Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Adv Physiol Educ ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38932697

RESUMEN

Much of the research about STEM students' motivation measures the relationship between student motivation and academic outcomes, focusing on the student's mindset. This study takes a different approach, considering student motivation and instructional practices. Teaching practices and student motivation were analyzed simultaneously in undergraduate Biology classes using a self-determination theory-based survey and the Classroom Observation Protocol for Undergraduate STEM, and observation notes were collected to document instructor and student behaviors. Quantitative data was used to differentiate students' motivational levels and qualitative data was collected to describe how instructors use specific teaching practices. The results provide a lens into how students' intrinsic motivation varies alongside the instructional practices and interactions in these classes. We found a correlation between higher levels of student motivation in interactive lecture and student-centered teaching profiles. This study highlights how the same practice can be implemented by multiple instructors with varying student motivation scores, pointing out the importance of fidelity to evidence-based instructional practice methods. The results of this study are discussed in the context of published empirical studies examining evidence-based instructional practices that are conceptually supportive of autonomy, competence, and relatedness. Active learning practices observed in this study correlated to positive learning outcomes are discussed and may serve as a guide for instructors interested in implementing specific active learning practices. Recommendations for instructors and departments that are interested in flexible methods to monitor progress toward active learning practices in biology and other STEM disciplines by combining the COPUS and self-determination survey results are presented.

2.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36982597

RESUMEN

Osteoarthritis, a chronic, debilitating, and painful disease, is one of the leading causes of disability and socioeconomic burden, with an estimated 250 million people affected worldwide. Currently, there is no cure for osteoarthritis and treatments for joint disease require improvements. To address the challenge of improving cartilage repair and regeneration, three-dimensional (3D) printing for tissue engineering purposes has been developed. In this review, emerging technologies are presented with an overview of bioprinting, cartilage structure, current treatment options, decellularization, bioinks, and recent progress in the field of decellularized extracellular matrix (dECM)-bioink composites is discussed. The optimization of tissue engineering approaches using 3D-bioprinted biological scaffolds with dECM incorporated to create novel bioinks is an innovative strategy to promote cartilage repair and regeneration. Challenges and future directions that may lead to innovative improvements to currently available treatments for cartilage regeneration are presented.


Asunto(s)
Bioimpresión , Ingeniería de Tejidos , Humanos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Matriz Extracelular/química , Cartílago , Impresión Tridimensional , Bioimpresión/métodos
3.
J Biol Chem ; 296: 100436, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33610546

RESUMEN

While details remain unclear, initiation of woven bone mineralization is believed to be mediated by collagen and potentially nucleated by bone sialoprotein (BSP). Interestingly, our recent publication showed that BSP and type XI collagen form complexes in mineralizing osteoblastic cultures. To learn more, we examined the protein composition of extracellular sites of de novo hydroxyapatite deposition which were enriched in BSP and Col11a1 containing an alternatively spliced "6b" exonal sequence. An alternate splice variant "6a" sequence was not similarly co-localized. BSP and Col11a1 co-purify upon ion-exchange chromatography or immunoprecipitation. Binding of the Col11a1 "6b" exonal sequence to bone sialoprotein was demonstrated with overlapping peptides. Peptide 3, containing three unique lysine-triplet sequences, displayed the greatest binding to osteoblastic cultures; peptides containing fewer lysine triplet motifs or derived from the "6a" exon yielded dramatically lower binding. Similar results were obtained with 6-carboxyfluorescein (FAM)-conjugated peptides and western blots containing extracts from osteoblastic cultures. Mass spectroscopic mapping demonstrated that FAM-peptide 3 bound to 90 kDa BSP and its 18 to 60 kDa fragments, as well as to 110 kDa nucleolin. In osteoblastic cultures, FAM-peptide 3 localized to biomineralization foci (site of BSP) and to nucleoli (site of nucleolin). In bone sections, biotin-labeled peptide 3 bound to sites of new bone formation which were co-labeled with anti-BSP antibodies. These results establish the fluorescent peptide 3 conjugate as the first nonantibody-based method to identify BSP on western blots and in/on cells. Further examination of the "6b" splice variant interactions will likely reveal new insights into bone mineralization during development.


Asunto(s)
Calcificación Fisiológica/fisiología , Colágeno Tipo XI/metabolismo , Osteopontina/metabolismo , Animales , Huesos/metabolismo , Calcificación Fisiológica/genética , Colágeno/metabolismo , Colágeno Tipo XI/genética , Fluoresceínas/química , Sialoproteína de Unión a Integrina/metabolismo , Masculino , Osteoblastos/metabolismo , Osteopontina/genética , Péptidos/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Unión al ARN/metabolismo , Ratas , Sialoglicoproteínas/metabolismo , Nucleolina
4.
Ann Rheum Dis ; 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35788494

RESUMEN

OBJECTIVES: S100A9, an alarmin that can form calprotectin (CP) heterodimers with S100A8, is mainly produced by keratinocytes and innate immune cells. The contribution of keratinocyte-derived S100A9 to psoriasis (Ps) and psoriatic arthritis (PsA) was evaluated using mouse models, and the potential usefulness of S100A9 as a Ps/PsA biomarker was assessed in patient samples. METHODS: Conditional S100A9 mice were crossed with DKO* mice, an established psoriasis-like mouse model based on inducible epidermal deletion of c-Jun and JunB to achieve additional epidermal deletion of S100A9 (TKO* mice). Psoriatic skin and joint disease were evaluated in DKO* and TKO* by histology, microCT, RNA and proteomic analyses. Furthermore, S100A9 expression was analysed in skin, serum and synovial fluid samples of patients with Ps and PsA. RESULTS: Compared with DKO* littermates, TKO* mice displayed enhanced skin disease severity, PsA incidence and neutrophil infiltration. Altered epidermal expression of selective pro-inflammatory genes and pathways, increased epidermal phosphorylation of STAT3 and higher circulating TNFα were observed in TKO* mice. In humans, synovial S100A9 levels were higher than the respective serum levels. Importantly, patients with PsA had significantly higher serum concentrations of S100A9, CP, VEGF, IL-6 and TNFα compared with patients with only Ps, but only S100A9 and CP could efficiently discriminate healthy individuals, patients with Ps and patients with PsA. CONCLUSIONS: Keratinocyte-derived S100A9 plays a regulatory role in psoriatic skin and joint disease. In humans, S100A9/CP is a promising marker that could help in identifying patients with Ps at risk of developing PsA.

5.
Int J Mol Sci ; 22(12)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34207917

RESUMEN

Osteoarthritis is a major concern in the United States and worldwide. Current non-surgical and surgical approaches alleviate pain but show little evidence of cartilage restoration. Cell-based treatments may hold promise for the regeneration of hyaline cartilage-like tissue at the site of injury or wear. Cell-cell and cell-matrix interactions have been shown to drive cell differentiation pathways. Biomaterials for clinically relevant applications can be generated from decellularized porcine auricular cartilage. This material may represent a suitable scaffold on which to seed and grow chondrocytes to create new cartilage. In this study, we used decellularization techniques to create an extracellular matrix scaffold that supports chondrocyte cell attachment and growth in tissue culture conditions. Results presented here evaluate the decellularization process histologically and molecularly. We identified new and novel biomarker profiles that may aid future cartilage decellularization efforts. Additionally, the resulting scaffold was characterized using scanning electron microscopy, fluorescence microscopy, and proteomics. Cellular response to the decellularized scaffold was evaluated by quantitative real-time PCR for gene expression analysis.


Asunto(s)
Diferenciación Celular , Condrogénesis , Cartílago Auricular/química , Matriz Extracelular/química , Ensayo de Materiales , Andamios del Tejido/química , Animales , Línea Celular , Humanos , Porcinos
6.
Int J Mol Sci ; 21(17)2020 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-32842631

RESUMEN

Osteoarthritis (OA) is a pathological degenerative condition of the joints that is widely prevalent worldwide, resulting in significant pain, disability, and impaired quality of life. The diverse etiology and pathogenesis of OA can explain the paucity of viable preventive and disease-modifying strategies to counter it. Advances in genome-editing techniques may improve disease-modifying solutions by addressing inherited predisposing risk factors and the activity of inflammatory modulators. Recent progress on technologies such as CRISPR/Cas9 and cell-based genome-editing therapies targeting the genetic and epigenetic alternations in OA offer promising avenues for early diagnosis and the development of personalized therapies. The purpose of this literature review was to concisely summarize the genome-editing options against chronic degenerative joint conditions such as OA with a focus on the more recently emerging modalities, especially CRISPR/Cas9. Future advancements in novel genome-editing therapies may improve the efficacy of such targeted treatments.


Asunto(s)
Edición Génica/métodos , Osteoartritis/genética , Osteoartritis/terapia , Animales , Sistemas CRISPR-Cas , Vesículas Extracelulares/trasplante , Terapia Genética/métodos , Humanos , Células Madre Mesenquimatosas , Regeneración
7.
Int J Mol Sci ; 21(6)2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32244989

RESUMEN

The Center of Biomedical Research Excellence in Matrix Biology strives to improve our understanding of extracellular matrix at molecular, cellular, tissue, and organismal levels to generate new knowledge about pathophysiology, normal development, and regenerative medicine. The primary goals of the Center are to i) support junior investigators, ii) enhance the productivity of established scientists, iii) facilitate collaboration between both junior and established researchers, and iv) build biomedical research infrastructure that will support research relevant to cell-matrix interactions in disease progression, tissue repair and regeneration, and v) provide access to instrumentation and technical support. A Pilot Project program provides funding to investigators who propose applying their expertise to matrix biology questions. Support from the National Institute of General Medical Sciences at the National Institutes of Health that established the Center of Biomedical Research Excellence in Matrix Biology has significantly enhanced the infrastructure and the capabilities of researchers at Boise State University, leading to new approaches that address disease diagnosis, prevention, and treatment. New multidisciplinary collaborations have been formed with investigators who may not have previously considered how their biomedical research programs addressed fundamental and applied questions involving the extracellular matrix. Collaborations with the broader matrix biology community are encouraged.


Asunto(s)
Investigación Biomédica , Conducta Cooperativa , Matriz Extracelular/metabolismo , Investigadores , Comités Consultivos , Selección de Profesión , Humanos , Estudiantes
8.
Int J Mol Sci ; 20(1)2019 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-30626024

RESUMEN

The evolution of multicellular metazoan organisms was marked by the inclusion of an extracellular matrix (ECM), a multicomponent, proteinaceous network between cells that contributes to the spatial arrangement of cells and the resulting tissue organization. [...].


Asunto(s)
Enfermedad , Matriz Extracelular/metabolismo , Crecimiento y Desarrollo , Animales , Humanos , Integrinas/metabolismo , Músculos/metabolismo , Reproducción , Ingeniería de Tejidos
9.
Int J Mol Sci ; 18(3)2017 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-28335520

RESUMEN

Chondrocytes of the growth plate undergo apoptosis during the process of endochondral ossification, as well as during the progression of osteoarthritis. Although the regulation of this process is not completely understood, alterations in the precisely orchestrated programmed cell death during development can have catastrophic results, as exemplified by several chondrodystrophies which are frequently accompanied by early onset osteoarthritis. Understanding the mechanisms that underlie chondrocyte apoptosis during endochondral ossification in the growth plate has the potential to impact the development of therapeutic applications for chondrodystrophies and associated early onset osteoarthritis. In recent years, several chondrodysplasias and collagenopathies have been recognized as protein-folding diseases that lead to endoplasmic reticulum stress, endoplasmic reticulum associated degradation, and the unfolded protein response. Under conditions of prolonged endoplasmic reticulum stress in which the protein folding load outweighs the folding capacity of the endoplasmic reticulum, cellular dysfunction and death often occur. However, unfolded protein response (UPR) signaling is also required for the normal maturation of chondrocytes and osteoblasts. Understanding how UPR signaling may contribute to cartilage pathophysiology is an essential step toward therapeutic modulation of skeletal disorders that lead to osteoarthritis.


Asunto(s)
Apoptosis , Cartílago/metabolismo , Cartílago/patología , Estrés del Retículo Endoplásmico , Osteoartritis/metabolismo , Osteoartritis/patología , Respuesta de Proteína Desplegada , Edad de Inicio , Animales , Artritis/etiología , Artritis/metabolismo , Artritis/patología , Proteínas Morfogenéticas Óseas/metabolismo , Calcificación Fisiológica , Condrocitos/metabolismo , Condrocitos/patología , Condrogénesis , Colágeno/genética , Colágeno/metabolismo , Enfermedades del Tejido Conjuntivo/etiología , Enfermedades del Tejido Conjuntivo/metabolismo , Enfermedades del Tejido Conjuntivo/patología , Retículo Endoplásmico/metabolismo , Pérdida Auditiva Sensorineural/etiología , Pérdida Auditiva Sensorineural/metabolismo , Pérdida Auditiva Sensorineural/patología , Humanos , Terapia Molecular Dirigida , Osteoartritis/epidemiología , Osteoartritis/etiología , Osteoblastos/metabolismo , Desprendimiento de Retina/etiología , Desprendimiento de Retina/metabolismo , Desprendimiento de Retina/patología
10.
Cytokine ; 72(1): 71-85, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25622278

RESUMEN

Oncostatin M (OSM) is an interleukin-6-like inflammatory cytokine reported to play a role in a number of pathological processes including cancer. Full-length OSM is expressed as a 26 kDa protein that can be proteolytically processed into 24 kDa and 22 kDa forms via removal of C-terminal peptides. In this study, we examined both the ability of OSM to bind to the extracellular matrix (ECM) and the activity of immobilized OSM on human breast carcinoma cells. OSM was observed to bind to ECM proteins collagen types I and XI, laminin, and fibronectin in a pH-dependent fashion, suggesting a role for electrostatic bonds that involves charged amino acids of both the ECM and OSM. The C-terminal extensions of 24 kDa and 26 kDa OSM, which contains six and thirteen basic amino acids, respectively, enhanced electrostatic binding to ECM at pH 6.5-7.5 when compared to 22 kDa OSM. The highest levels of OSM binding to ECM, though, were observed at acidic pH 5.5, where all forms of OSM bound to ECM proteins to a similar extent. This indicates additional electrostatic binding properties independent of the OSM C-terminal extensions. The reducing agent dithiothreitol also inhibited the binding of OSM to ECM suggesting a role for disulfide bonds in OSM immobilization. OSM immobilized to ECM was protected from cleavage by tumor-associated proteases and maintained activity following incubation at acidic pH for extended periods of time. Importantly, immobilized OSM remained biologically active and was able to induce and sustain the phosphorylation of STAT3 in T47D and ZR-75-1 human breast cancer cells over prolonged periods, as well as increase levels of STAT1 and STAT3 protein expression. Immobilized OSM also induced epithelial-mesenchymal transition-associated morphological changes in T47D cells. Taken together, these data indicate that OSM binds to ECM in a bioactive state that may have important implications for the development of chronic inflammation and tumor metastasis.


Asunto(s)
Matriz Extracelular/metabolismo , Inflamación/metabolismo , Metástasis de la Neoplasia/fisiopatología , Oncostatina M/metabolismo , Neoplasias de la Mama , Técnicas de Cocultivo , Colágeno Tipo I/metabolismo , Colágeno Tipo XI/metabolismo , Ditiotreitol/farmacología , Transición Epitelial-Mesenquimal , Femenino , Fibronectinas/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Laminina/metabolismo , Fosforilación , Unión Proteica , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal
11.
Aviat Space Environ Med ; 85(8): 798-804, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25199120

RESUMEN

INTRODUCTION: Reliable culturing methods for primary articular chondrocytes are essential to study the effects of loading and unloading on joint tissue at the cellular level. Due to the limited proliferation capacity of primary chondrocytes and their tendency to dedifferentiate in conventional culture conditions, long-term culturing conditions of primary chondrocytes can be challenging. The goal of this study was to develop a suspension culturing technique that not only would retain the cellular morphology, but also maintain the gene expression characteristics of primary articular chondrocytes. METHODS: Three-dimensional culturing methods were compared and optimized for primary articular chondrocytes in the rotating wall vessel bioreactor, which changes the mechanical culture conditions to provide a form of suspension culture optimized for low shear and turbulence. We performed gene expression analysis and morphological characterization of cells cultured in alginate beads, Cytopore-2 microcarriers, primary monolayer culture, and passaged monolayer cultures using reverse transcription-PCR and laser scanning confocal microscopy. RESULTS: Primary chondrocytes grown on Cytopore-2 microcarriers maintained the phenotypical morphology and gene expression pattern observed in primary bovine articular chondrocytes, and retained these characteristics for up to 9 d. DISCUSSION: Our results provide a novel and alternative culturing technique for primary chondrocytes suitable for studies that require suspension such as those using the rotating wall vessel bioreactor. In addition, we provide an alternative culturing technique for primary chondrocytes that can impact future mechanistic studies of osteoarthritis progression, treatments for cartilage damage and repair, and cartilage tissue engineering.


Asunto(s)
Reactores Biológicos , Técnicas de Cultivo de Célula/métodos , Condrocitos/citología , Animales , Bovinos , Expresión Génica , Microscopía Fluorescente , Rotación
12.
Hum Exp Toxicol ; 43: 9603271241231947, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38324556

RESUMEN

Objectives: Doxorubicin (DOX) is a highly effective chemotherapeutic used to treat many adult and pediatric cancers, such as solid tumors, leukemia, lymphomas and breast cancer. It can also cause injuries to multiple organs, including the heart, liver, and brain or kidney, although cardiotoxicity is the most prominent side effect of DOX. In this study, we examined the potential effects of DOX on autophagy activity in two different mouse fibroblasts.Methods: Mouse embryonic fibroblasts (NIH3T3) and mouse primary cardiac fibroblasts (CFs) were treated with DOX to assess changes in the expression of two commonly used autophagy protein markers, LC3II and p62. We also examined the effects of DOX the on expression of key genes that encode components of the molecular machinery and regulators modulating autophagy in response to both extracellular and intracellular signals.Results: We observed that LC3II levels increased and p62 levels decreased following the DOX treatment in NIH3T3 cells. However, similar effects were not observed in primary cardiac fibroblasts. In addition, DOX treatment induced the upregulation of a significant number of genes involved in autophagy in NIH3T3 cells, but not in primary cardiac fibroblasts.Conclusions: Taken together, these results indicate that DOX upregulates autophagy in fibroblasts in a cell-specific manner.


Asunto(s)
Estrés Oxidativo , Transducción de Señal , Humanos , Niño , Animales , Ratones , Células 3T3 NIH , Fibroblastos , Doxorrubicina/toxicidad , Autofagia , Cardiotoxicidad/metabolismo , Miocitos Cardíacos/metabolismo , Apoptosis
13.
BMC Res Notes ; 17(1): 58, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38414083

RESUMEN

OBJECTIVES: Osteoarthritis (OA) is a major concern in the United States and worldwide. Development and validation of robust decellularization techniques is critical in generating suitable bioscaffolds for future OA treatment options. DATA DESCRIPTIONS: In the present study, proteins from porcine auricular cartilage before and after decellularization were extracted, digested, and identified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The data represents protein profiles of both non-decellularized and decellularized porcine auricular cartilage. This data is intended to be useful to scientists who are interesting in generating biomaterials for potential relevant clinical applications using decellularized cartilage tissue.


Asunto(s)
Cartílago Auricular , Osteoartritis , Porcinos , Animales , Proteómica , Cromatografía Liquida , Espectrometría de Masas en Tándem , Ingeniería de Tejidos/métodos
14.
J Orthop Res ; 42(8): 1870-1879, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38491967

RESUMEN

The mechanical resilience of the knee meniscus is provided by a group of structural proteins in the extracellular matrix. Aging can alter the quantity and molecular structure of these proteins making the meniscus more susceptible to debilitating tears. In this study, we determined the effect of aging on the quantity of structural proteins and collagen crosslinks in human lateral meniscus, and examined whether the quantity of these molecules was predictive of tensile toughness (area under the stress-strain curve). Two age groups were tested: a young group under 40 and an older group over 65 years old. Using mass spectrometry, we quantified the abundance of proteins and collagen crosslinks in meniscal tissue that was adjacent to the dumbbell-shaped specimens used to measure uniaxial tensile toughness parallel or perpendicular to the circumferential fiber orientation. We found that the enzymatic collagen crosslink deoxypyridinoline had a significant positive correlation with toughness, and reductions in the quantity of this crosslink with aging were associated with a loss of toughness in the ground substance and fibers. The non-enzymatic collagen crosslink carboxymethyl-lysine increased in quantity with aging, and these increases corresponded to reductions in ground substance toughness. For the collagenous (Types I, II, IV, VI, VIII) and non-collagenous structural proteins (elastin, decorin, biglycan, prolargin) analyzed in this study, only the quantity of collagen VIII was predictive of toughness. This study provides valuable insights on the structure-function relationships of the human meniscus, and how aging causes structural adaptations that weaken the tissue's mechanical integrity.


Asunto(s)
Envejecimiento , Colágeno , Meniscos Tibiales , Humanos , Anciano , Adulto , Colágeno/metabolismo , Envejecimiento/fisiología , Masculino , Meniscos Tibiales/metabolismo , Femenino , Persona de Mediana Edad , Fenómenos Biomecánicos , Resistencia a la Tracción , Anciano de 80 o más Años , Adulto Joven
15.
COVID ; 4(1): 23-37, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38549916

RESUMEN

Although the impact of the SARS-CoV-2 pandemic on major metropolitan areas is broadly reported and readily available, regions with lower populations and more remote areas in the United States are understudied. The objective of this study is to determine the progression of SARS-CoV-2 sequence variants in a frontier and remote intermountain west state among university-associated communities. This study was conducted at two intermountain west universities from 2020 to 2022. Positive SARS-CoV-2 samples were confirmed by quantitative real-time reverse transcription-polymerase chain reaction and variants were identified by the next-generation sequencing of viral genomes. Positive results were obtained for 5355 samples, representing a positivity rate of 3.5% overall. The median age was 22 years. Viral genomic sequence data were analyzed for 1717 samples and phylogeny was presented. Associations between viral variants, age, sex, and reported symptoms among 1522 samples indicated a significant association between age and the Delta variant (B 1.167.2), consistent with the findings for other regions. An outbreak event of AY122 was detected August-October 2021. A 2-month delay was observed with respect to the timing of the first documented viral infection within this region compared to major metropolitan regions of the US.

16.
J Chem Inf Model ; 53(8): 2161-70, 2013 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-23808933

RESUMEN

DockoMatic is a free and open source application that unifies a suite of software programs within a user-friendly graphical user interface (GUI) to facilitate molecular docking experiments. Here we describe the release of DockoMatic 2.0; significant software advances include the ability to (1) conduct high throughput inverse virtual screening (IVS); (2) construct 3D homology models; and (3) customize the user interface. Users can now efficiently setup, start, and manage IVS experiments through the DockoMatic GUI by specifying receptor(s), ligand(s), grid parameter file(s), and docking engine (either AutoDock or AutoDock Vina). DockoMatic automatically generates the needed experiment input files and output directories and allows the user to manage and monitor job progress. Upon job completion, a summary of results is generated by Dockomatic to facilitate interpretation by the user. DockoMatic functionality has also been expanded to facilitate the construction of 3D protein homology models using the Timely Integrated Modeler (TIM) wizard. The wizard TIM provides an interface that accesses the basic local alignment search tool (BLAST) and MODELER programs and guides the user through the necessary steps to easily and efficiently create 3D homology models for biomacromolecular structures. The DockoMatic GUI can be customized by the user, and the software design makes it relatively easy to integrate additional docking engines, scoring functions, or third party programs. DockoMatic is a free comprehensive molecular docking software program for all levels of scientists in both research and education.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Simulación del Acoplamiento Molecular/métodos , Homología de Secuencia de Aminoácido , Programas Informáticos , Interfaz Usuario-Computador , Gráficos por Computador , Proteínas/química , Alineación de Secuencia
17.
Clin Orthop Relat Res ; 471(4): 1127-36, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23054514

RESUMEN

BACKGROUND: Although many etiological theories have been proposed for osteochondritis dissecans (OCD), its etiology remains unclear. Histological analysis of the articular cartilage and subchondral bone tissues of OCD lesions can provide useful information about the cellular changes and progression of OCD. Previous research is predominantly comprised of retrospective clinical studies from which limited conclusions can be drawn. QUESTIONS/PURPOSES: The purposes of this study were threefold: (1) Is osteonecrosis a consistent finding in OCD biopsy specimens? (2) Is normal articular cartilage a consistent finding in OCD biopsy specimens? (3) Do histological studies propose an etiology for OCD based on the tissue findings? METHODS: We searched the PubMed, Embase, and CINAHL databases for studies that conducted histological analyses of OCD lesions of the knee and identified 1560 articles. Of these, 11 met our inclusion criteria: a study of OCD lesions about the knee, published in the English language, and performed a histological analysis of subchondral bone and articular cartilage. These 11 studies were assessed for an etiology proposed in the study based on the study findings. RESULTS: Seven of 11 studies reported subchondral bone necrosis. Four studies reported normal articular cartilage, two studies reported degenerated or irregular articular cartilage, and five studies found a combination of normal and degenerated or irregular articular cartilage. Five studies proposed trauma or repetitive stress and two studies proposed poor blood supply as possible etiologies. CONCLUSIONS: We found limited research on histological analysis of OCD lesions of the knee. Future studies with consistent methodology are necessary to draw major conclusions about the histology and progression of OCD lesions. Inconsistent histologic findings have resulted in a lack of consensus regarding the presence of osteonecrosis, whether the necrosis is primary or secondary, the association of cartilage degeneration, and the etiology of OCD. Such studies could use a standardized grading system to allow better comparison of findings.


Asunto(s)
Cartílago Articular/patología , Articulación de la Rodilla/patología , Osteocondritis Disecante/etiología , Osteocondritis Disecante/patología , Biopsia , Niño , Progresión de la Enfermedad , Humanos
18.
Methods Mol Biol ; 2598: 217-225, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36355295

RESUMEN

Proteins from hyaline or articular cartilage can be isolated and purified using a series of chemical extraction steps and various identification techniques including mass spectrometry and immunoblotting. The isolation and purification of proteins from cartilage will facilitate the study of specific proteins and multimeric complexes of cartilage proteins to better understand their functions in normal healthy cartilage as well as pathological conditions of cartilage. Cartilage tissue engineering efforts rely on the comprehensive understanding of the composition of cartilage and the function of each of the protein constituents.


Asunto(s)
Cartílago Articular , Cartílago Hialino , Cartílago Hialino/metabolismo , Cartílago Articular/metabolismo , Proteoglicanos/metabolismo , Colágeno/metabolismo
19.
J Biomol Tech ; 34(1)2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37089873

RESUMEN

We analyzed co-authorship patterns within the National Institutes of Health Center of Biomedical Research Excellence in Matrix Biology program from 2014 to 2022. In this study, we analyzed junior investigators, senior researchers, and research scientists within a shared core facility. Social network analysis techniques were applied to evaluate the co-authorship network based on journal publications from members of the center. The results indicated that co-authorship network visualization and analysis is a useful tool for understanding the relationship between a shared core facility and young investigators within a research center. Young investigators collaborated with and relied upon the individual research scientists of the shared core facility to serve as contributing members of their extended research team. This reliance on the shared core facility effectively increases the size and productivity of the research team led by the young investigator. Our results indicate that shared core facility staff may serve as hubs within the network of biomedical researchers, particularly at institutions with a growing research emphasis. Listen to this article.


Asunto(s)
Investigación Biomédica , Estados Unidos , Humanos , Autoria , Investigadores , National Institutes of Health (U.S.) , Eficiencia
20.
Sci Rep ; 13(1): 18944, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919370

RESUMEN

Doxorubicin (DOX)-induced cardiotoxicity has been widely observed, yet the specific impact on cardiac fibroblasts is not fully understood. Additionally, the modulation of the transforming growth factor beta (TGF-ß) signaling pathway by DOX remains to be fully elucidated. This study investigated DOX's ability to modulate the expression of genes and proteins involved in the TGF-ß signaling cascade in mouse fibroblasts from two sources by assessing the impact of DOX treatment on TGF-ß inducible expression of pivotal genes and proteins within fibroblasts. Mouse embryonic fibroblasts (NIH3T3) and mouse primary cardiac fibroblasts (CFs) were treated with DOX in the presence of TGF-ß1 to assess changes in protein levels by western blot and changes in mRNA levels by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Our results revealed a dose-dependent reduction in cellular communication network factor 2 (CCN2) protein levels upon DOX treatment in both NIH3T3 and CFs, suggesting an antifibrotic activity by DOX in these fibroblasts. However, DOX only inhibited the TGF-ß1 induced expression of COL1 in NIH3T3 cells but not in CFs. In addition, we observed that DOX treatment reduced the expression of BMP1 in NIH3T3 but not primary cardiac fibroblasts. No significant changes in SMAD2 protein expression and phosphorylation in either cells were observed after DOX treatment. Finally, DOX inhibited the expression of Atf4 gene and increased the expression of Cdkn1a, Id1, Id2, Runx1, Tgfb1, Inhba, Thbs1, Bmp1, and Stat1 genes in NIH3T3 cells but not CFs, indicating the potential for cell-specific responses to DOX and its modulation of the TGF-ß signaling pathway.


Asunto(s)
Cardiotoxicidad , Factor de Crecimiento Transformador beta , Animales , Ratones , Factor de Crecimiento Transformador beta/metabolismo , Cardiotoxicidad/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Células 3T3 NIH , Fibroblastos/metabolismo , Transducción de Señal , Doxorrubicina/toxicidad , Células Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA