RESUMEN
Hachiman is a broad-spectrum antiphage defense system of unknown function. We show here that Hachiman is a heterodimeric nuclease-helicase complex, HamAB. HamA, previously a protein of unknown function, is the effector nuclease. HamB is the sensor helicase. HamB constrains HamA activity during surveillance of intact double-stranded DNA (dsDNA). When the HamAB complex detects DNA damage, HamB helicase activity activates HamA, unleashing nuclease activity. Hachiman activation degrades all DNA in the cell, creating "phantom" cells devoid of both phage and host DNA. We demonstrate Hachiman activation in the absence of phage by treatment with DNA-damaging agents, suggesting that Hachiman responds to aberrant DNA states. Phylogenetic similarities between the Hachiman helicase and enzymes from eukaryotes and archaea suggest deep functional symmetries with other important helicases across domains of life.
RESUMEN
Thermostable clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas9) enzymes could improve genome-editing efficiency and delivery due to extended protein lifetimes. However, initial experimentation demonstrated Geobacillus stearothermophilus Cas9 (GeoCas9) to be virtually inactive when used in cultured human cells. Laboratory-evolved variants of GeoCas9 overcome this natural limitation by acquiring mutations in the wedge (WED) domain that produce >100-fold-higher genome-editing levels. Cryoelectron microscopy (cryo-EM) structures of the wild-type and improved GeoCas9 (iGeoCas9) enzymes reveal extended contacts between the WED domain of iGeoCas9 and DNA substrates. Biochemical analysis shows that iGeoCas9 accelerates DNA unwinding to capture substrates under the magnesium-restricted conditions typical of mammalian but not bacterial cells. These findings enabled rational engineering of other Cas9 orthologs to enhance genome-editing levels, pointing to a general strategy for editing enzyme improvement. Together, these results uncover a new role for the Cas9 WED domain in DNA unwinding and demonstrate how accelerated target unwinding dramatically improves Cas9-induced genome-editing activity.
Asunto(s)
Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Microscopía por Crioelectrón , ADN , Edición Génica , Humanos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteína 9 Asociada a CRISPR/metabolismo , Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas/genética , ADN/metabolismo , ADN/genética , Edición Génica/métodos , Geobacillus stearothermophilus/genética , Geobacillus stearothermophilus/metabolismo , Células HEK293 , Dominios Proteicos , Genoma Humano , Modelos Moleculares , Estructura Terciaria de Proteína , Conformación de Ácido Nucleico , Biocatálisis , Magnesio/química , Magnesio/metabolismoRESUMEN
Carbon fixation is the process by which CO2 is converted from a gas into biomass. The Calvin-Benson-Bassham cycle (CBB) is the dominant carbon-consuming pathway on Earth, driving >99.5% of the â¼120 billion tons of carbon that are converted to sugar by plants, algae, and cyanobacteria. The carboxylase enzyme in the CBB, ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco), fixes one CO2 molecule per turn of the cycle into bioavailable sugars. Despite being critical to the assimilation of carbon, rubisco's kinetic rate is not very fast, limiting flux through the pathway. This bottleneck presents a paradox: Why has rubisco not evolved to be a better catalyst? Many hypothesize that the catalytic mechanism of rubisco is subject to one or more trade-offs and that rubisco variants have been optimized for their native physiological environment. Here, we review the evolution and biochemistry of rubisco through the lens of structure and mechanism in order to understand what trade-offs limit its improvement. We also review the many attempts to improve rubisco itself and thereby promote plant growth.
Asunto(s)
Dióxido de Carbono , Ribulosa-Bifosfato Carboxilasa , Ribulosa-Bifosfato Carboxilasa/genética , Ribulosa-Bifosfato Carboxilasa/química , Ribulosa-Bifosfato Carboxilasa/metabolismo , Dióxido de Carbono/metabolismo , FotosíntesisRESUMEN
Systemically administered cytokines are potent immunotherapeutics but can cause severe dose-limiting toxicities. To overcome this challenge, cytokines have been engineered for intratumoral retention after local delivery. However, despite inducing regression of treated lesions, tumor-localized cytokines often elicit only modest responses at distal untreated tumors. In the present study, we report a localized cytokine therapy that safely elicits systemic antitumor immunity by targeting the ubiquitous leukocyte receptor CD45. CD45-targeted immunocytokines have lower internalization rates relative to wild-type counterparts, leading to sustained downstream cis and trans signaling between lymphocytes. A single intratumoral dose of αCD45-interleukin (IL)-12 followed by a single dose of αCD45-IL-15 eradicated treated tumors and untreated distal lesions in multiple syngeneic mouse tumor models without toxicity. Mechanistically, CD45-targeted cytokines reprogrammed tumor-specific CD8+ T cells in the tumor-draining lymph nodes to have an antiviral transcriptional signature. CD45 anchoring represents a broad platform for protein retention by host immune cells for use in immunotherapy.
Asunto(s)
Linfocitos T CD8-positivos , Antígenos Comunes de Leucocito , Animales , Ratones , Antígenos Comunes de Leucocito/metabolismo , Linfocitos T CD8-positivos/inmunología , Inmunoterapia/métodos , Ratones Endogámicos C57BL , Humanos , Línea Celular Tumoral , Femenino , Citocinas/metabolismo , Neoplasias/inmunología , Neoplasias/terapia , Interleucina-15/metabolismoRESUMEN
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
The SARS-CoV-2 virus emerged in December 2019 and has caused a worldwide pandemic due to the lack of any pre-existing immunity. Accurate serology testing is urgently needed to help diagnose infection, determine past exposure of populations and assess the response to a future vaccine. The landscape of antibody responses to SARS-CoV-2 is unknown. In this study, we utilized the luciferase immunoprecipitation system to assess the antibody responses to 15 different SARS-CoV-2 antigens in patients with COVID-19. We identified new targets of the immune response to SARS-CoV-2 and show that nucleocapsid, open reading frame (ORF)8 and ORF3b elicit the strongest specific antibody responses. ORF8 and ORF3b antibodies, taken together as a cluster of points, identified 96.5% of COVID-19 samples at early and late time points of disease with 99.5% specificity. Our findings could be used to develop second-generation diagnostic tests to improve serological assays for COVID-19 and are important in understanding pathogenicity.
Asunto(s)
Anticuerpos Antivirales/sangre , Betacoronavirus/inmunología , Técnicas de Laboratorio Clínico/métodos , Infecciones por Coronavirus/diagnóstico , Neumonía Viral/diagnóstico , Proteínas Virales/inmunología , Adulto , Anciano , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , COVID-19 , Prueba de COVID-19 , Infecciones por Coronavirus/sangre , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Femenino , Hong Kong , Humanos , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/sangre , Neumonía Viral/inmunología , Neumonía Viral/virología , SARS-CoV-2 , Sensibilidad y Especificidad , Factores de TiempoRESUMEN
CRISPR-Cas adaptive immune systems capture DNA fragments from invading mobile genetic elements and integrate them into the host genome to provide a template for RNA-guided immunity1. CRISPR systems maintain genome integrity and avoid autoimmunity by distinguishing between self and non-self, a process for which the CRISPR/Cas1-Cas2 integrase is necessary but not sufficient2-5. In some microorganisms, the Cas4 endonuclease assists CRISPR adaptation6,7, but many CRISPR-Cas systems lack Cas48. Here we show here that an elegant alternative pathway in a type I-E system uses an internal DnaQ-like exonuclease (DEDDh) to select and process DNA for integration using the protospacer adjacent motif (PAM). The natural Cas1-Cas2/exonuclease fusion (trimmer-integrase) catalyses coordinated DNA capture, trimming and integration. Five cryo-electron microscopy structures of the CRISPR trimmer-integrase, visualized both before and during DNA integration, show how asymmetric processing generates size-defined, PAM-containing substrates. Before genome integration, the PAM sequence is released by Cas1 and cleaved by the exonuclease, marking inserted DNA as self and preventing aberrant CRISPR targeting of the host. Together, these data support a model in which CRISPR systems lacking Cas4 use fused or recruited9,10 exonucleases for faithful acquisition of new CRISPR immune sequences.
Asunto(s)
Biocatálisis , Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas , Genoma Bacteriano , Integrasas , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/ultraestructura , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/inmunología , Microscopía por Crioelectrón , ADN/inmunología , ADN/metabolismo , Exonucleasas/química , Exonucleasas/metabolismo , Exonucleasas/ultraestructura , Integrasas/química , Integrasas/metabolismo , Integrasas/ultraestructura , Genoma Bacteriano/genéticaRESUMEN
Homeobox genes encode transcription factors with essential roles in patterning and cell fate in developing animal embryos. Many homeobox genes, including Hox and NK genes, are arranged in gene clusters, a feature likely related to transcriptional control. Sparse taxon sampling and fragmentary genome assemblies mean that little is known about the dynamics of homeobox gene evolution across Lepidoptera or about how changes in homeobox gene number and organization relate to diversity in this large order of insects. Here we analyze an extensive data set of high-quality genomes to characterize the number and organization of all homeobox genes in 123 species of Lepidoptera from 23 taxonomic families. We find most Lepidoptera have around 100 homeobox loci, including an unusual Hox gene cluster in which the lab gene is repositioned and the ro gene is next to pb A topologically associating domain spans much of the gene cluster, suggesting deep regulatory conservation of the Hox cluster arrangement in this insect order. Most Lepidoptera have four Shx genes, divergent zen-derived loci, but these loci underwent dramatic duplication in several lineages, with some moths having over 165 homeobox loci in the Hox gene cluster; this expansion is associated with local LINE element density. In contrast, the NK gene cluster content is more stable, although there are differences in organization compared with other insects, as well as major rearrangements within butterflies. Our analysis represents the first description of homeobox gene content across the order Lepidoptera, exemplifying the potential of newly generated genome assemblies for understanding genome and gene family evolution.
Asunto(s)
Mariposas Diurnas , Genes Homeobox , Animales , Filogenia , Familia de Multigenes , Genómica , Evolución MolecularRESUMEN
Negatively curved nanographenes are considered as cutouts of three-dimensional fully sp2-hybridized carbon allotropes such as Schwarzites. Here we present the synthesis of a C76 cut-out of the Schwarzite 8-4-1-p proposed by Lenosky et al. and investigate its optical as well as electrochemical properties. Furthermore, supramolecular interactions with fullerenes C60 and C70 were studied.
RESUMEN
Preparation of a redox-frustrated high-energy-density energetic material is achieved by gentle protolysis of Mn[N(SiMe3)2]2 with the perchlorate salt of the tetrazolamide [H2NtBuMeTz]ClO4 (Tz = tetrazole), yielding the Mn6N6 hexagonal prismatic cluster, Mn6(µ3-NTztBuMe)6(ClO4)6. Quantum mechanics-based molecular dynamics simulations of the decomposition of this molecule predict that magnetic ordering of the d5 Mn2+ ions influences the pathway and rates of decomposition, suggesting that the initiation of decomposition of the bulk material might be significantly retarded by an applied magnetic field. We report here experimental tests of the prediction showing that the presence of a 0.5 T magnetic field modulates the ignition onset temperature by +10.4 ± 3.9 °C (from 414 ± 4 °C), demonstrating the first example of a magnetically modulated explosive.
RESUMEN
Color vision in insects is determined by signaling cascades, central to which are opsin proteins, resulting in sensitivity to light at different wavelengths. In certain insect groups, lineage-specific evolution of opsin genes, in terms of copy number, shifts in expression patterns, and functional amino acid substitutions, has resulted in changes in color vision with subsequent behavioral and niche adaptations. Lepidoptera are a fascinating model to address whether evolutionary change in opsin content and sequence evolution are associated with changes in vision phenotype. Until recently, the lack of high-quality genome data representing broad sampling across the lepidopteran phylogeny has greatly limited our ability to accurately address this question. Here, we annotate opsin genes in 219 lepidopteran genomes representing 33 families, reconstruct their evolutionary history, and analyze shifts in selective pressures and expression between genes and species. We discover 44 duplication events in opsin genes across â¼300 million years of lepidopteran evolution. While many duplication events are species or family specific, we find retention of an ancient long-wavelength-sensitive (LW) opsin duplication derived by retrotransposition within the speciose superfamily Noctuoidea (in the families Nolidae, Erebidae, and Noctuidae). This conserved LW retrogene shows life stage-specific expression suggesting visual sensitivities or other sensory functions specific to the early larval stage. This study provides a comprehensive order-wide view of opsin evolution across Lepidoptera, showcasing high rates of opsin duplications and changes in expression patterns.
Asunto(s)
Visión de Colores , Lepidópteros , Humanos , Animales , Opsinas/genética , Duplicación de Gen , Lepidópteros/genética , Evolución Molecular , Opsinas de Bastones/química , Opsinas de Bastones/genética , Insectos/genética , Filogenia , Expresión GénicaRESUMEN
Iflavirus aladeformis (Picornavirales: Iflaviridae), commonly known as deformed wing virus(DWV), in association with Varroa destructor Anderson and Trueman (Mesostigmata: Varroidae), is a leading factor associated with honey bee (Apis mellifera L. [Hymenoptera: Apidae]) deaths. The virus and mite have a near global distribution, making it difficult to separate the effect of one from the other. The prevalence of two main DWV genotypes (DWV-A and DWV-B) has changed over time, leading to the possibility that the two strains elicit a different immune response by the host. Here, we use a honey bee population naïve to both the mite and the virus to investigate if honey bees show a different immunological response to DWV genotypes. We examined the expression of 19 immune genes by reverse transcription quantitative PCR (RT-qPCR) and analysed small RNA after experimental injection with DWV-A and DWV-B. We found no evidence that DWV-A and DWV-B elicit different immune responses in honey bees. RNA interference genes were up-regulated during DWV infection, and small interfering RNA (siRNA) responses were proportional to viral loads yet did not inhibit DWV accumulation. The siRNA response towards DWV was weaker than the response to another honey bee pathogen, Triatovirus nigereginacellulae (Picornavirales: Dicistroviridae; black queen cell virus), suggesting that DWV is comparatively better at evading host antiviral defences. There was no evidence for the production of virus-derived Piwi-interacting RNAs (piRNAs) in response to DWV. In contrast to previous studies, and in the absence of V. destructor, we found no evidence that DWV has an immunosuppressive effect. Overall, our results advance our understanding of the immunological effect that DWV in isolation elicits in honey bees.
RESUMEN
BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is a leading cause of end-stage liver disease. NAFLD diagnosis and follow-up relies on a combination of clinical data, liver imaging, and/or liver biopsy. However, intersite imaging differences impede diagnostic consistency and reduce the repeatability of the multisite clinical trials necessary to develop effective treatments. PURPOSE/HYPOTHESIS: The goal of this pilot study was to harmonize commercially available 3 T magnetic resonance imaging (MRI) measurements of liver fat and stiffness in human participants across academic sites and MRI vendors. STUDY TYPE: Cohort. SUBJECTS: Four community-dwelling adults with obesity. FIELD STRENGTH/SEQUENCE: 1.5 and 3 T, multiecho 3D imaging, PRESS, and GRE. ASSESSMENT: Harmonized proton density fat fraction (PDFF) and magnetic resonance spectroscopy (MRS) protocols were used to quantify the FF of synthetic phantoms and human participants with obesity using standard acquisition parameters at four sites that had four different 3 T MRI instruments. In addition, a harmonized magnetic resonance elastography (MRE) protocol was used to quantify liver stiffness among participants at two different sites at 1.5 and 3 T field strengths. Data were sent to a single data coordinating site for postprocessing. STATISTICAL TESTS: Linear regression in MATLAB, ICC analyses using SAS 9.4, one-sided 95% confidence intervals for the ICC. RESULTS: PDFF and MRS FF measurements were highly repeatable among sites in both humans and phantoms. MRE measurements of liver stiffness in three individuals at two sites using one 1.5 T and one 3 T instrument showed repeatability that was high although lower than that of MRS and PDFF. CONCLUSIONS: We demonstrated harmonization of PDFF, MRS, and MRE-based quantification of liver fat and stiffness through synthetic phantoms, traveling participants, and standardization of postprocessing analysis. Multisite MRI harmonization could contribute to multisite clinical trials assessing the efficacy of interventions and therapy for NAFLD. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 2.
Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Adulto , Humanos , Enfermedad del Hígado Graso no Alcohólico/patología , Proyectos Piloto , Reproducibilidad de los Resultados , Hígado/patología , Imagen por Resonancia Magnética/métodos , Obesidad/patologíaRESUMEN
Variability in the availability of resources through time is a common attribute in trophic interactions, but its effects on the fitness of different consumer species and on interspecific competition between them are not clearly understood. To investigate this, we allowed two parasitoid species, Trichopria drosophilae and Pachycrepoideus vindemiae, to exploit Drosophila host pupae under different temporal variability treatments, either on their own or simultaneously. When tested individually (in the absence of interspecific competition), both parasitoid species had lower fitness when hosts were exposed for a short duration at high density than when exposed for a long duration at low density. When both parasitoid species exploited hosts simultaneously, interspecific competition significantly decreased the number of offspring for both parasitoid species. The outcome of this interspecific competition depended on host temporal variability, with T. drosophilae or P. vindemiae dominating in short and long host exposure treatments, respectively. These results can be explained by the combination of host availability and egg load of female adult parasitoids. When abundant hosts are provided for a short period, the ample mature eggs of the proovigenic T. drosophilae enable them to exploit hosts more efficiently than P. vindemiae, which is synovigenic. However, P. vindemiae is an intrinsically superior competitor and dominates when multiparasitism occurs. Multiparasitism is more frequent when hosts are at low levels relative to the egg load of the parasitoids. Our results clearly demonstrate that resource temporal availability can alter the outcome of competition between consumers with different reproductive traits.
RESUMEN
OBJECTIVES: To categorize the fascial planes and the intersections of these fascial planes in the hindlimb of the dog to facilitate preoperative planning for superficial cancers. STUDY DESIGN: Qualitative anatomical study. SAMPLE POPULATION: Four male and five female mixed breed dogs, weighing ~15-35 kg. METHODS: Skin and subcutaneous fat were removed, and fascial planes were explored to determine borders and quality. Fascia was categorized as type I (discrete sheets), type II (adhered to thin muscles), type III (adhered to thick muscles), or type IV (associated with periosteum). Digital modification of specimen photographs was performed to map tissues. RESULTS: Differences in dogs were noted due to either size or sex but were sufficiently minor to allow mapping. Fasciae of the hindlimb were predominantly type II or III, with type I fascia primarily at the lateral gluteal region, fascia lata, and lateral crus. Type IV fascia was seen at the iliac wing, ischium, patella, tibial tuberosity, medial tibia, distal crus, and pes. Fascia for surgical use was thin or absent at the ischiorectal fossa, femoral triangle, extensor mechanism, medial and distal crus, and pes. Intersections and tissues at the ventral perineum may also pose challenges for maintenance of a deep margin. CONCLUSION: Fascial types and integrity of the hindlimb varied with location, with the perineum, cranial stifle, and distal limb presenting the greatest challenges. CLINICAL SIGNIFICANCE: These images may be used to guide both therapeutic decision-making and intraoperative excision of superficial tumors of the hindlimb and pelvis.
Asunto(s)
Extremidad Inferior , Tibia , Masculino , Perros , Femenino , Animales , Rodilla de Cuadrúpedos , Pelvis , Fascia LataRESUMEN
Preeclampsia, new onset hypertension during pregnancy, is associated with activated T helper cells (Th) and B cells secreting agonistic autoantibodies against the angiotensin II type 1 receptor (AT1-AA). The reduced uterine perfusion pressure (RUPP) model of placental ischemia recapitulates these characteristics. We have shown that Th-B cell communication contributes to AT1-AA and symptoms of preeclampsia in the RUPP rat. B2 cells are classical B cells that communicate with Th cells and are then transformed into memory B cells. We hypothesize that B2 cells cause hypertension, natural killer (NK) cell activation, and complement activation during pregnancy through the production of AT1-AA. To test this hypothesis, total splenic B cells and B2 cells were isolated from normal pregnant (NP) or RUPP rats on gestational day (GD)19 and adoptively transferred into GD12 NP rats. A group of recipient rats was treated with a specific inhibitor peptide of AT1-AA. On GD19, mean arterial pressure was measured, tissues were collected, activated NK cells were measured by flow cytometry, and AT1-AA was measured by cardiomyocyte assay. NP recipients of RUPP B cells or RUPP B2 cells had increased mean arterial pressure, AT1-AA, and circulating activated NK cells compared with recipients of NP B cells. Hypertension in NP recipients of RUPP B cells or RUPP B2 was attenuated with AT1-AA blockade. This study demonstrates that B cells and B2 cells from RUPP rats cause hypertension and increased AT1-AA and NK cell activation in response to placental ischemia during pregnancy.NEW & NOTEWORTHY This study demonstrates that placental ischemia-stimulated B2 cells induce hypertension and circulating natural killer cell activation and angiotensin II type 1 receptor production in normal pregnant rats.
Asunto(s)
Hipertensión , Preeclampsia , Humanos , Ratas , Embarazo , Femenino , Animales , Placenta , Autoanticuerpos , Receptor de Angiotensina Tipo 1/metabolismo , Ratas Sprague-Dawley , Células Asesinas Naturales/metabolismo , Isquemia/metabolismo , Presión Sanguínea/fisiologíaRESUMEN
Variation along environmental gradients in host-associated microbial communities is not well understood compared to free-living microbial communities. Because elevational gradients may serve as natural proxies for climate change, understanding patterns along these gradients can inform our understanding of the threats hosts and their symbiotic microbes face in a warming world. In this study, we analyzed bacterial microbiomes from pupae and adults of four Drosophila species native to Australian tropical rainforests. We sampled wild individuals at high and low elevations along two mountain gradients to determine natural diversity patterns. Further, we sampled laboratory-reared individuals from isofemale lines established from the same localities to see if any natural patterns are retained in the lab. In both environments, we controlled for diet to help elucidate other deterministic patterns of microbiome composition. We found small but significant differences in Drosophila bacterial community composition across elevation, with some notable taxonomic differences between different Drosophila species and sites. Further, we found that field-collected fly pupae had significantly richer microbiomes than laboratory-reared pupae. We also found similar microbiome composition in both types of provided diet, suggesting that the significant differences found among Drosophila microbiomes are the products of surrounding environments with different bacterial species pools, possibly bound to elevational differences in temperature. Our results suggest that comparative studies between lab and field specimens help reveal the true variability in microbiome communities that can exist within a single species. IMPORTANCE Bacteria form microbial communities inside most higher-level organisms, but we know little about how the microbiome varies along environmental gradients and between natural host populations and laboratory colonies. To explore such effects on insect-associated microbiomes, we studied the gut microbiome in four Drosophila species over two mountain gradients in tropical Australia. We also compared these data to individuals kept in the laboratory to understand how different settings changed microbiome communities. We found that field-sampled individuals had significantly higher microbiome diversity than those from the lab. In wild Drosophila populations, elevation explains a small but significant amount of the variation in their microbial communities. Our study highlights the importance of environmental bacterial sources for Drosophila microbiome composition across elevational gradients and shows how comparative studies help reveal the true flexibility in microbiome communities that can exist within a species.
Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Drosophila/microbiología , Australia , Bacterias/genéticaRESUMEN
As mean temperatures increase and heatwaves become more frequent, species are expanding their distributions to colonise new habitats. The resulting novel species interactions will simultaneously shape the temperature-driven reorganization of resident communities. The interactive effects of climate change and climate change-facilitated invasion have rarely been studied in multi-trophic communities, and are likely to differ depending on the nature of the climatic driver (i.e., climate extremes or constant warming). We re-created under laboratory conditions a host-parasitoid community typical of high-elevation rainforest sites in Queensland, Australia, comprising four Drosophila species and two associated parasitoid species. We subjected these communities to an equivalent increase in average temperature in the form of periodic heatwaves or constant warming, in combination with an invasion treatment involving a novel host species from lower-elevation habitats. The two parasitoid species were sensitive to both warming and heatwaves, while the demographic responses of Drosophila species were highly idiosyncratic, reflecting the combined effects of thermal tolerance, parasitism, competition, and facilitation. After multiple generations, our heatwave treatment promoted the establishment of low-elevation species in upland communities. Invasion of the low-elevation species correlated negatively with the abundance of one of the parasitoid species, leading to cascading effects on its hosts and their competitors. Our study, therefore, reveals differing, sometimes contrasting, impacts of extreme temperatures and constant warming on community composition. It also highlights how the scale and direction of climate impacts could be further modified by invading species within a bi-trophic community network.
RESUMEN
Biting flies (Diptera) transmit pathogens that cause many important diseases in humans as well as domestic and wild animals. The networks of feeding interactions linking these insects to their hosts, and how they vary geographically and in response to human land-use, are currently poorly documented but are relevant to understanding cross-species disease transmission. We compiled a database of biting Diptera-host interactions from the literature to investigate how key interaction network metrics vary latitudinally and with human land-use. Interaction evenness and H2' (a measure of the degree of network specificity) did not vary significantly with latitude. Compared to near-natural habitats, interaction evenness was significantly lower in agricultural habitats, where networks were dominated by relatively few species pairs, but there was no evidence that the presence of humans and their domesticated animals within networks led to systematic shifts in network structure. We discuss the epidemiological relevance of these results and the implications for predicting and mitigating future spill-over events.
Asunto(s)
Dípteros , Animales , Humanos , Efectos Antropogénicos , Ecosistema , VertebradosRESUMEN
PURPOSE: We performed a systematic review and meta-analysis to determine the diagnostic test accuracy of ancillary investigations for declaration of death by neurologic criteria (DNC) in infants and children. SOURCE: We searched MEDLINE, EMBASE, Web of Science, and Cochrane databases from their inception to June 2021 for relevant randomized controlled trials, observational studies, and abstracts published in the last three years. We identified relevant studies using Preferred Reporting Items for Systematic Reviews and Meta-Analysis methodology and a two-stage review. We assessed the risk of bias using the QUADAS-2 tool, and applied Grading of Recommendations Assessment, Development, and Evaluation methodology to determine the certainty of evidence. A fixed-effects model was used to meta-analyze pooled sensitivity and specificity data for each ancillary investigation with at least two studies. PRINCIPAL FINDINGS: Thirty-nine eligible manuscripts assessing 18 unique ancillary investigations (n = 866) were identified. The sensitivity and specificity ranged from 0.00 to 1.00 and 0.50 to 1.00, respectively. The quality of evidence was low to very low for all ancillary investigations, with the exception of radionuclide dynamic flow studies for which it was graded as moderate. Radionuclide scintigraphy using the lipophilic radiopharmaceutical 99mTc-hexamethylpropyleneamine oxime (HMPAO) with or without tomographic imaging were the most accurate ancillary investigations with a combined sensitivity of 0.99 (95% highest density interval [HDI], 0.89 to 1.00) and specificity of 0.97 (95% HDI, 0.65 to 1.00). CONCLUSION: The ancillary investigation for DNC in infants and children with the greatest accuracy appears to be radionuclide scintigraphy using HMPAO with or without tomographic imaging; however, the certainty of the evidence is low. Nonimaging modalities performed at the bedside require further investigation. STUDY REGISTRATION: PROSPERO (CRD42021278788); registered 16 October 2021.
RéSUMé: OBJECTIF: Nous avons réalisé une revue systématique et une méta-analyse pour déterminer la précision des tests diagnostiques des examens auxiliaires pour la déclaration du décès selon des critères neurologiques (DCN) chez les nourrissons et les enfants. SOURCES: Nous avons effectué des recherches dans les bases de données MEDLINE, EMBASE, Web of Science et Cochrane de leur création jusqu'en juin 2021 pour trouver des études randomisées contrôlées, des études observationnelles et des résumés pertinents publiés au cours des trois dernières années. Nous avons identifié les études pertinentes utilisant la méthodologie PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) et une revue en deux étapes. Nous avons évalué le risque de biais en utilisant l'outil QUADAS-2 et appliqué la méthodologie GRADE (Grading of Recommendations Assessment, Development and Evaluation) afin d'évaluer la certitude des données probantes. Un modèle à effets fixes a été utilisé pour méta-analyser les données de sensibilité et de spécificité regroupées pour chaque examen auxiliaire avec au moins deux études. CONSTATATIONS PRINCIPALES: Trente-neuf manuscrits admissibles évaluant 18 examens auxiliaires uniques (n = 866) ont été identifiés. La sensibilité et la spécificité variaient de 0,00 à 1,00 et de 0,50 à 1,00, respectivement. La qualité des données probantes était faible à très faible pour tous les examens auxiliaires, à l'exception des études de circulation nucléaire dynamique, pour lesquelles elle a été classée comme modérée. La scintigraphie nucléaire à l'aide du produit radiopharmaceutique lipophile 99mTc- hexa-méthyl-propylène amine oxime (HMPAO) avec ou sans imagerie tomographique était à la base des examens auxiliaires les plus précis, avec une sensibilité combinée de 0,99 (intervalle de densité le plus élevé [IDE] à 95 %, 0,89 à 1,00) et une spécificité de 0,97 (IDE à 95 %, 0,65 à 1,00). CONCLUSION: L'examen auxiliaire pour un DCN chez les nourrissons et les enfants offrant la plus grande précision semble être la scintigraphie nucléaire utilisant le HMPAO avec ou sans imagerie tomographique; cependant, la certitude des données probantes est faible. Les modalités sans imagerie réalisées au chevet du patient nécessitent un examen plus approfondi. Enregistrement de l'étude: PROSPERO (CRD42021278788); enregistrée le 16 octobre 2021.