Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell ; 169(1): 148-160.e15, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28340340

RESUMEN

Type 2 diabetes (T2D) is a worldwide epidemic with a medical need for additional targeted therapies. Suppression of hepatic glucose production (HGP) effectively ameliorates diabetes and can be exploited for its treatment. We hypothesized that targeting PGC-1α acetylation in the liver, a chemical modification known to inhibit hepatic gluconeogenesis, could be potentially used for treatment of T2D. Thus, we designed a high-throughput chemical screen platform to quantify PGC-1α acetylation in cells and identified small molecules that increase PGC-1α acetylation, suppress gluconeogenic gene expression, and reduce glucose production in hepatocytes. On the basis of potency and bioavailability, we selected a small molecule, SR-18292, that reduces blood glucose, strongly increases hepatic insulin sensitivity, and improves glucose homeostasis in dietary and genetic mouse models of T2D. These studies have important implications for understanding the regulatory mechanisms of glucose metabolism and treatment of T2D.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Gluconeogénesis/efectos de los fármacos , Hipoglucemiantes/administración & dosificación , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/antagonistas & inhibidores , Acetilación , Animales , Glucemia/metabolismo , Células Cultivadas , Glucosa/metabolismo , Factor Nuclear 4 del Hepatocito/metabolismo , Hepatocitos/metabolismo , Ensayos Analíticos de Alto Rendimiento , Resistencia a la Insulina , Ratones , Factores de Transcripción p300-CBP/metabolismo
2.
Cell ; 167(4): 1052-1066.e18, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27814504

RESUMEN

It is widely believed that inflammation associated with obesity has an important role in the development of type 2 diabetes. IκB kinase beta (IKKß) is a crucial kinase that responds to inflammatory stimuli such as tumor necrosis factor α (TNF-α) by initiating a variety of intracellular signaling cascades and is considered to be a key element in the inflammation-mediated development of insulin resistance. We show here, contrary to expectation, that IKKß-mediated inflammation is a positive regulator of hepatic glucose homeostasis. IKKß phosphorylates the spliced form of X-Box Binding Protein 1 (XBP1s) and increases the activity of XBP1s. We have used three experimental approaches to enhance the IKKß activity in the liver of obese mice and observed increased XBP1s activity, reduced ER stress, and a significant improvement in insulin sensitivity and consequently in glucose homeostasis. Our results reveal a beneficial role of IKKß-mediated hepatic inflammation in glucose homeostasis.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Estrés del Retículo Endoplásmico , Glucosa/metabolismo , Quinasa I-kappa B/metabolismo , Proteína 1 de Unión a la X-Box/metabolismo , Animales , Línea Celular Tumoral , Homeostasis , Humanos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/metabolismo , Fosforilación , Estabilidad Proteica
3.
Cell ; 161(5): 999-1011, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-26000480

RESUMEN

Despite all modern advances in medicine, an effective drug treatment of obesity has not been found yet. Discovery of leptin two decades ago created hopes for treatment of obesity. However, development of leptin resistance has been a big obstacle, mitigating a leptin-centric treatment of obesity. Here, by using in silico drug-screening methods, we discovered that Celastrol, a pentacyclic triterpene extracted from the roots of Tripterygium Wilfordi (thunder god vine) plant, is a powerful anti-obesity agent. Celastrol suppresses food intake, blocks reduction of energy expenditure, and leads to up to 45% weight loss in hyperleptinemic diet-induced obese (DIO) mice by increasing leptin sensitivity, but it is ineffective in leptin-deficient (ob/ob) and leptin receptor-deficient (db/db) mouse models. These results indicate that Celastrol is a leptin sensitizer and a promising agent for the pharmacological treatment of obesity.


Asunto(s)
Fármacos Antiobesidad/administración & dosificación , Obesidad/tratamiento farmacológico , Animales , Fármacos Antiobesidad/metabolismo , Metabolismo Energético , Perfilación de la Expresión Génica , Glucosa/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Ratones , Triterpenos Pentacíclicos , Extractos Vegetales/administración & dosificación , Tripterygium/química , Triterpenos/administración & dosificación
4.
Cell ; 156(3): 396-7, 2014 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-24485448

RESUMEN

Vogt et al. demonstrate that, in mice, maternal high-fat feeding during lactation is sufficient to program the offspring for impaired energy and glucose homeostasis throughout their lifetime. They reveal that the resulting abnormal insulin signaling in the offspring interferes with the formation of hypothalamic neural circuits that contribute to metabolic status.


Asunto(s)
Dieta Alta en Grasa , Hiperglucemia/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Lactancia , Obesidad/metabolismo , Animales , Femenino , Masculino , Embarazo
5.
Cell ; 155(1): 17-8, 2013 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-24074856

RESUMEN

Mitochondria are central regulators of cellular metabolism but how their function in a subset of cells affects whole-body energy balance is less understood. Two studies in this issue of Cell identify how diet-dependent modulation of mitochondrial fusion in specific neuronal circuits impact the metabolic status of an animal.


Asunto(s)
Estrés del Retículo Endoplásmico , GTP Fosfohidrolasas/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Obesidad/metabolismo , Animales , Femenino , Masculino
6.
J Biol Chem ; 291(33): 17394-404, 2016 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-27325692

RESUMEN

Endoplasmic reticulum (ER) stress has been shown to contribute to various metabolic diseases, including non-alcoholic fatty liver disease and type 2 diabetes. Reduction of ER stress by treatment with chemical chaperones or overexpression of ER chaperone proteins alleviates hepatic steatosis. Nonetheless, X-box binding protein 1s (XBP1s), a key transcription factor that reduces ER stress, has been proposed as a lipogenic transcription factor. In this report, we document that XBP1s leads to suppression of lipogenic gene expression and reduction of hepatic triglyceride and diacylglycerol content in livers of diet-induced obese and genetically obese and insulin-resistant ob/ob mice. Furthermore, we also show that PKCϵ activity, which correlates with fatty liver and which causes insulin resistance, was significantly reduced in diet-induced obese mice. Finally, we have shown that XBP1s reduces the hepatic fatty acid synthesis rate and enhances macrolipophagy, an initiating step in lipolysis. Our results reveal that XBP1s reduces hepatic lipogenic gene expression and improves hepatosteatosis in mouse models of obesity and insulin resistance, which leads us to conclude that XBP1s has anti-lipogenic properties in the liver.


Asunto(s)
Estrés del Retículo Endoplásmico , Ácidos Grasos/biosíntesis , Hígado Graso/metabolismo , Regulación de la Expresión Génica , Resistencia a la Insulina , Lipogénesis , Obesidad/metabolismo , Proteína 1 de Unión a la X-Box/metabolismo , Animales , Modelos Animales de Enfermedad , Ácidos Grasos/genética , Hígado Graso/genética , Hígado Graso/patología , Hígado/metabolismo , Hígado/patología , Ratones , Ratones Obesos , Obesidad/genética , Obesidad/patología , Proteína Quinasa C-epsilon/genética , Proteína Quinasa C-epsilon/metabolismo , Proteína 1 de Unión a la X-Box/genética
7.
Mol Cell ; 29(5): 541-51, 2008 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-18342602

RESUMEN

Mammalian target of rapamycin, mTOR, is a major sensor of nutrient and energy availability in the cell and regulates a variety of cellular processes, including growth, proliferation, and metabolism. Loss of the tuberous sclerosis complex genes (TSC1 or TSC2) leads to constitutive activation of mTOR and downstream signaling elements, resulting in the development of tumors, neurological disorders, and at the cellular level, severe insulin/IGF-1 resistance. Here, we show that loss of TSC1 or TSC2 in cell lines and mouse or human tumors causes endoplasmic reticulum (ER) stress and activates the unfolded protein response (UPR). The resulting ER stress plays a significant role in the mTOR-mediated negative-feedback inhibition of insulin action and increases the vulnerability to apoptosis. These results demonstrate ER stress as a critical component of the pathologies associated with dysregulated mTOR activity and offer the possibility to exploit this mechanism for new therapeutic opportunities.


Asunto(s)
Apoptosis/fisiología , Insulina/metabolismo , Transducción de Señal/fisiología , Proteínas Supresoras de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Antineoplásicos/metabolismo , Línea Celular , Preescolar , Retículo Endoplásmico/metabolismo , Genes Supresores de Tumor , Humanos , Proteínas Sustrato del Receptor de Insulina , Resistencia a la Insulina/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Complejos Multiproteicos , Neoplasias/metabolismo , Neoplasias/patología , Neuronas/citología , Neuronas/metabolismo , Estrés Oxidativo , Fenilbutiratos/metabolismo , Proteínas , Sirolimus/metabolismo , Serina-Treonina Quinasas TOR , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
8.
J Biol Chem ; 289(3): 1203-11, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-24324257

RESUMEN

The endoplasmic reticulum (ER) is a central organelle for protein biosynthesis, folding, and traffic. Perturbations in ER homeostasis create a condition termed ER stress and lead to activation of the complex signaling cascade called the unfolded protein response (UPR). Recent studies have documented that the UPR coordinates multiple signaling pathways and controls various physiologies in cells and the whole organism. Furthermore, unresolved ER stress has been implicated in a variety of metabolic disorders, such as obesity and type 2 diabetes. Therefore, intervening in ER stress and modulating signaling components of the UPR would provide promising therapeutics for the treatment of human metabolic diseases.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Estrés del Retículo Endoplásmico , Obesidad/metabolismo , Transducción de Señal , Respuesta de Proteína Desplegada , Animales , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/terapia , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Humanos , Obesidad/patología , Obesidad/terapia , Transporte de Proteínas
9.
Biochem Biophys Res Commun ; 443(2): 689-93, 2014 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-24333417

RESUMEN

Increased mammalian target of rapamycin complex 1 (mTORC1) activity has been suggested to play important roles in development of insulin resistance in obesity. mTORC1 hyperactivity also increases endoplasmic reticulum (ER) stress, which in turn contributes to development of insulin resistance and glucose intolerance. Increased IRS1 phosphorylation at Ser307 in vitro is correlated with mTORC1- and ER stress-induced insulin resistance. This phosphorylation site correlates strongly with impaired insulin receptor signaling in diabetic mice and humans. In contrast, evidence from knock-in mice suggests that phosphorylation of IRS1 at Ser307 is actually required to maintain insulin sensitivity. To study the involvement of IRS1(Ser307) phosphorylation in mTORC1-mediated glucose intolerance and insulin sensitivity in vivo, we investigated the effects of liver specific TSC1 depletion in IRS1(Ser307Ala) mice and controls. Our results demonstrate that blockade of IRS1(Ser307) phosphorylation in vivo does not prevent mTORC1-mediated glucose intolerance and insulin resistance.


Asunto(s)
Glucemia/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Resistencia a la Insulina/fisiología , Hígado/metabolismo , Complejos Multiproteicos/metabolismo , Serina/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Fosforilación , Proteína 1 del Complejo de la Esclerosis Tuberosa
10.
Cell Metab ; 36(4): 857-876.e10, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38569472

RESUMEN

Leptin resistance during excess weight gain significantly contributes to the recidivism of obesity to leptin-based pharmacological therapies. The mechanisms underlying the inhibition of leptin receptor (LepR) signaling during obesity are still elusive. Here, we report that histone deacetylase 6 (HDAC6) interacts with LepR, reducing the latter's activity, and that pharmacological inhibition of HDAC6 activity disrupts this interaction and augments leptin signaling. Treatment of diet-induced obese mice with blood-brain barrier (BBB)-permeable HDAC6 inhibitors profoundly reduces food intake and leads to potent weight loss without affecting the muscle mass. Genetic depletion of Hdac6 in Agouti-related protein (AgRP)-expressing neurons or administration with BBB-impermeable HDAC6 inhibitors results in a lack of such anti-obesity effect. Together, these findings represent the first report describing a mechanistically validated and pharmaceutically tractable therapeutic approach to directly increase LepR activity as well as identifying centrally but not peripherally acting HDAC6 inhibitors as potent leptin sensitizers and anti-obesity agents.


Asunto(s)
Leptina , Obesidad , Animales , Ratones , Histona Desacetilasa 6 , Leptina/metabolismo , Obesidad/metabolismo , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Aumento de Peso , Pérdida de Peso
11.
Proc Natl Acad Sci U S A ; 107(45): 19320-5, 2010 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-20974941

RESUMEN

Increased endoplasmic reticulum (ER) stress is one of the central mechanisms that lead to dysregulated metabolic homeostasis in obesity. It is thus crucial to understand the underpinnings of the mechanisms that lead to the development of ER stress. A high level of ER Ca(2+) is imperative for maintenance of normal ER function and this high Ca(2+) concentration of ER is maintained by sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA). Here, we show that SERCA2b protein and mRNA levels are dramatically reduced in the liver of obese mice and restoration of SERCA2b in the liver of obese and diabetic mice alleviates ER stress, increases glucose tolerance, and significantly reduces the blood glucose levels. Furthermore, overexpression of SERCA2b in the liver of obese mice significantly reduces the lipogenic gene expression and the triglyceride content in the liver. Our results document the importance of SERCA2b in dysregulated glucose and lipid homeostasis in the liver of obese mice and suggest development of drugs to increase SERCA2b activity for treatment of type 2 diabetes and nonalcoholic steatohepatitis.


Asunto(s)
Glucemia/metabolismo , Retículo Endoplásmico/metabolismo , Homeostasis , Obesidad/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/fisiología , Estrés Fisiológico , Animales , Diabetes Mellitus/metabolismo , Hígado Graso , Intolerancia a la Glucosa , Metabolismo de los Lípidos , Hígado/metabolismo , Ratones
12.
Cell Chem Biol ; 29(4): 539-540, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35452620

RESUMEN

Accumulation of fat in the liver predisposes affected individuals to a variety of diseases, yet the molecular mechanisms leading to steatosis still remain elusive. Matsushita et al. (2022) propose a novel mechanism that interconnects insulin resistance and fatty liver formation by an orchestrated regulation of Irs2 and its natural antisense transcript.


Asunto(s)
Hígado Graso , Resistencia a la Insulina , Hígado Graso/genética , Hígado Graso/metabolismo , Humanos , Resistencia a la Insulina/fisiología , Hígado/metabolismo
13.
Cell Metab ; 34(7): 1004-1022.e8, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35793654

RESUMEN

Chronic endoplasmic reticulum (ER) stress and sustained activation of unfolded protein response (UPR) signaling contribute to the development of type 2 diabetes in obesity. UPR signaling is a complex signaling pathway, which is still being explored in many different cellular processes. Here, we demonstrate that FK506-binding protein 11 (FKBP11), which is transcriptionally regulated by XBP1s, is severely reduced in the livers of obese mice. Restoring hepatic FKBP11 expression in obese mice initiates an atypical UPR signaling pathway marked by rewiring of PERK signaling toward NRF2, away from the eIF2α-ATF4 axis of the UPR. This alteration in UPR signaling establishes glucose homeostasis without changing hepatic ER stress, food consumption, or body weight. We conclude that ER stress during obesity can be beneficially rewired to promote glucose homeostasis. These findings may uncover possible new avenues in the development of novel approaches to treat diseases marked by ER stress.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glucosa , Obesidad , Proteínas de Unión a Tacrolimus , Respuesta de Proteína Desplegada , Animales , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Homeostasis , Ratones , Ratones Obesos , Obesidad/metabolismo , Transducción de Señal , Proteínas de Unión a Tacrolimus/metabolismo
14.
Autophagy ; 17(12): 4363-4385, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34030589

RESUMEN

Parkinson disease (PD)-affected brains show consistent endoplasmic reticulum (ER) stress and mitophagic dysfunctions. The mechanisms underlying these perturbations and how they are directly linked remain a matter of questions. XBP1 is a transcription factor activated upon ER stress after unconventional splicing by the nuclease ERN1/IREα thereby yielding XBP1s, whereas PINK1 is a kinase considered as the sensor of mitochondrial physiology and a master gatekeeper of mitophagy process. We showed that XBP1s transactivates PINK1 in human cells, primary cultured neurons and mice brain, and triggered a pro-mitophagic phenotype that was fully dependent of endogenous PINK1. We also unraveled a PINK1-dependent phosphorylation of XBP1s that conditioned its nuclear localization and thereby, governed its transcriptional activity. PINK1-induced XBP1s phosphorylation occurred at residues reminiscent of, and correlated to, those phosphorylated in substantia nigra of sporadic PD-affected brains. Overall, our study delineated a functional loop between XBP1s and PINK1 governing mitophagy that was disrupted in PD condition.Abbreviations: 6OHDA: 6-hydroxydopamine; baf: bafilomycin A1; BECN1: beclin 1; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CASP3: caspase 3; CCCP: carbonyl cyanide chlorophenylhydrazone; COX8A: cytochrome c oxidase subunit 8A; DDIT3/CHOP: DNA damage inducible transcript 3; EGFP: enhanced green fluorescent protein; ER: endoplasmic reticulum; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; FACS: fluorescence-activated cell sorting; HSPD1/HSP60: heat shock protein family D (Hsp60) member 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MFN2: mitofusin 2; OPTN: optineurin; PD: Parkinson disease; PINK1: PTEN-induced kinase 1; PCR: polymerase chain reaction:; PRKN: parkin RBR E3 ubiquitin protein ligase; XBP1s [p-S61A]: XBP1s phosphorylated at serine 61; XBP1s [p-T48A]: XBP1s phosphorylated at threonine 48; shRNA: short hairpin RNA, SQSTM1/p62: sequestosome 1; TIMM23: translocase of inner mitochondrial membrane 23; TM: tunicamycin; TMRM: tetramethyl rhodamine methylester; TOMM20: translocase of outer mitochondrial membrane 20; Toy: toyocamycin; TP: thapsigargin; UB: ubiquitin; UB (S65): ubiquitin phosphorylated at serine 65; UPR: unfolded protein response, XBP1: X-box binding protein 1; XBP1s: spliced X-box binding protein 1.


Asunto(s)
Mitofagia , Enfermedad de Parkinson , Proteínas Quinasas/metabolismo , Proteína 1 de Unión a la X-Box/metabolismo , Animales , Autofagia , Endorribonucleasas , Ratones , Mitofagia/genética , Enfermedad de Parkinson/genética , Fosforilación , Proteínas Serina-Treonina Quinasas
15.
Sci Rep ; 9(1): 12809, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31488870

RESUMEN

Celastrol is a leptin-sensitizing agent with profound anti-obesity effects in diet-induced obese (DIO) mice. However, the genes and pathways that mediate celastrol-induced leptin sensitization have not been fully understood. By comparing the hypothalamic transcriptomes of celastrol and vehicle-treated DIO mice, we identified lipocalin-2 (Lcn2) as the gene most strongly upregulated by celastrol. LCN2 was previously suggested as an anorexigenic and anti-obesity agent. Celastrol increased LCN2 protein levels in hypothalamus, liver, fat, muscle, and bone marrow, as well as in the plasma. However, genetic deficiency of LCN2 altered neither the development of diet-induced obesity, nor the ability of celastrol to promote weight loss and improve obesity-associated dyshomeostasis. We conclude that LCN2 is dispensable for both high fat diet-induced obesity and its therapeutic reduction by celastrol.


Asunto(s)
Fármacos Antiobesidad/farmacología , Peso Corporal/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Lipocalina 2/fisiología , Triterpenos/farmacología , Pérdida de Peso/efectos de los fármacos , Animales , Femenino , Expresión Génica/efectos de los fármacos , Lipocalina 2/deficiencia , Lipocalina 2/metabolismo , Masculino , Ratones Endogámicos C57BL , Obesidad/metabolismo , Triterpenos Pentacíclicos
16.
Nat Med ; 25(4): 575-582, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30833749

RESUMEN

Celastrol, a pentacyclic triterpene, is the most potent antiobesity agent that has been reported thus far1. The mechanism of celastrol's leptin-sensitizing and antiobesity effects has not yet been elucidated. In this study, we identified interleukin-1 receptor 1 (IL1R1) as a mediator of celastrol's action by using temporally resolved analysis of the hypothalamic transcriptome in celastrol-treated DIO, lean, and db/db mice. We demonstrate that IL1R1-deficient mice are completely resistant to the effects of celastrol in leptin sensitization and treatment of obesity, diabetes, and nonalcoholic steatohepatitis. Thus, we conclude that IL1R1 is a gatekeeper for celastrol's metabolic actions.


Asunto(s)
Fármacos Antiobesidad/uso terapéutico , Leptina/farmacología , Obesidad/tratamiento farmacológico , Receptores Tipo I de Interleucina-1/metabolismo , Triterpenos/uso terapéutico , Animales , Fármacos Antiobesidad/farmacología , Dieta , Células HEK293 , Humanos , Proteína Antagonista del Receptor de Interleucina 1/administración & dosificación , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Triterpenos Pentacíclicos , Triterpenos/farmacología
17.
Sci Transl Med ; 11(510)2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31534017

RESUMEN

Transforming growth factor-ß1 (TGFß1) has been identified as a major pathogenic factor underlying the development of diabetic nephropathy (DN). However, the current strategy of antagonizing TGFß1 has failed to demonstrate favorable outcomes in clinical trials. To identify a different therapeutic approach, we designed a mass spectrometry-based DNA-protein interaction screen to find transcriptional repressors that bind to the TGFB1 promoter and identified Yin Yang 1 (YY1) as a potent repressor of TGFB1. YY1 bound directly to TGFB1 promoter regions and repressed TGFB1 transcription in human renal mesangial cells. In mouse models, YY1 was elevated in mesangial cells during early diabetic renal lesions and decreased in later stages, and knockdown of renal YY1 aggravated, whereas overexpression of YY1 attenuated glomerulosclerosis. In addition, although their duration of diabetic course was comparable, patients with higher YY1 expression developed diabetic nephropathy more slowly compared to those who presented with lower YY1 expression. We found that a small molecule, eudesmin, suppressed TGFß1 and other profibrotic factors by increasing YY1 expression in human renal mesangial cells and attenuated diabetic renal lesions in DN mouse models by increasing YY1 expression. These results suggest that YY1 is a potent transcriptional repressor of TGFB1 during the development of DN in diabetic mice and that small molecules targeting YY1 may serve as promising therapies for treating DN.


Asunto(s)
Nefropatías Diabéticas/genética , Transcripción Genética , Factor de Crecimiento Transformador beta1/genética , Factor de Transcripción YY1/metabolismo , Animales , Secuencia de Bases , ADN/metabolismo , Nefropatías Diabéticas/patología , Progresión de la Enfermedad , Furanos/farmacología , Furanos/uso terapéutico , Humanos , Lignanos/farmacología , Lignanos/uso terapéutico , Masculino , Células Mesangiales/efectos de los fármacos , Células Mesangiales/metabolismo , Células Mesangiales/patología , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/metabolismo , Regiones Promotoras Genéticas , Unión Proteica/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Factor de Crecimiento Transformador beta1/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
18.
Diabetes ; 56(2): 311-9, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17259374

RESUMEN

Melanin concentrating hormone (MCH) is a hypothalamic neuropeptide known to play a critical role in energy balance. We have previously reported that overexpression of MCH is associated with mild obesity. In addition, mice have substantial hyperinsulinemia and islet hyperplasia that is out of proportion with their degree of obesity. In this study, we further explored the role of MCH in the endocrine pancreas. Both MCH and MCHR1 are expressed in mouse and human islets and in clonal beta-cell lines as assessed using quantitative real-time PCR and immunohistochemistry. Mice lacking MCH (MCH-KO) on either a C57Bl/6 or 129Sv genetic background showed a significant reduction in beta-cell mass and complemented our earlier observation of increased beta-cell mass in MCH-overexpressing mice. Furthermore, the compensatory islet hyperplasia secondary to a high-fat diet, which was evident in wild-type controls, was attenuated in MCH-KO. Interestingly, MCH enhanced insulin secretion in human and mouse islets and rodent beta-cell lines in a dose-dependent manner. Real-time PCR analyses of islet RNA derived from MCH-KO revealed altered expression of islet-enriched genes such as glucagon, forkhead homeobox A2, hepatocyte nuclear factor (HNF)4alpha, and HNF1alpha. Together, these data provide novel evidence for an autocrine role for MCH in the regulation of beta-cell mass dynamics and in islet secretory function and suggest that MCH is part of a hypothalamic-islet (pancreatic) axis.


Asunto(s)
Grasas de la Dieta/farmacología , Células Secretoras de Glucagón/metabolismo , Hormonas Hipotalámicas/metabolismo , Células Secretoras de Insulina/metabolismo , Melaninas/metabolismo , Hormonas Hipofisarias/metabolismo , Receptores de la Hormona Hipofisaria/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Expresión Génica , Humanos , Hormonas Hipotalámicas/genética , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Melaninas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Hormonas Hipofisarias/genética , Transducción de Señal/fisiología
19.
Mol Metab ; 7: 119-131, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29129613

RESUMEN

OBJECTIVE: Peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) promotes hepatic gluconeogenesis by activating HNF4α and FoxO1. PGC-1α expression in the liver is highly elevated in obese and diabetic conditions, leading to increased hepatic glucose production. We previously showed that the spliced form of X-box binding protein 1 (XBP1s) suppresses FoxO1 activity and hepatic gluconeogenesis. The shared role of PGC-1α and XBP1s in regulating FoxO1 activity and gluconeogenesis led us to investigate the probable interaction between PGC-1α and XBP1s and its role in glucose metabolism. METHODS: We investigated the biochemical interaction between PGC-1α and XBP1s and examined the role of their interaction in glucose homeostasis using animal models. RESULTS: We show that PGC-1α interacts with XBP1s, which plays an anti-gluconeogenic role in the liver by suppressing FoxO1 activity. The physical interaction between PGC-1α and XBP1s leads to suppression of XBP1s activity rather than its activation. Upregulating PGC-1α expression in the liver of lean mice lessens XBP1s protein levels, and reducing PGC-1α levels in obese and diabetic mouse liver restores XBP1s protein induction. CONCLUSIONS: Our findings reveal a novel function of PGC-1α as a suppressor of XBP1s function, suggesting that hepatic PGC-1α promotes gluconeogenesis through multiple pathways as a co-activator for HNF4α and FoxO1 and also as a suppressor for anti-gluconeogenic transcription factor XBP1s.


Asunto(s)
Gluconeogénesis , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Proteína 1 de Unión a la X-Box/metabolismo , Animales , Línea Celular , Células Cultivadas , Proteína Forkhead Box O1/metabolismo , Homeostasis , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Unión Proteica , Proteína 1 de Unión a la X-Box/genética
20.
J Clin Invest ; 112(10): 1521-32, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14617753

RESUMEN

The insulin receptor substrate-2 (Irs2) branch of the insulin/IGF signaling system coordinates peripheral insulin action and pancreatic beta cell function, so mice lacking Irs2 display similarities to humans with type 2 diabetes. Here we show that beta cell-specific expression of Irs2 at a low or a high level delivered a graded physiologic response that promoted beta cell growth, survival, and insulin secretion that prevented diabetes in Irs2-/- mice, obese mice, and streptozotocin-treated mice; and that upon transplantation, the transgenic islets cured diabetes more effectively than WT islets. Thus, pharmacological approaches that promote Irs2 expression in beta cells, especially specific cAMP agonists, could be rational treatments for beta cell failure and diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/prevención & control , Islotes Pancreáticos/fisiología , Fosfoproteínas/metabolismo , Regulación hacia Arriba , Animales , Apoptosis/fisiología , Tamaño de la Célula , Diabetes Mellitus Experimental , Grasas de la Dieta/metabolismo , Regulación de la Expresión Génica , Humanos , Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina , Factor I del Crecimiento Similar a la Insulina/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Trasplante de Islotes Pancreáticos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Fosfoproteínas/genética , Receptor de Insulina/metabolismo , Transducción de Señal/fisiología , Tasa de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA