Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Philos Trans R Soc Lond B Biol Sci ; 369(1633): 20130140, 2014 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-24298142

RESUMEN

In contrast to protein kinases that participate in long-term potentiation (LTP) induction and memory consolidation, the autonomously active atypical protein kinase C isoform, protein kinase Mzeta (PKMζ), functions in the core molecular mechanism of LTP maintenance and long-term memory storage. Here, using multiple complementary techniques for light and electron microscopic immunolocalization, we present the first detailed characterization of the cellular and subcellular distribution of PKMζ in rat hippocampus and neocortex. We find that PKMζ is widely expressed in forebrain with prominent immunostaining in hippocampal and neocortical grey matter, and weak label in white matter. In hippocampal and cortical pyramidal cells, PKMζ expression is predominantly somatodendritic, and electron microscopy highlights the kinase at postsynaptic densities and in clusters within spines. In addition, nuclear label and striking punctate immunopositive structures in a paranuclear and dendritic distribution are seen by confocal microscopy, occasionally at dendritic bifurcations. PKMζ immunoreactive granules are observed by electron microscopy in cell bodies and dendrites, including endoplasmic reticulum. The widespread distribution of PKMζ in nuclei, nucleoli and endoplasmic reticulum suggests potential roles of this kinase in cell-wide mechanisms involving gene expression, biogenesis of ribosomes and new protein synthesis. The localization of PKMζ within postsynaptic densities and spines suggests sites where the kinase stores information during LTP maintenance and long-term memory.


Asunto(s)
Encéfalo/metabolismo , Densidad Postsináptica/metabolismo , Proteína Quinasa C/metabolismo , Células Piramidales/metabolismo , Animales , Encéfalo/citología , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Masculino , Microscopía Inmunoelectrónica , Ratas , Ratas Sprague-Dawley
2.
PLoS One ; 9(8): e104364, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25089620

RESUMEN

Long-term memory (LTM) formation requires new protein synthesis and new gene expression. Based on our work in Aplysia, we hypothesized that the rRNA genes, stimulation-dependent targets of the enzyme Poly(ADP-ribose) polymerase-1 (PARP-1), are primary effectors of the activity-dependent changes in synaptic function that maintain synaptic plasticity and memory. Using electrophysiology, immunohistochemistry, pharmacology and molecular biology techniques, we show here, for the first time, that the maintenance of forskolin-induced late-phase long-term potentiation (L-LTP) in mouse hippocampal slices requires nucleolar integrity and the expression of new rRNAs. The activity-dependent upregulation of rRNA, as well as L-LTP expression, are poly(ADP-ribosyl)ation (PAR) dependent and accompanied by an increase in nuclear PARP-1 and Poly(ADP) ribose molecules (pADPr) after forskolin stimulation. The upregulation of PARP-1 and pADPr is regulated by Protein kinase A (PKA) and extracellular signal-regulated kinase (ERK)--two kinases strongly associated with long-term plasticity and learning and memory. Selective inhibition of RNA Polymerase I (Pol I), responsible for the synthesis of precursor rRNA, results in the segmentation of nucleoli, the exclusion of PARP-1 from functional nucleolar compartments and disrupted L-LTP maintenance. Taken as a whole, these results suggest that new rRNAs (28S, 18S, and 5.8S ribosomal components)--hence, new ribosomes and nucleoli integrity--are required for the maintenance of long-term synaptic plasticity. This provides a mechanistic link between stimulation-dependent gene expression and the new protein synthesis known to be required for memory consolidation.


Asunto(s)
Potenciación a Largo Plazo/genética , Memoria a Largo Plazo/fisiología , Plasticidad Neuronal/genética , Poli(ADP-Ribosa) Polimerasas/biosíntesis , Sinapsis/genética , Animales , Colforsina/administración & dosificación , Proteínas Quinasas Dependientes de AMP Cíclico/biosíntesis , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Expresión Génica/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Ratones , Plasticidad Neuronal/fisiología , Poli(ADP-Ribosa) Polimerasa-1 , Poli Adenosina Difosfato Ribosa/biosíntesis , Poli Adenosina Difosfato Ribosa/genética , Poli(ADP-Ribosa) Polimerasas/genética , ARN Ribosómico 28S/biosíntesis , ARN Ribosómico 28S/genética , Sinapsis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA