Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mol Biol Evol ; 31(9): 2387-401, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24962091

RESUMEN

Revealing the genetic changes responsible for antibiotic resistance can be critical for developing novel antibiotic therapies. However, systematic studies correlating genotype to phenotype in the context of antibiotic resistance have been missing. In order to fill in this gap, we evolved 88 isogenic Escherichia coli populations against 22 antibiotics for 3 weeks. For every drug, two populations were evolved under strong selection and two populations were evolved under mild selection. By quantifying evolved populations' resistances against all 22 drugs, we constructed two separate cross-resistance networks for strongly and mildly selected populations. Subsequently, we sequenced representative colonies isolated from evolved populations for revealing the genetic basis for novel phenotypes. Bacterial populations that evolved resistance against antibiotics under strong selection acquired high levels of cross-resistance against several antibiotics, whereas other bacterial populations evolved under milder selection acquired relatively weaker cross-resistance. In addition, we found that strongly selected strains against aminoglycosides became more susceptible to five other drug classes compared with their wild-type ancestor as a result of a point mutation on TrkH, an ion transporter protein. Our findings suggest that selection strength is an important parameter contributing to the complexity of antibiotic resistance problem and use of high doses of antibiotics to clear infections has the potential to promote increase of cross-resistance in clinics.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Transportadoras de Casetes de Unión a ATP/genética , Aminoglicósidos/farmacología , Farmacorresistencia Bacteriana Múltiple , Proteínas de Escherichia coli/genética , Evolución Molecular , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Mutación Puntual , Canales de Potasio/genética , Selección Genética , Análisis de Secuencia de ADN
2.
Life Sci Alliance ; 5(6)2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35256513

RESUMEN

Inflammasomes are cytosolic innate immune sensors of pathogen infection and cellular damage that induce caspase-1-mediated inflammation upon activation. Although inflammation is protective, uncontrolled excessive inflammation can cause inflammatory diseases and can be detrimental, such as in coronavirus disease (COVID-19). However, the underlying mechanisms that control inflammasome activation are incompletely understood. Here we report that the leucine-rich repeat (LRR) protein ribonuclease inhibitor (RNH1), which shares homology with LRRs of NLRP (nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing) proteins, attenuates inflammasome activation. Deletion of RNH1 in macrophages increases interleukin (IL)-1ß production and caspase-1 activation in response to inflammasome stimulation. Mechanistically, RNH1 decreases pro-IL-1ß expression and induces proteasome-mediated caspase-1 degradation. Corroborating this, mouse models of monosodium urate (MSU)-induced peritonitis and lipopolysaccharide (LPS)-induced endotoxemia, which are dependent on caspase-1, respectively, show increased neutrophil infiltration and lethality in Rnh1 -/- mice compared with wild-type mice. Furthermore, RNH1 protein levels were negatively related with disease severity and inflammation in hospitalized COVID-19 patients. We propose that RNH1 is a new inflammasome regulator with relevance to COVID-19 severity.


Asunto(s)
COVID-19/patología , Proteínas Portadoras/metabolismo , Inflamasomas/metabolismo , Proteínas Repetidas Ricas en Leucina/metabolismo , Animales , COVID-19/inmunología , Caspasa 1/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Gravedad del Paciente , Complejo de la Endopetidasa Proteasomal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA