Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39062782

RESUMEN

Sham control groups are essential in experimental animal studies to reduce the influence of surgical intervention. The intraluminal filament procedure is one of the most common models of middle cerebral artery occlusion (MCAO) used in the study of brain ischemia. However, a sham group is usually not included in the experimental design of these studies. In this study, we aimed to evaluate the relevance of the sham group by analyzing and comparing the brain protein profiles of the sham and MCAO groups. In the sham group, 98 dysregulated proteins were detected, compared to 171 in the ischemic group. Moreover, a comparative study of protein profiles revealed the existence of a pool of 57 proteins that appeared to be dysregulated in both sham and ischemic animals. These results indicated that the surgical procedure required for the intraluminal occlusion of the middle cerebral artery (MCA) induces changes in brain protein expression that are not associated with ischemic lesions. This study highlights the importance of including sham control groups in the experimental design, to ensure that surgical intervention does not affect the therapeutic target under study.


Asunto(s)
Isquemia Encefálica , Encéfalo , Infarto de la Arteria Cerebral Media , Proteómica , Animales , Proteómica/métodos , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Masculino , Ratas , Modelos Animales de Enfermedad , Proteoma/metabolismo
2.
J Cereb Blood Flow Metab ; : 271678X241237427, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38436292

RESUMEN

Alteplase (rtPA) remains the standard thrombolytic drug for acute ischemic stroke. However, new rtPA-derived molecules, such as tenecteplase (TNK), with prolonged half-lives following a single bolus administration, have been developed. Although TNK is currently under clinical evaluation, the limited preclinical data highlight the need for additional studies to elucidate its benefits. The toxicities of rtPA and TNK were evaluated in endothelial cells, astrocytes, and neuronal cells. In addition, their in vivo efficacy was independently assessed at two research centers using an ischemic thromboembolic mouse model. Both therapies were tested via early (20 and 30 min) and late administration (4 and 4.5 h) after stroke. rtPA, but not TNK, caused cell death only in neuronal cultures. Mice were less sensitive to thrombolytic therapies than humans, requiring doses 10-fold higher than the established clinical dose. A single bolus dose of 2.5 mg/kg TNK led to an infarct reduction similar to perfusion with 10 mg/kg of rtPA. Early administration of TNK decreased the hemorrhagic transformations compared to that by the early administration of rtPA; however, this result was not obtained following late administration. These two independent preclinical studies support the use of TNK as a promising reperfusion alternative to rtPA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA