applications require a complete understanding of the structures found in clinical settings. Currently, the precise number of Klebsiella O antigens is unknown because available serological tests have limited resolution, and their association with defined chemical structures is sometimes uncertain. Molecular serotyping methods can evaluate clinical prevalence of O serotypes but require a full understanding of the genetic determinants for each O-antigen structure. This is problematic with Klebsiella pneumoniae because genes outside the main rfb (O-antigen biosynthesis) locus can have profound effects on the final structure. Here, we report two new loci encoding enzymes that modify a conserved polysaccharide backbone comprising disaccharide repeat units [→3)-α-d-Galp-(1→3)-ß-d-Galf-(1→] (O2a antigen). We identified in serotype O2aeh a three-component system that modifies completed O2a glycan in the periplasm by adding 1,2-linked α-Galp side-group residues. In serotype O2ac, a polysaccharide comprising disaccharide repeat units [→5)-ß-d-Galf-(1→3)-ß-d-GlcpNAc-(1→] (O2c antigen) is attached to the non-reducing termini of O2a-antigen chains. O2c-polysaccharide synthesis is dependent on a locus encoding three glycosyltransferase enzymes. The authentic O2aeh and O2c antigens were recapitulated in recombinant Escherichia coli hosts to establish the essential gene set for their synthesis. These findings now provide a complete understanding of the molecular genetic basis for the known variations in Klebsiella O-antigen carbohydrate structures based on the O2a backbone.


Asunto(s)
Proteínas Bacterianas , Klebsiella pneumoniae , Antígenos O , Animales , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Conformación de Carbohidratos , Klebsiella pneumoniae/química , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Antígenos O/biosíntesis , Antígenos O/química , Antígenos O/genética , Conejos
14.
J Am Chem Soc ; 141(6): 2201-2204, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30698425

RESUMEN

Bacterial capsular polysaccharides are important virulence factors. Capsular polysaccharides from several important Gram-negative pathogens share a conserved glycolipid terminus containing 3-deoxy-ß-d- manno-oct-2-ulosonic acid (ß-Kdo). The ß-Kdo glycosyltransferases responsible for synthesis of this conserved glycolipid belong to a new family of glycosyltransferases that shares little homology with other such enzymes, thereby representing an attractive antivirulence target. Here, we report the development of a fluorescence polarization-based, high-throughput screening assay (FP-tag) for ß-Kdo glycosyltransferases, and use it to identify a class of marine natural products as lead inhibitors. This "FP-tag" assay should be readily adaptable to high-throughput screens of other glycosyltransferases.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Glicosiltransferasas/antagonistas & inhibidores , Química Clic , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Ensayos Analíticos de Alto Rendimiento , Concentración 50 Inhibidora , Azúcares Ácidos/química , Azúcares Ácidos/farmacología
15.
Anal Chem ; 91(19): 12142-12148, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31483617

RESUMEN

Chemical analysis at the nanoscale is critical to advance our understanding of materials and systems from medicine and biology to material science and computing. Macroscale-observed phenomena in these systems are in the large part driven by processes that take place at the nanoscale and are highly heterogeneous. Therefore, there is a clear need to develop a new technology that enables correlative imaging of material functionalities with nanoscale spatial and chemical resolutions that will enable us to untangle the structure-function relationship of functional materials. Therefore, here, we report on the analytical figures of merit of the newly developed correlative chemical imaging technique of helium ion microscopy coupled with secondary ion mass spectrometry (HIM-SIMS) that enables multimodal topographical/chemical imaging of organic and inorganic materials at the nanoscale. In HIM-SIMS, a focused ion beam acts as a sputtering and ionization source for chemical analysis along with simultaneous high-resolution surface imaging, providing an unprecedented level of spatial resolution for gathering chemical information on organic and inorganic materials. In this work, we demonstrate HIM-SIMS as a platform for a next-generation tool for an in situ material design and analysis capable of down to 8 nm spatial resolution chemical imaging, layered metal structure imaging in depth profiling, single graphene layer detection, and spectral analysis of metals, metal oxides, and polymers.

16.
Anal Chem ; 91(4): 2791-2796, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30672686

RESUMEN

Seed coatings improve germination and offer higher crop yields through a blend of active ingredients (such as insecticides and fungicides), polymers, waxes, fillers, and pigments. To reach their full potential, fundamental formulation challenges bridging structure and function need to be addressed. In some instances, during industrial-volume packing and transportation, coated seeds do not flow well through elevators, conveyers, and applicators, which may reduce yield and add cost. In this work, we illustrate a combinatorial chemical imaging approach to study seed coatings at the microscale to link chemical and physical properties responsible for low seed flowability. The local chemical composition was examined using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and at comparable length scales, the local adhesive properties were examined using atomic force microscopy (AFM) force volume mapping. The link between the chemical and the adhesive properties was established by non-negative matrix factorization (NMF). The correlative multimodal imaging approach developed here utilizing AFM force volume mapping, ToF-SIMS chemical mapping, and data analytics offers a path for linking function with localized chemistry when investigating multicomponent soft material systems.

17.
Nat Mater ; 17(11): 1013-1019, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30150621

RESUMEN

The extraordinary optoelectronic performance of hybrid organic-inorganic perovskites has resulted in extensive efforts to unravel their properties. Recently, observations of ferroic twin domains in methylammonium lead triiodide drew significant attention as a possible explanation for the current-voltage hysteretic behaviour in these materials. However, the properties of the twin domains, their local chemistry and the chemical impact on optoelectronic performance remain unclear. Here, using multimodal chemical and functional imaging methods, we unveil the mechanical origin of the twin domain contrast observed with piezoresponse force microscopy in methylammonium lead triiodide. By combining experimental results with first principles simulations we reveal an inherent coupling between ferroelastic twin domains and chemical segregation. These results reveal an interplay of ferroic properties and chemical segregation on the optoelectronic performance of hybrid organic-inorganic perovskites, and offer an exploratory path to improving functional devices.

18.
Proc Natl Acad Sci U S A ; 113(24): 6719-24, 2016 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-27226298

RESUMEN

Polysaccharide capsules are surface structures that are critical for the virulence of many Gram-negative pathogenic bacteria. Salmonella enterica serovar Typhi is the etiological agent of typhoid fever. It produces a capsular polysaccharide known as "Vi antigen," which is composed of nonstoichiometrically O-acetylated α-1,4-linked N-acetylgalactosaminuronic acid residues. This glycan is a component of currently available vaccines. The genetic locus for Vi antigen production is also present in soil bacteria belonging to the genus Achromobacter Vi antigen assembly follows a widespread general strategy with a characteristic glycan export step involving an ATP-binding cassette transporter. However, Vi antigen producers lack the enzymes that build the conserved terminal glycolipid characterizing other capsules using this method. Achromobacter species possess a Vi antigen-specific depolymerase enzyme missing in S enterica Typhi, and we exploited this enzyme to isolate acylated Vi antigen termini. Mass spectrometry analysis revealed a reducing terminal N-acetylhexosamine residue modified with two ß-hydroxyl acyl chains. This terminal structure resembles one half of lipid A, the hydrophobic portion of bacterial lipopolysaccharides. The VexE protein encoded in the Vi antigen biosynthesis locus shares similarity with LpxL, an acyltransferase from lipid A biosynthesis. In the absence of VexE, Vi antigen is produced, but its physical properties are altered, its export is impaired, and a Vi capsule structure is not assembled on the cell surface. The structure of the lipidated terminus dictates a unique assembly mechanism and has potential implications in pathogenesis and vaccine production.


Asunto(s)
Aciltransferasas/metabolismo , Proteínas Bacterianas/metabolismo , Lípido A/biosíntesis , Polisacáridos Bacterianos/biosíntesis , Salmonella typhi/metabolismo , Achromobacter/genética , Achromobacter/metabolismo , Aciltransferasas/genética , Proteínas Bacterianas/genética , Ácidos Hexurónicos/metabolismo , Lípido A/genética , Polisacáridos Bacterianos/genética , Salmonella typhi/genética
19.
Proc Natl Acad Sci U S A ; 113(22): E3120-9, 2016 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-27199480

RESUMEN

Kdo (3-deoxy-d-manno-oct-2-ulosonic acid) is an eight-carbon sugar mostly confined to Gram-negative bacteria. It is often involved in attaching surface polysaccharides to their lipid anchors. α-Kdo provides a bridge between lipid A and the core oligosaccharide in all bacterial LPSs, whereas an oligosaccharide of ß-Kdo residues links "group 2" capsular polysaccharides to (lyso)phosphatidylglycerol. ß-Kdo is also found in a small number of other bacterial polysaccharides. The structure and function of the prototypical cytidine monophosphate-Kdo-dependent α-Kdo glycosyltransferase from LPS assembly is well characterized. In contrast, the ß-Kdo counterparts were not identified as glycosyltransferase enzymes by bioinformatics tools and were not represented among the 98 currently recognized glycosyltransferase families in the Carbohydrate-Active Enzymes database. We report the crystallographic structure and function of a prototype ß-Kdo GT from WbbB, a modular protein participating in LPS O-antigen synthesis in Raoultella terrigena The ß-Kdo GT has dual Rossmann-fold motifs typical of GT-B enzymes, but extensive deletions, insertions, and rearrangements result in a unique architecture that makes it a prototype for a new GT family (GT99). The cytidine monophosphate-binding site in the C-terminal α/ß domain closely resembles the corresponding site in bacterial sialyltransferases, suggesting an evolutionary connection that is not immediately evident from the overall fold or sequence similarities.


Asunto(s)
Enterobacteriaceae/enzimología , Glicosiltransferasas/química , Glicosiltransferasas/metabolismo , Polisacáridos/metabolismo , Azúcares Ácidos/metabolismo , Conformación de Carbohidratos , Cristalografía por Rayos X , Glicosilación , Filogenia , Polisacáridos/química , Conformación Proteica , Azúcares Ácidos/química
20.
Anal Chem ; 90(2): 1370-1375, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29227631

RESUMEN

Nanoporous materials are key components in a vast number of applications from energy to drug delivery and to agriculture. However, the number of ways to analytically quantify the salient features of these materials, for example: surface structure, pore shape, and size, remain limited. The most common approach is gas absorption, where volumetric gas absorption and desorption are measured. This technique has some fundamental drawbacks such as low sample throughput and a lack of direct surface visualization. In this work, we demonstrate Helium Ion Microscopy (HIM) as a tool for imaging and quantification of pores in industrially relevant SiO2 catalyst supports. We start with the fundamental principles of ion-sample interaction, and build on this knowledge to experimentally observe and quantify surface pores by using the HIM and image data analytics. We contrast our experimental results to gas absorption and demonstrate full statistical agreement between two techniques. The principles behind the theoretical, experimental, and analytical framework presented herein offer an automated framework for visualization and quantification of pore structures in a wide variety of materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA