Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Biomacromolecules ; 24(3): 1432-1444, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36821593

RESUMEN

Multiresponsive hydrogels, which are smart soft materials that respond to more than one external stimulus, have emerged as powerful tools for biomedical applications, such as drug delivery. Within this context and with the aim of eliminating the systematic administration of antibiotics, special attention is being paid to the development of systems for controlled delivery of antibiotic for topical treatment of bacterial infections. In this work, an electro-chemo responsive hydrogel able to release chloramphenicol (CAM), a broad spectrum antibiotic also used for anticancer therapy, is proposed. This has been prepared by grafting poly(acrylic acid) (PAA) to sodium alginate (Alg) and in situ encapsulation of poly(3,4-ethylenedioxythiophene) nanoparticles loaded with CAM (PEDOT/CAM NPs), which were obtained by emulsion polymerization. Although the response to electrical stimuli of PEDOT was the main control for the release of CAM from PEDOT/CAM NPs, the release by passive diffusion had a relatively important contribution. Conversely, the passive release of antibiotic from the whole engineered hydrogel system, Alg-g-PAA/PEDOT/CAM, was negligible, whereas significant release was achieved under electrostimulation in an acid environment. Bacterial tests and assays with cancer cells demonstrated that the biological activity of CAM remained after release by electrical stimulation. Notably, the successful dual-response of the developed hydrogel to electrical stimuli and pH changes evidence the great prospect of this smart material in the biomedical field, as a tool to fight against bacterial infections and to provide local cancer treatment.


Asunto(s)
Infecciones Bacterianas , Cloranfenicol , Humanos , Hidrogeles , Antibacterianos , Concentración de Iones de Hidrógeno
2.
Biomacromolecules ; 24(11): 4680-4694, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37747816

RESUMEN

3D printing of pharmaceuticals offers a unique opportunity for long-term, sustained drug release profiles for an array of treatment options. Unfortunately, this approach is often limited by physical compounding or processing limitations. Modification of the active drug into a prodrug compound allows for seamless incorporation with advanced manufacturing methods that open the door to production of complex tissue scaffold drug depots. Here we demonstrate this concept using salicylic acids with varied prodrug structures for control of physical and chemical properties. The role of different salicylic acid derivatives (salicylic acid, bromosalicylic allyl ester, iodosalicylic allyl ester) and linker species (allyl salicylate, allyl 2-(allyloxy)benzoate, allyl 2-(((allyloxy)carbonyl)oxy)benzoate) were investigated using thiol-ene cross-linking in digital light processing (DLP) 3D printing to produce porous prodrug tissue scaffolds containing more than 50% salicylic acid by mass. Salicylic acid photopolymer resins were all found to be highly reactive (solidification within 5 s of irradiation at λ = 405 nm), while the cross-linked solids display tunable thermomechanical behaviors with low glass transition temperatures (Tgs) and elastomeric behaviors, with the carbonate species displaying an elastic modulus matching that of adipose tissue (approximately 65 kPa). Drug release profiles were found to be zero order, sustained release based upon hydrolytic degradation of multilayered scaffolds incorporating fluorescent modeling compounds, with release rates tuned through selection of the linker species. Cytocompatibility in 2D and 3D was further demonstrated for all species compared to polycarbonate controls, as well as salicylic acid-containing composites (physical incorporation), over a 2-week period using murine fibroblasts. The use of drugs as the matrix material for solid prodrug tissue scaffolds opens the door to novel therapeutic strategies, longer sustained release profiles, and even reduced complications for advanced medicine.


Asunto(s)
Profármacos , Andamios del Tejido , Ratones , Animales , Andamios del Tejido/química , Ácido Salicílico/química , Preparaciones de Acción Retardada/química , Liberación de Fármacos , Ésteres , Impresión Tridimensional
3.
Macromol Rapid Commun ; 44(15): e2300132, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37191109

RESUMEN

Six acrylamide resins, derived from l-phenylalanine and l-leucine, are designed for application in digital light processing (DLP) printers to obtain biodegradable thermoset polymers. The acrylamide copolymers are prepared under light irradiation at 405 nm and thermal post-curing processes. Low molecular weight poly(ethylene glycol)diacrylate (PEGDA) and N,N-dimethylacrylamide (DMAM), both liquid resins, are used as co-monomers and diluents for the amino acid-derived acrylamide solubilization. The presence of two phenylalanine units and two ester groups in the acrylamide monomer accuses a fast degradation rate in hydrolytic medium in 90 days. The residual products leached in the aqueous media prove to be non-cytotoxic, when 3D-printed samples are cultured with osteoblast cells (MG63), which represents an advantage for the safe disposal of printer waste materials. The scaled-up pieces derived from l-phenylalanine and diethylene glycol, as amino acid-derived acrylamide (named compound C), PEGDA and DMAM, present high dimensional stability after DLP printing of complex structures used as testing samples. Layers of 50 µm of thickness are well cohesive having isotropic behavior, as demonstrated with tensile-strain measurements performed in X-Y-Z (plane) directions. The compound C, which contains phenylalanine amino acid, reveals a promising potential to replace non-biodegradable acrylate polymers used in prototyping systems.


Asunto(s)
Acrilamida , Aminoácidos , Impresión Tridimensional , Polímeros , Fenilalanina
4.
Langmuir ; 38(42): 12905-12914, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36229043

RESUMEN

CRENKA [Cys-Arg-(NMe)Glu-Lys-Ala, where (NMe)Glu refers to N-methyl-Glu], an anti-cancer pentapeptide that induces prostate tumor necrosis and significant reduction in tumor growth, was engineered to increase the resistance to endogenous proteases of its parent peptide, CREKA (Cys-Arg-Glu-Lys-Ala). Considering their high tendency to aggregate, the self-assembly of CRENKA and CREKA into well-defined and ordered structures has been examined as a function of peptide concentration and pH. Spectroscopic studies and atomistic molecular dynamics simulations reveal significant differences between the secondary structures of CREKA and CRENKA. Thus, the restrictions imposed by the (NMe)Glu residue reduce the conformational variability of CRENKA with respect to CREKA, which significantly affects the formation of well-defined and ordered self-assembly morphologies. Aggregates with poorly defined morphology are obtained from solutions with low and moderate CREKA concentrations at pH 4, whereas well-defined dendritic microstructures with fractal geometry are obtained from CRENKA solutions with similar peptide concentrations at pH 4 and 7. The formation of dendritic structures is proposed to follow a two-step mechanism: (1) pseudo-spherical particles are pre-nucleated through a diffusion-limited aggregation process, pre-defining the dendritic geometry, and (2) such pre-nucleated structures coalesce by incorporating conformationally restrained CRENKA molecules from the solution to their surfaces, forming a continuous dendritic structure. Instead, no regular assembly is obtained from solutions with high peptide concentrations, as their dynamics is dominated by strong repulsive peptide-peptide electrostatic interactions, and from solutions at pH 10, in which the total peptide charge is zero. Overall, results demonstrate that dendritic structures are only obtained when the molecular charge of CRENKA, which is controlled through the pH, favors kinetics over thermodynamics during the self-assembly process.


Asunto(s)
Simulación de Dinámica Molecular , Péptidos , Estructura Secundaria de Proteína , Péptidos/química , Termodinámica , Péptido Hidrolasas
5.
Biomacromolecules ; 22(4): 1472-1483, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33683869

RESUMEN

Polyorthoesters are a highly desirable class of cytocompatible materials that are able to rapidly surface-erode. Despite their promise, their mechanical weakness and complex synthesis have limited their processability and application in advanced technologies. Herein, we report a readily accessible family of cross-linked poly(orthoester-thioether) (POETE) materials that are suitable for processing via photopolymerization. Polymer networks are accessed through bifunctional orthoester precursors using simple thiol-ene addition chemistry. The mobility of the polymer chains and the cross-linking density within the polymer structure can be tuned through the choice of the monomer, which in turn presents customizable thermal and mechanical properties in the resulting materials. The photopolymerizability of these POETE materials also allows for processing via additive manufacturing, which is demonstrated on a commercial 3D printer. Post-processing conditions and architecture are crucial to material degradability and are exploited for programmed bulk-release applications with degradation rate and release time linearly dependent on the specimen dimensions, such as strand or shell thickness. Analogous to acid-releasing polylactide materials, degradation products of the POETE materials show cytocompatibility below a certain concentration/acidity threshold. This research highlights the simplicity, versatility, and applicability of POETE networks as cytocompatible, surface-eroding materials that can be processed by additive manufacturing for advanced applications.


Asunto(s)
Impresión Tridimensional , Compuestos de Sulfhidrilo , Hidrogeles , Polímeros
6.
Angew Chem Int Ed Engl ; 60(49): 25856-25864, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34551190

RESUMEN

The stereochemistry of polymers has a profound impact on their mechanical properties. While this has been observed in thermoplastics, studies on how stereochemistry affects the bulk properties of swollen networks, such as hydrogels, are limited. Typically, changing the stiffness of a hydrogel is achieved at the cost of changing another parameter, that in turn affects the physical properties of the material and ultimately influences the cellular response. Herein, we report that by manipulating the stereochemistry of a double bond, formed in situ during gelation, materials with diverse mechanical properties but comparable physical properties can be obtained. Click-hydrogels that possess a high % trans content are stiffer than their high % cis analogues by almost a factor of 3. Human mesenchymal stem cells acted as a substrate stiffness cell reporter demonstrating the potential of these platforms to study mechanotransduction without the influence of other external factors.

7.
J Am Chem Soc ; 142(46): 19689-19697, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33166121

RESUMEN

With society's growing awareness of climate change, novel renewable and naturally sourced materials have received increasing attention as substitutes for petroleum-based products. Laminarin (LAM-OH) is a highly abundant, nontoxic, degradable polysaccharide found in marine organisms and hence is a promising sustainable polymeric candidate. This work reports on a simple, environmentally friendly, and customizable functionalization strategy for producing a toolbox of LAM-OH derivatives under mild conditions. Herein, natural-origin macromolecules exhibiting specific chemical moieties, namely, allyl, amine, carboxylic acid, thiol, aldehyde, and catechol, were prepared and chemically characterized. Furthermore, the obtained polymers were processed into cytocompatible hydrogels, obtained by employing distinct cross-linking mechanisms, to assess their potential for biomedical purposes. The application scope of such polymers could be extended to fields such as catalysis, cosmetics, life sciences, and food packaging, which can also benefit from having sustainable, nontoxic, and degradable materials. Moreover, it is anticipated that the methodology employed to create this library of new natural-based products could be adapted to modify other polysaccharides and biopolymers in general.

8.
Biomacromolecules ; 21(10): 3984-3996, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-32970416

RESUMEN

Dynamic covalent chemistry applied to polymers has attracted significant attention over the past decade. Within this area, this review highlights the recent research on polysaccharide-based hydrogels cross-linked by boronic acid moieties, illustrating its versatility and relevance in biomaterials science to design self-healing, multiple stimuli-responsive, and adaptive biointerfaces and advanced functional devices.


Asunto(s)
Materiales Biocompatibles , Hidrogeles , Ácidos Borónicos , Polímeros , Polisacáridos
9.
Biomacromolecules ; 21(3): 1037-1059, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32058702

RESUMEN

The advent of additive manufacturing offered the potential to revolutionize clinical medicine, particularly with patient-specific implants across a range of tissue types. However, to date, there are very few examples of polymers being used for additive processes in clinical settings. The state of the art with regards to 3D printable polymeric materials being exploited to produce novel clinically relevant implants is discussed here. We focus on the recent advances in the development of implantable, polymeric medical devices and tissue scaffolds without diverging extensively into bioprinting. By introducing the major 3D printing techniques along with current advancements in biomaterials, we hope to provide insight into how these fields may continue to advance while simultaneously reviewing the ongoing work in the field.


Asunto(s)
Materiales Biocompatibles , Bioimpresión , Humanos , Polímeros , Impresión Tridimensional , Ingeniería de Tejidos
10.
Biomacromolecules ; 19(5): 1378-1388, 2018 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-29125285

RESUMEN

A key drawback of hydrogel materials for tissue engineering applications is their characteristic swelling response, which leads to a diminished mechanical performance. However, if a solution can be found to overcome such limitations, there is a wider application for these materials. Herein, we describe a simple and effective way to control the swelling and degradation rate of nucleophilic thiol-yne poly(ethylene glycol) (PEG) hydrogel networks using two straightforward routes: (1) using multiarm alkyne and thiol terminated PEG precursors or (2) introducing a thermoresponsive unit into the PEG network while maintaining their robust mechanical properties. In situ hydrogel materials were formed in under 10 min in PBS solution at pH 7.4 without the need for an external catalyst by using easily accessible precursors. Both pathways resulted in strong tunable hydrogel materials (compressive strength values up to 2.4 MPa) which could effectively encapsulate cells, thus highlighting their potential as soft tissue scaffolds.


Asunto(s)
Hidrogeles/síntesis química , Andamios del Tejido/química , Animales , Línea Celular , Reactivos de Enlaces Cruzados/química , Ratones , Polietilenglicoles/química , Compuestos de Sulfhidrilo/química , Andamios del Tejido/efectos adversos
11.
Biomacromolecules ; 18(9): 2967-2979, 2017 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-28792743

RESUMEN

This manuscript describes a new route to prepare rapidly Ca2+-free hydrogels from unmodified sodium alginate by simply mixing with small organic molecules such as poly(carboxylic acid) compounds as cross-linker agents instead of classical divalent metal salts such as CaCl2. Dimethyl sulfoxide (DMSO) was also found to induce the rapid gelation of aqueous alginate solutions. The gelation process takes place at room temperature, and depending on the composition, gels with good thermal (90-100 °C) and mechanical properties compared to classical metal-containing analogs are obtained. DMSO-based gels showed remarkable self-supporting and thixotropic properties, which can be tuned by the biopolymer concentration. Furthermore, oxalic acid-based gels show superior elasticity than HCl, CaCl2 and DMSO-based gels. The possibility to prepare monoliths, beads, and films of these gels provide them with significant versatility. In particular, films made of alginate and oxalic acid show good potential as synergistic anticancer drug delivery carrier. Computational studies using both quantum mechanical and classical force-field methodologies reveal that hydrogen bonding networks between water and DMSO molecules located close to the alginate chains are responsible for the stability of DMSO-based gels. In contrast, the cohesion of oxalic acid-based gels is a consequence of the coexistence of multiple ionic associations involving oxalate, alginate, and Na+ counterions, which stabilize the system and keep all the interacting species grouped.


Asunto(s)
Alginatos/química , Ácidos Hexurónicos/química , Hidrogeles/síntesis química , Calcio/química , Dimetilsulfóxido/química , Elasticidad , Ácido Glucurónico/química , Hidrogeles/química , Ácido Oxálico/química
12.
J Pept Sci ; 23(2): 162-171, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27862637

RESUMEN

Peptides homing tumor vasculature are considered promising molecular imaging agents for cancer detection at an early stage. In addition to their high binding affinity, improved tissue penetrating ability, and low immunogenicity, they can deliver targeted anticancer drugs, thus expanding therapeutic treatments. Among those, CREKA, a linear peptide that specifically binds to clotted-plasma proteins in tumor vessels, has been recently employed to design bioactive systems able to target different cancer types. Within this context, this paper explores the biorecognition event between CR(NMe)EKA, an engineered CREKA-analog bearing a noncoded amino acid (N-methyl-Glu) that is responsible for its enhanced activity, and clotted-plasma proteins (fibrin and fibrinogen) by nanomechanical detection. Specifically, the tumor-homing peptide was covalently attached via epoxysilane chemistry onto silicon microcantilever chips that acted as sensors during dynamic mode experiments. Before that, each step of the functionalization process was followed by contact angle measurements, interferometry, X-ray photoelectron spectroscopy, and atomic force microscopy, thus revealing the applied protocol as a suitable strategy. The fibrin(ogen)-binding induced by CR(NMe)EKA was detected by the resonance frequency shift of the cantilevers, and a detection limit of 100 ng/mL was achieved for both proteins. Even though further development is required, this work reflects the promising application of emerging technologies capable of assisting in the comprehension of biological interactions and their implications in the biotechnological field. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.


Asunto(s)
Técnicas Biosensibles/instrumentación , Fibrina/química , Fibrinógeno/química , Oligopéptidos/química , Análisis por Matrices de Proteínas/instrumentación , Fenómenos Biomecánicos , Técnicas Biosensibles/métodos , Glutamatos/química , Humanos , Límite de Detección , Oligopéptidos/síntesis química , Análisis por Matrices de Proteínas/métodos , Unión Proteica , Ingeniería de Proteínas , Silanos/química , Silicio/química , Propiedades de Superficie
13.
Soft Matter ; 12(24): 5475-88, 2016 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-27220532

RESUMEN

Homopeptides with 2, 3 and 4 phenylalanine (Phe) residues and capped with fluorenylmethoxycarbonyl and fluorenylmethyl esters at the N-terminus and C-terminus, respectively, have been synthesized to examine their self-assembly capabilities. Depending on the conditions, the di- and triphenylalanine derivatives self-organize into a wide variety of stable polymorphic structures, which have been characterized: stacked braids, doughnut-like shapes, bundled arrays of nanotubes, corkscrew-like shapes and spherulitic microstructures. These highly aromatic Phe-based peptides also form incipient branched dendritic microstructures, even though they are highly unstable, making their manipulation very difficult. Conversely, the tetraphenylalanine derivative spontaneously self-assembles into stable dendritic microarchitectures made of branches growing from nucleated primary frameworks. The fractal dimension of these microstructures is ∼1.70, which provides evidence for self-similarity and two-dimensional diffusion controlled growth. DFT calculations at the M06L/6-31G(d) level have been carried out on model ß-sheets since this is the most elementary building block of Phe-based peptide polymorphs. The results indicate that the antiparallel ß-sheet is more stable than the parallel one, with the difference between them growing with the number of Phe residues. Thus, the cooperative effects associated with the antiparallel disposition become more favorable when the number of Phe residues increases from 2 to 4, while those of the parallel disposition remained practically constant.


Asunto(s)
Péptidos/química , Fenilalanina/química , Nanotubos , Conformación Proteica
14.
Chemistry ; 21(47): 16895-905, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26419936

RESUMEN

Three different tetraphenylalanine (FFFF) based peptides that differ at the N- and C-termini have been synthesized by using standard procedures to study their ability to form different nanoassemblies under a variety of conditions. The FFFF peptide assembles into nanotubes that show more structural imperfections at the surface than those formed by the diphenylalanine (FF) peptide under the same conditions. Periodic DFT calculations (M06L functional) were used to propose a model that consists of three FFFF molecules defining a ring through head-to-tail NH3(+)⋅⋅⋅(-)OOC interactions, which in turn stack to produce deformed channels with internal diameters between 12 and 16 Å. Depending on the experimental conditions used for the peptide incubation, N-fluorenylmethoxycarbonyl (Fmoc) protected FFFF self-assembles into a variety of polymorphs: ultra-thin nanoplates, fibrils, and star-like submicrometric aggregates. DFT calculations indicate that Fmoc-FFFF prefers a parallel rather than an antiparallel ß-sheet assembly. Finally, coexisting multiple assemblies (up to three) were observed for Fmoc-FFFF-OBzl (OBzl = benzyl ester), which incorporates aromatic protecting groups at the two peptide terminals. This unusual and noticeable feature is attributed to the fact that the assemblies obtained by combining the Fmoc and OBzl groups contained in the peptide are isoenergetic.


Asunto(s)
Fluorenos/química , Nanotubos/química , Péptidos/química , Péptidos/síntesis química , Fenilalanina/análogos & derivados , Fenilalanina/química , Fenilalanina/síntesis química , Dipéptidos , Simulación de Dinámica Molecular
15.
Molecules ; 20(3): 4136-47, 2015 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-25749682

RESUMEN

In this manuscript we report a critical evaluation of the ability of natural DNA to mediate the nitroaldol (Henry) reaction at physiological temperature in pure water. Under these conditions, no background reaction took place (i.e., control experiment without DNA). Both heteroaromatic aldehydes (e.g., 2-pyridinecarboxaldehyde) and aromatic aldehydes bearing strong or moderate electron-withdrawing groups reacted satisfactorily with nitromethane obeying first order kinetics and affording the corresponding ß-nitroalcohols in good yields within 24 h. In contrast, aliphatic aldehydes and aromatic aldehydes having electron-donating groups either did not react or were poorly converted. Moreover, we discovered that a number of metal-free organic buffers efficiently promote the Henry reaction when they were used as reaction media without adding external catalysts. This constitutes an important observation because the influence of organic buffers in chemical processes has been traditionally underestimated.


Asunto(s)
Aldehídos/química , ADN/química , Electrones , Compuestos Heterocíclicos con 3 Anillos/química , Metano/análogos & derivados , Nitrocompuestos/química , Nitroparafinas/química , Agua/química , Tampones (Química) , Catálisis , Metano/química
16.
Carbohydr Polym ; 337: 122170, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710559

RESUMEN

To improve the features of alginate-based hydrogels in physiological conditions, Ca2+-crosslinked semi-interpenetrated hydrogels formed by poly(3,4-ethylenedioxythiophene):polystyrene sulfonic acid and alginate (PEDOT/Alg) were subjected to a treatment with glyoxal to form a dual ionic/covalent network. The covalent network density was systematically varied by considering different glyoxalization times (tG). The content of Ca2+ was significantly higher for the untreated hydrogel than for the glyoxalized ones, while the properties of the hydrogels were found to largely depend on tG. The porosity and swelling capacity decreased with increasing tG, while the stiffness and electrical conductance retention capacity increased with tG. The potentiodynamic response of the hydrogels notably depended on the amount of conformational restraints introduced by the glyoxal, which is a very short crosslinker. Thus, the re-accommodation of the polymer chains during the cyclic potential scans became more difficult with increasing number of covalent crosslinks. This information was used to improve the performance of untreated PEDOT/Alg as electrochemical sensor of hydrogen peroxide by simply applying a tG of 5 min. Overall, the control of the properties of glyoxalized hydrogels through tG is very advantageous and can be used as an on-demand strategy to improve the performance of such materials depending on the application.

17.
Biomater Adv ; 162: 213925, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38908101

RESUMEN

An electro-chemo-responsive carrier has been engineered for the controlled release of a highly hydrophilic anticancer peptide, CR(NMe)EKA (Cys-Arg- N-methyl-Glu-Lys-Ala). Remotely controlled on demand release of CR(NMe)EKA, loaded in electro-responsive poly(3,4-ethylenedioxythiophene) (PEDOT) nanoparticles, has been achieved by applying electrical stimuli consisting of constant positive (+0.50 V) or negative voltages (-0.50 V) at pre-defined time intervals. In addition, after loading CR(NMe)EKA/PEDOT nanoparticles into an injectable pH responsive hydrogel formed by phenylboronic acid grafted to chitosan (PBA-CS), the efficiency of the controlled peptide release has increased approximately by a factor of 2.6. The hydration ratio of such hydrogel is significantly lower in acidic environments than in neutral and basic media, which has been attributed to the dissociation of the boronate bonds between polymer chains. Hence, the electro-controlled peptide release from PBA-CS/CR(NMe)EKA/PEDOT hydrogels, in the acidic environment of tumors, combines the effects of the oxidation and reduction of PEDOT chains on the interactions with the peptide and the carrier, with the peptide concentration gradient at the interface between the collapsed hydrogel and the release medium. Furthermore, the peptide released by electro-stimulation preserved its bioactivity assessed by promoting human prostate cancer cells death. Overall, this work is a promising attempt to develop a carrier platform for small hydrophilic anticancer peptides, which delivery rationale is synergistically regulated by the electrical and pH responsiveness of the carrier.


Asunto(s)
Antineoplásicos , Compuestos Bicíclicos Heterocíclicos con Puentes , Hidrogeles , Nanopartículas , Polímeros , Humanos , Concentración de Iones de Hidrógeno , Nanopartículas/química , Hidrogeles/química , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Antineoplásicos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacocinética , Compuestos Bicíclicos Heterocíclicos con Puentes/administración & dosificación , Polímeros/química , Péptidos/química , Preparaciones de Acción Retardada/química , Neoplasias de la Próstata/tratamiento farmacológico , Quitosano/química , Masculino , Sistemas de Liberación de Medicamentos/métodos
18.
Lab Chip ; 23(5): 1128-1150, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36636915

RESUMEN

Micromechanical cantilever sensors are attracting a lot of attention because of the need for characterizing, detecting, and monitoring chemical and physical properties, as well as compounds at the nanoscale. The fields of application of micro-cantilever sensors span from biological and point-of-care, to military or industrial sectors. The purpose of this work focuses on thermal and mechanical characterization, environmental monitoring, and chemical detection, in order to provide a technical review of the most recent technical advances and applications, as well as the future prospective of micro-cantilever sensor research.

19.
Biomater Sci ; 11(7): 2266-2276, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36912458

RESUMEN

Although the main function of skin is to act as a protective barrier against external factors, it is indeed an extremely vulnerable tissue. Skincare, regardless of the wound type, requires effective treatments to prevent bacterial infection and local inflammation. The complex biological roles displayed by hyaluronic acid (HA) during the wound healing process have made this multifaceted polysaccharide an alternative biomaterial to prepare wound dressings. Therefore, herein, we present the most advanced research undertaken to engineer conductive and interactive hydrogels based on HA as wound dressings that enhance skin tissue regeneration either through electrical stimulation (ES) or by displaying multifunctional performance. First, we briefly introduce to the reader the effect of ES on promoting wound healing and why HA has become a vogue as a wound healing agent. Then, a selection of systems, chosen according to their multifunctional relevance, is presented. Special care has been taken to highlight those recently reported works (mainly from the last 3 years) with enhanced scalability and biomimicry. By doing that, we have turned a critical eye on the field considering what major challenges must be overcome for these systems to have real commercial, clinical, or other translational impact.


Asunto(s)
Infecciones Bacterianas , Ácido Hialurónico , Humanos , Ácido Hialurónico/farmacología , Hidrogeles/farmacología , Piel , Cicatrización de Heridas , Antibacterianos/farmacología
20.
Int J Biol Macromol ; 238: 124117, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-36948340

RESUMEN

This work proposes a microfibers-hydrogel assembled composite as delivery vehicle able to combine into a single system both burst and prolonged release of lactate. The prolonged release of lactate has been achieved by electrospinning a mixture of polylactic acid and proteinase K (26.0 mg of proteinase K and 0.99 g of PLA dissolved in 6 mL of 2:1 chloroform:acetone in the optimal case), which is a protease that catalyzes the degradation of polylactic acid into lactate. The degradation of microfibers into lactate reflects that proteinase K preserves its enzymatic activity even after the electrospinning process because of the mild operational conditions used. Besides, burst release is obtained from the lactate-loaded alginate hydrogel. The successful assembly between the lactate-loaded hydrogel and the polylactic acid/proteinase K fibers has been favored by applying a low-pressure (0.3 mbar at 300 W) oxygen plasma treatment, which transforms hydrophobic fibers into hydrophilic while the enzymatic activity is still maintained. The composite displays both fast (< 24 h) and sustained (> 10 days) lactate release, and allows the modulation of the release by adjusting either the amount of loaded lactate or the amount of active enzyme.


Asunto(s)
Hidrogeles , Polímeros , Hidrogeles/química , Polímeros/química , Ácido Láctico/química , Endopeptidasa K , Alginatos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA