Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Allergy Clin Immunol ; 153(6): 1729-1735.e7, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38272372

RESUMEN

BACKGROUND: Severe bronchiolitis (ie, bronchiolitis requiring hospitalization) during infancy is a major risk factor for developing childhood asthma. However, the biological mechanisms linking these 2 conditions remain unclear. OBJECTIVE: We sought to investigate the longitudinal relationship between nasopharyngeal airway long noncoding RNA (lncRNA) in infants with severe bronchiolitis and subsequent asthma development. METHODS: In this multicenter prospective cohort study of infants with severe bronchiolitis, we performed RNA sequencing of nasopharyngeal airway lncRNAs at index hospitalization. First, we identified differentially expressed lncRNAs (DE-lncRNAs) associated with asthma development by age 6 years. Second, we investigated the associations of DE-lncRNAs with asthma-related clinical characteristics. Third, to characterize the function of DE-lncRNAs, we performed pathway analysis for mRNA targeted by DE-lncRNAs. Finally, we examined the associations of DE-lncRNAs with nasal cytokines at index hospitalization. RESULTS: Among 343 infants with severe bronchiolitis (median age, 3 months), we identified 190 DE-lncRNAs (false-discovery rate [FDR] < 0.05) associated with asthma development (eg, LINC02145, RAMP2-AS1, and PVT1). These DE-lncRNAs were associated with asthma-related clinical characteristics (FDR < 0.05), for example, respiratory syncytial virus or rhinovirus infection, infant eczema, and IgE sensitization. Furthermore, DE-lncRNAs were characterized by asthma-related pathways, including mitogen-activated protein kinase, FcɛR, and phosphatidylinositol 3-kinase (PI3K)-protein kinase B signaling pathways (FDR < 0.05). These DE-lncRNAs were also associated with nasal cytokines (eg, IL-1ß, IL-4, and IL-13; FDR < 0.05). CONCLUSIONS: In a multicenter cohort study of infants with severe bronchiolitis, we identified nasopharyngeal airway lncRNAs associated with childhood asthma development, characterized by asthma-related clinical characteristics, asthma-related pathways, and nasal cytokines. Our approach identifies lncRNAs underlying the bronchiolitis-asthma link and facilitates the early identification of infants at high risk of subsequent asthma development.


Asunto(s)
Asma , Bronquiolitis , Nasofaringe , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Asma/genética , Lactante , Bronquiolitis/genética , Masculino , Femenino , Estudios Prospectivos , Preescolar , Niño , Citocinas , Factores de Riesgo
2.
BMJ Open Respir Res ; 11(1)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39089741

RESUMEN

BACKGROUND: Respiratory syncytial virus (RSV) bronchiolitis contributes to a large morbidity and mortality burden globally. While emerging evidence suggests that airway microRNA (miRNA) is involved in the pathobiology of RSV infection, its role in the disease severity remains unclear. METHODS: In this multicentre prospective study of infants (aged<1 year) hospitalised for RSV bronchiolitis, we sequenced the upper airway miRNA and messenger RNA (mRNA) at hospitalisation. First, we identified differentially expressed miRNAs (DEmiRNAs) associated with higher bronchiolitis severity-defined by respiratory support (eg, positive pressure ventilation, high-flow oxygen therapy) use. We also examined the biological significance of miRNAs through pathway analysis. Second, we identified differentially expressed mRNAs (DEmRNAs) associated with bronchiolitis severity. Last, we constructed miRNA-mRNA coexpression networks and determined hub mRNAs by weighted gene coexpression network analysis (WGCNA). RESULTS: In 493 infants hospitalised with RSV bronchiolitis, 19 DEmiRNAs were associated with bronchiolitis severity (eg, miR-27a-3p, miR-26b-5p; false discovery rate<0.10). The pathway analysis using miRNA data identified 1291 bronchiolitis severity-related pathways-for example, regulation of cell adhesion mediated by integrin. Second, 1298 DEmRNAs were associated with bronchiolitis severity. Last, of these, 190 DEmRNAs were identified as targets of DEmiRNAs and negatively correlated with DEmiRNAs. By applying WGCNA to DEmRNAs, four disease modules were significantly associated with bronchiolitis severity-for example, microtubule anchoring, cell-substrate junction. The hub genes for each of these modules were also identified-for example, PCM1 for the microtubule anchoring module, LIMS1 for the cell-substrate junction module. CONCLUSIONS: In infants hospitalised for RSV bronchiolitis, airway miRNA-mRNA coexpression network contributes to the pathobiology of bronchiolitis severity.


Asunto(s)
MicroARNs , Infecciones por Virus Sincitial Respiratorio , Índice de Severidad de la Enfermedad , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Estudios Prospectivos , Infecciones por Virus Sincitial Respiratorio/genética , Lactante , Masculino , Femenino , Bronquiolitis/genética , Bronquiolitis/terapia , Bronquiolitis Viral/genética , Bronquiolitis Viral/terapia , Recién Nacido , ARN Mensajero/metabolismo , ARN Mensajero/genética , Perfilación de la Expresión Génica
3.
Front Immunol ; 15: 1330991, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38410509

RESUMEN

Bronchiolitis, a viral lower respiratory infection, is the leading cause of infant hospitalization, which is associated with an increased risk for developing asthma later in life. Bronchiolitis can be caused by several respiratory viruses, such as respiratory syncytial virus (RSV), rhinovirus (RV), and others. It can also be caused by a solo infection (e.g., RSV- or RV-only bronchiolitis) or co-infection with two or more viruses. Studies have shown viral etiology-related differences between RSV- and RV-only bronchiolitis in the immune response, human microRNA (miRNA) profiles, and dominance of certain airway microbiome constituents. Here, we identified bacterial small RNAs (sRNAs), the prokaryotic equivalent to eukaryotic miRNAs, that differ between infants of the 35th Multicenter Airway Research Collaboration (MARC-35) cohort with RSV- versus RV-only bronchiolitis. We first derived reference sRNA datasets from cultures of four bacteria known to be associated with bronchiolitis (i.e., Haemophilus influenzae, Moraxella catarrhalis, Moraxella nonliquefaciens, and Streptococcus pneumoniae). Using these reference sRNA datasets, we found several sRNAs associated with RSV- and RV-only bronchiolitis in our human nasal RNA-Seq MARC-35 data. We also determined potential human transcript targets of the bacterial sRNAs and compared expression of the sRNAs between RSV- and RV-only cases. sRNAs are known to downregulate their mRNA target, we found that, compared to those associated with RV-only bronchiolitis, sRNAs associated with RSV-only bronchiolitis may relatively activate the IL-6 and IL-8 pathways and relatively inhibit the IL-17A pathway. These data support that bacteria may be contributing to inflammation differences seen in RSV- and RV-only bronchiolitis, and for the first time indicate that the potential mechanism in doing so may be through bacterial sRNAs.


Asunto(s)
Bronquiolitis , Infecciones por Enterovirus , MicroARNs , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Virus , Lactante , Humanos , Rhinovirus/genética , ARN Bacteriano , Bronquiolitis/genética , Virus Sincitial Respiratorio Humano/genética , Infecciones por Virus Sincitial Respiratorio/genética , Inmunidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA