Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 183(3): 786-801.e19, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33125893

RESUMEN

Trained immunity, a functional state of myeloid cells, has been proposed as a compelling immune-oncological target. Its efficient induction requires direct engagement of myeloid progenitors in the bone marrow. For this purpose, we developed a bone marrow-avid nanobiologic platform designed specifically to induce trained immunity. We established the potent anti-tumor capabilities of our lead candidate MTP10-HDL in a B16F10 mouse melanoma model. These anti-tumor effects result from trained immunity-induced myelopoiesis caused by epigenetic rewiring of multipotent progenitors in the bone marrow, which overcomes the immunosuppressive tumor microenvironment. Furthermore, MTP10-HDL nanotherapy potentiates checkpoint inhibition in this melanoma model refractory to anti-PD-1 and anti-CTLA-4 therapy. Finally, we determined MTP10-HDL's favorable biodistribution and safety profile in non-human primates. In conclusion, we show that rationally designed nanobiologics can promote trained immunity and elicit a durable anti-tumor response either as a monotherapy or in combination with checkpoint inhibitor drugs.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunidad , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/patología , Nanotecnología , Acetilmuramil-Alanil-Isoglutamina/metabolismo , Animales , Conducta Animal , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Proliferación Celular/efectos de los fármacos , Colesterol/metabolismo , Femenino , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunidad/efectos de los fármacos , Inmunoterapia , Lipoproteínas HDL/metabolismo , Ratones Endogámicos C57BL , Primates , Distribución Tisular/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos
2.
Immunity ; 49(5): 819-828.e6, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30413362

RESUMEN

Inducing graft acceptance without chronic immunosuppression remains an elusive goal in organ transplantation. Using an experimental transplantation mouse model, we demonstrate that local macrophage activation through dectin-1 and toll-like receptor 4 (TLR4) drives trained immunity-associated cytokine production during allograft rejection. We conducted nanoimmunotherapeutic studies and found that a short-term mTOR-specific high-density lipoprotein (HDL) nanobiologic treatment (mTORi-HDL) averted macrophage aerobic glycolysis and the epigenetic modifications underlying inflammatory cytokine production. The resulting regulatory macrophages prevented alloreactive CD8+ T cell-mediated immunity and promoted tolerogenic CD4+ regulatory T (Treg) cell expansion. To enhance therapeutic efficacy, we complemented the mTORi-HDL treatment with a CD40-TRAF6-specific nanobiologic (TRAF6i-HDL) that inhibits co-stimulation. This synergistic nanoimmunotherapy resulted in indefinite allograft survival. Together, we show that HDL-based nanoimmunotherapy can be employed to control macrophage function in vivo. Our strategy, focused on preventing inflammatory innate immune responses, provides a framework for developing targeted therapies that promote immunological tolerance.


Asunto(s)
Supervivencia de Injerto/inmunología , Terapia de Inmunosupresión , Inflamación/inmunología , Células Mieloides/inmunología , Células Mieloides/metabolismo , Trasplante de Órganos , Aloinjertos , Animales , Biomarcadores , Proteína HMGB1/genética , Tolerancia Inmunológica , Inmunidad Innata , Memoria Inmunológica , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Serina-Treonina Quinasas TOR/metabolismo , Vimentina/genética
4.
Arterioscler Thromb Vasc Biol ; 40(4): 865-873, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32078338

RESUMEN

The immune system's role in atherosclerosis has long been an important research topic and is increasingly investigated for therapeutic and diagnostic purposes. Therefore, noninvasive imaging of hematopoietic organs and immune cells will undoubtedly improve atherosclerosis phenotyping and serve as a monitoring method for immunotherapeutic treatments. Among the available imaging techniques, positron emission tomography's unique features make it an ideal tool to quantitatively image the immune response in the context of atherosclerosis and afford reliable readouts to guide medical interventions in cardiovascular disease. Here, we summarize the state of the art in the field of atherosclerosis positron emission tomography immunoimaging and provide an outlook on current and future applications.


Asunto(s)
Aterosclerosis/diagnóstico por imagen , Aterosclerosis/inmunología , Tomografía de Emisión de Positrones/métodos , Aterosclerosis/metabolismo , Sistema Hematopoyético/diagnóstico por imagen , Humanos , Nanopartículas , Fagocitos , Placa Aterosclerótica/diagnóstico por imagen , Radioinmunodetección , Radiofármacos
5.
Arterioscler Thromb Vasc Biol ; 40(5): 1123-1134, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32237905

RESUMEN

Cardiovascular disease due to atherosclerosis is still the main cause of morbidity and mortality worldwide. This disease is a complex systemic disorder arising from a network of pathological processes within the arterial vessel wall, and, outside of the vasculature, in the hematopoietic system and organs involved in metabolism. Recent years have seen tremendous efforts in the development and validation of quantitative imaging technologies for the noninvasive evaluation of patients with atherosclerotic cardiovascular disease. Specifically, the advent of combined positron emission tomography and magnetic resonance imaging scanners has opened new exciting opportunities in cardiovascular imaging. In this review, we will describe how combined positron emission tomography/magnetic resonance imaging scanners can be leveraged to evaluate atherosclerotic cardiovascular disease at the whole-body level, with specific focus on preclinical animal models of disease, from mouse to nonhuman primates. We will broadly describe 3 major areas of application: (1) vascular imaging, for advanced atherosclerotic plaque phenotyping and evaluation of novel imaging tracers or therapeutic interventions; (2) assessment of the ischemic heart and brain; and (3) whole-body imaging of the hematopoietic system. Finally, we will provide insights on potential novel technical developments which may further increase the relevance of integrated positron emission tomography/magnetic resonance imaging in preclinical atherosclerosis studies.


Asunto(s)
Aterosclerosis/diagnóstico por imagen , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Imagen de Cuerpo Entero/métodos , Animales , Aterosclerosis/patología , Aterosclerosis/terapia , Modelos Animales de Enfermedad , Diseño de Equipo , Imagen por Resonancia Magnética/instrumentación , Ratones , Imagen Multimodal , Tomografía de Emisión de Positrones/instrumentación , Valor Predictivo de las Pruebas , Primates , Reproducibilidad de los Resultados , Imagen de Cuerpo Entero/instrumentación
6.
Bioconjug Chem ; 31(2): 360-368, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-31095372

RESUMEN

Nanotherapy has recently emerged as an experimental treatment option for atherosclerosis. To fulfill its promise, robust noninvasive imaging approaches for subject selection and treatment evaluation are warranted. To that end, we present here a positron emission tomography (PET)-based method for quantification of liposomal nanoparticle uptake in the atherosclerotic vessel wall. We evaluated a modular procedure to label liposomal nanoparticles with the radioisotope zirconium-89 (89Zr). Their biodistribution and vessel wall targeting in a rabbit atherosclerosis model was evaluated up to 15 days after intravenous injection by PET/computed tomography (CT) and PET/magnetic resonance imaging (PET/MRI). Vascular permeability was assessed in vivo using three-dimensional dynamic contrast-enhanced MRI (3D DCE-MRI) and ex vivo using near-infrared fluorescence (NIRF) imaging. The 89Zr-radiolabeled liposomes displayed a biodistribution pattern typical of long-circulating nanoparticles. Importantly, they markedly accumulated in atherosclerotic lesions in the abdominal aorta, as evident on PET/MRI and confirmed by autoradiography, and this uptake moderately correlated with vascular permeability. The method presented herein facilitates the development of nanotherapy for atherosclerotic disease as it provides a tool to screen for nanoparticle targeting in individual subjects' plaques.


Asunto(s)
Aterosclerosis/diagnóstico por imagen , Liposomas/análisis , Placa Aterosclerótica/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Radioisótopos/análisis , Circonio/análisis , Animales , Aorta Abdominal/diagnóstico por imagen , Masculino , Conejos , Distribución Tisular
7.
Acc Chem Res ; 51(1): 127-137, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29281244

RESUMEN

Nature is an inspirational source for biomedical engineering developments. Particularly, numerous nanotechnological approaches have been derived from biological concepts. For example, among many different biological nanosized materials, viruses have been extensively studied and utilized, while exosome research has gained much traction in the 21st century. In our body, fat is transported by lipoproteins, intriguing supramolecular nanostructures that have important roles in cell function, lipid metabolism, and disease. Lipoproteins' main constituents are phospholipids and apolipoproteins, forming a corona that encloses a hydrophobic core of triglycerides and cholesterol esters. Within the lipoprotein family, high-density lipoprotein (HDL), primarily composed of apolipoprotein A1 (apoA-I) and phospholipids, measuring a mere 10 nm, is the smallest and densest particle. Its endogenous character makes HDL particularly suitable as a nanocarrier platform to target a range of inflammatory diseases. For a decade and a half, our laboratories have focused on HDL's exploitation, repurposing, and reengineering for diagnostic and therapeutic applications, generating versatile hybrid nanomaterials, referred to as nanobiologics, that are inherently biocompatible and biodegradable, efficiently cross different biological barriers, and intrinsically interact with immune cells. The latter is facilitated by HDL's intrinsic ability to interact with the ATP-binding cassette receptor A1 (ABCA1) and ABCG1, as well as scavenger receptor type B1 (SR-BI). In this Account, we will provide an up-to-date overview on the available methods for extraction, isolation, and purification of apoA-I from native HDL, as well as its recombinant production. ApoA-I's subsequent use for the reconstitution of HDL (rHDL) and other HDL-derived nanobiologics, including innovative microfluidic-based production methods, and their characterization will be discussed. The integration of different hydrophobic and amphiphilic imaging labels, including chelated radioisotopes and paramagnetic or fluorescent lipids, renders HDL nanobiologics suitable for diagnostic purposes. Nanoengineering also allows HDL reconstitution with core payloads, such as diagnostically active nanocrystals, as well as hydrophobic drugs or controlled release polymers for therapeutic purposes. The platform technology's specificity for inflammatory myeloid cells and methods to modulate specificity will be highlighted. This Account will build toward examples of in vivo studies in cardiovascular disease and cancer models, including diagnostic studies by magnetic resonance imaging (MRI), computed tomography (CT), and positron emission tomography (PET). A translational success story about the escalation of zirconium-89 radiolabeled HDL (89Zr-HDL) PET imaging from atherosclerotic mice to rabbits and pigs and all the way to cardiovascular disease patients is highlighted. Finally, recent advances in nanobiologic-facilitated immunotherapy of inflammation are spotlighted. Lessons, success stories, and perspectives on the use of these nature-inspired HDL mimetics are an integral part of this Account.


Asunto(s)
Enfermedades Cardiovasculares/diagnóstico por imagen , Lipoproteínas HDL/química , Nanopartículas/química , Neoplasias/diagnóstico por imagen , Medicina de Precisión , Animales , Portadores de Fármacos/química , Humanos , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Tomografía Computarizada por Rayos X
8.
Proc Natl Acad Sci U S A ; 113(44): E6731-E6740, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27791119

RESUMEN

Immunological complexity in atherosclerosis warrants targeted treatment of specific inflammatory cells that aggravate the disease. With the initiation of large phase III trials investigating immunomodulatory drugs for atherosclerosis, cardiovascular disease treatment enters a new era. We here propose a radically different approach: implementing and evaluating in vivo a combinatorial library of nanoparticles with distinct physiochemical properties and differential immune cell specificities. The library's nanoparticles are based on endogenous high-density lipoprotein, which can preferentially deliver therapeutic compounds to pathological macrophages in atherosclerosis. Using the apolipoprotein E-deficient (Apoe-/-) mouse model of atherosclerosis, we quantitatively evaluated the library's immune cell specificity by combining immunological techniques and in vivo positron emission tomography imaging. Based on this screen, we formulated a liver X receptor agonist (GW3965) and abolished its liver toxicity while still preserving its therapeutic function. Screening the immune cell specificity of nanoparticles can be used to develop tailored therapies for atherosclerosis and other inflammatory diseases.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Aterosclerosis/inmunología , Inmunoterapia , Nanopartículas/química , Animales , Antiinflamatorios , Apolipoproteínas E/deficiencia , Aterosclerosis/patología , Autorradiografía , Benzoatos/agonistas , Benzoatos/química , Bencilaminas/agonistas , Bencilaminas/química , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos/métodos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Lipoproteínas HDL/química , Lipoproteínas HDL/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Imagen Molecular , Nanomedicina , Nanopartículas/metabolismo , Tomografía de Emisión de Positrones/métodos , ARN Mensajero/metabolismo
9.
Chem Soc Rev ; 47(18): 7027-7044, 2018 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-30091770

RESUMEN

Supramolecular systems have applications in areas as diverse as materials science, biochemistry, analytical chemistry, and nanomedicine. However, analyzing such systems can be challenging due to the wide range of time scales, binding strengths, distances, and concentrations at which non-covalent phenomena take place. Due to their versatility and sensitivity, Förster resonance energy transfer (FRET)-based techniques are excellently suited to meet such challenges. Here, we detail the ways in which FRET has been used to study non-covalent interactions in both synthetic and biological supramolecular systems. Among other topics, we examine methods to measure molecular forces, determine protein conformations, monitor assembly kinetics, and visualize in vivo drug release from nanoparticles. Furthermore, we highlight multiplex FRET techniques, discuss the field's limitations, and provide a perspective on new developments.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Cinética , Sustancias Macromoleculares/síntesis química , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo
10.
Mol Imaging ; 17: 1536012117749726, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29480077

RESUMEN

Reversible electroporation (RE) can facilitate nanoparticle delivery to tumors through direct transfection and from changes in vascular permeability. We investigated a radiolabeled liposomal nanoparticle (89Zr-NRep) for monitoring RE-mediated liposomal doxorubicin (DOX) delivery in mouse tumors. Intravenously delivered 89Zr-NRep allowed positron emission tomography imaging of electroporation-mediated nanoparticle uptake. The relative order of 89Zr-NRep injection and electroporation did not result in significantly different overall tumor uptake, suggesting direct transfection and vascular permeability can independently mediate deposition of 89Zr-NRep in tumors. 89Zr-NRep and DOX uptake correlated well in both electroporated and control tumors at all experimental time points. Electroporation accelerated 89Zr-NRep and DOX deposition into tumors and increased DOX dosing. Reversible electroporation-related vascular effects seem to play an important role in nanoparticle delivery to tumors and drug uptake can be quantified with 89Zr-NRep.


Asunto(s)
Doxorrubicina/análogos & derivados , Sistemas de Liberación de Medicamentos , Electroporación/métodos , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Radioisótopos/química , Radiofármacos/química , Circonio/química , Permeabilidad Capilar , Línea Celular Tumoral , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Humanos , Polietilenglicoles/administración & dosificación , Polietilenglicoles/farmacología , Polietilenglicoles/uso terapéutico , Tomografía de Emisión de Positrones
11.
Bioconjug Chem ; 29(11): 3776-3782, 2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30354077

RESUMEN

The preclinical potential of many diagnostic and therapeutic small molecules is limited by their rapid washout kinetics and consequently modest pharmacological performances. In several cases, these could be improved by loading the small molecules into nanoparticulates, improving blood half-life, in vivo uptake and overall pharmacodynamics. In this study, we report a nanoemulsion (NE) encapsulated form of PARPi-FL. As a proof of concept, we used PARPi-FL, which is a fluorescently labeled sensor for olaparib, a FDA-approved small molecule inhibitor of the nuclear enzyme poly(ADP-ribose)polymerase 1 (PARP1). Encapsulated PARPi-FL showed increased blood half-life, and delineated subcutaneous xenografts of small cell lung cancer (SCLC), a fast-progressing disease where efficient treatment options remain an unmet clinical need. Our study demonstrates an effective method for expanding the circulation time of a fluorescent PARP inhibitor, highlighting the pharmacokinetic benefits of nanoemulsions as nanocarriers and confirming the value of PARPi-FL as an imaging agent targeting PARP1 in small cell lung cancer.


Asunto(s)
Antineoplásicos/administración & dosificación , Colorantes Fluorescentes/administración & dosificación , Neoplasias Pulmonares/tratamiento farmacológico , Ftalazinas/administración & dosificación , Piperazinas/administración & dosificación , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Inhibidores de Poli(ADP-Ribosa) Polimerasas/administración & dosificación , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Modelos Animales de Enfermedad , Emulsiones/química , Femenino , Colorantes Fluorescentes/farmacocinética , Colorantes Fluorescentes/uso terapéutico , Humanos , Neoplasias Pulmonares/patología , Ratones , Ratones Desnudos , Nanoestructuras/química , Vehículos Farmacéuticos/química , Ftalazinas/farmacocinética , Ftalazinas/uso terapéutico , Piperazinas/farmacocinética , Piperazinas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacocinética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Carcinoma Pulmonar de Células Pequeñas/patología
12.
Bioconjug Chem ; 28(2): 600-608, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28026929

RESUMEN

Cerenkov luminescence (CL) is an emerging imaging modality that utilizes the light generated during the radioactive decay of many clinical used isotopes. Although it is increasingly used for background-free imaging and deep tissue photodynamic therapy, in vivo applications of CL suffer from limited tissue penetration. Here, we propose to use quantum dots (QDs) as spectral converters that can transfer the CL UV-blue emissions to near-infrared light that is less scattered or absorbed in vivo. Experiments on tissue phantoms showed enhanced penetration depth and increased transmitted intensity for CL in the presence of near-infrared (NIR) QDs. To realize this concept for in vivo imaging applications, we developed three types of NIR QDs and 89Zr dual-labeled nanoparticles based on lipid micelles, nanoemulsions, and polymeric nanoplatforms, which enable codelivery of the radionuclide and the QDs for maximized spectral conversion efficiency. We finally demonstrated the application of these self-illuminating nanoparticles for imaging of lymph nodes and tumors in a prostate cancer mouse model.


Asunto(s)
Mediciones Luminiscentes/métodos , Nanopartículas/química , Neoplasias/diagnóstico por imagen , Imagen Óptica/métodos , Puntos Cuánticos/química , Ganglio Linfático Centinela/diagnóstico por imagen , Circonio/química , Animales , Rayos Infrarrojos , Isótopos/química , Luminiscencia , Masculino , Ratones , Ratones Desnudos
13.
Bioconjug Chem ; 28(5): 1413-1421, 2017 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-28316241

RESUMEN

Active targeting of nanoparticles through surface functionalization is a common strategy to enhance tumor delivery specificity. However, active targeting strategies tend to work against long polyethylene glycol's shielding effectiveness and associated favorable pharmacokinetics. To overcome these limitations, we developed a matrix metalloproteinase-2 sensitive surface-converting polyethylene glycol coating. This coating prevents nanoparticle-cell interaction in the bloodstream, but, once exposed to matrix metalloproteinase-2, i.e., when the nanoparticles accumulate within the tumor interstitium, the converting polyethylene glycol coating is cleaved, and targeting ligands become available for binding to tumor cells. In this study, we applied a comprehensive multimodal imaging strategy involving optical, nuclear, and magnetic resonance imaging methods to evaluate this coating approach in a breast tumor mouse model. The data obtained revealed that this surface-converting coating enhances the nanoparticle's blood half-life and tumor accumulation and ultimately results in improved tumor-cell targeting. Our results show that this enzyme-specific surface-converting coating ensures a high cell-targeting specificity without compromising favorable nanoparticle pharmacokinetics.


Asunto(s)
Neoplasias de la Mama/patología , Imagen por Resonancia Magnética/métodos , Metaloproteinasa 2 de la Matriz/metabolismo , Imagen Multimodal/métodos , Nanopartículas/administración & dosificación , Espectrofotometría Infrarroja/métodos , Animales , Neoplasias de la Mama/metabolismo , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Metaloproteinasa 2 de la Matriz/química , Ratones , Ratones Desnudos , Nanopartículas/química , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Circ Res ; 117(10): 835-45, 2015 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-26394773

RESUMEN

RATIONALE: Local plaque macrophage proliferation and monocyte production in hematopoietic organs promote progression of atherosclerosis. Therefore, noninvasive imaging of proliferation could serve as a biomarker and monitor therapeutic intervention. OBJECTIVE: To explore (18)F-FLT positron emission tomography-computed tomography imaging of cell proliferation in atherosclerosis. METHODS AND RESULTS: (18)F-FLT positron emission tomography-computed tomography was performed in mice, rabbits, and humans with atherosclerosis. In apolipoprotein E knock out mice, increased (18)F-FLT signal was observed in atherosclerotic lesions, spleen, and bone marrow (standardized uptake values wild-type versus apolipoprotein E knock out mice, 0.05 ± 0.01 versus 0.17 ± 0.01, P<0.05 in aorta; 0.13 ± 0.01 versus 0.28 ± 0.02, P<0.05 in bone marrow; 0.06 ± 0.01 versus 0.22 ± 0.01, P<0.05 in spleen), corroborated by ex vivo scintillation counting and autoradiography. Flow cytometry confirmed significantly higher proliferation of macrophages in aortic lesions and hematopoietic stem and progenitor cells in the spleen and bone marrow in these mice. In addition, (18)F-FLT plaque signal correlated with the duration of high cholesterol diet (r(2)=0.33, P<0.05). Aortic (18)F-FLT uptake was reduced when cell proliferation was suppressed with fluorouracil in apolipoprotein E knock out mice (P<0.05). In rabbits, inflamed atherosclerotic vasculature with the highest (18)F-fluorodeoxyglucose uptake enriched (18)F-FLT. In patients with atherosclerosis, (18)F-FLT signal significantly increased in the inflamed carotid artery and in the aorta. CONCLUSIONS: (18)F-FLT positron emission tomography imaging may serve as an imaging biomarker for cell proliferation in plaque and hematopoietic activity in individuals with atherosclerosis.


Asunto(s)
Enfermedades de la Aorta/diagnóstico , Aterosclerosis/diagnóstico , Enfermedades de las Arterias Carótidas/diagnóstico , Proliferación Celular , Células Madre Hematopoyéticas , Macrófagos , Tomografía de Emisión de Positrones , Tomografía Computarizada por Rayos X , Animales , Aorta Torácica/diagnóstico por imagen , Enfermedades de la Aorta/diagnóstico por imagen , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/metabolismo , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/genética , Aterosclerosis/metabolismo , Médula Ósea/diagnóstico por imagen , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Enfermedades de las Arterias Carótidas/genética , Enfermedades de las Arterias Carótidas/metabolismo , Colesterol en la Dieta , Didesoxinucleósidos , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Femenino , Fluorodesoxiglucosa F18 , Células Madre Hematopoyéticas/diagnóstico por imagen , Humanos , Macrófagos/diagnóstico por imagen , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Imagen Multimodal , Placa Aterosclerótica , Valor Predictivo de las Pruebas , Conejos , Radiofármacos , Estudios Retrospectivos , Bazo/diagnóstico por imagen , Factores de Tiempo
15.
Philos Trans A Math Phys Eng Sci ; 375(2107)2017 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-29038380

RESUMEN

Biomedical engineering and its associated disciplines play a pivotal role in improving our understanding and management of disease. Motivated by past accomplishments, such as the clinical implementation of coronary stents, pacemakers or recent developments in antibody therapies, disease management now enters a new era in which precision imaging and nanotechnology-enabled therapeutics are maturing to clinical translation. Preclinical molecular imaging increasingly focuses on specific components of the immune system that drive disease progression and complications, allowing the in vivo study of potential therapeutic targets. The first multicentre trials highlight the potential of clinical multimodality imaging for more efficient drug development. In this perspective, the role of integrating engineering, nanotechnology, molecular imaging and immunology to yield precision medicine is discussed.This article is part of the themed issue 'Challenges for chemistry in molecular imaging'.


Asunto(s)
Imagen Molecular/métodos , Nanomedicina/métodos , Animales , Ingeniería Biomédica , Desarrollo de Medicamentos , Humanos , Imagen Molecular/tendencias , Nanomedicina/tendencias , Nanotecnología , Medicina de Precisión , Investigación Biomédica Traslacional
16.
Angew Chem Int Ed Engl ; 56(11): 2923-2926, 2017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28112478

RESUMEN

Understanding the formation process of nanoparticles is of the utmost importance to improve their design and production. This especially holds true for self-assembled nanoparticles whose formation processes have been largely overlooked. Herein, we present a new technology that integrates a microfluidic-based nanoparticle synthesis method and Förster resonance energy transfer (FRET) microscopy imaging to visualize nanoparticle self-assembly in real time. Applied to different nanoparticle systems, for example, nanoemulsions, drug-loaded block-copolymer micelles, and nanocrystal-core reconstituted high-density lipoproteins, we have shown the approach's unique ability to investigate key parameters affecting nanoparticle formation.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Nanopartículas/química , Factores de Tiempo
17.
Npj Imaging ; 2(1): 12, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38765879

RESUMEN

Macrophages are key inflammatory mediators in many pathological conditions, including cardiovascular disease (CVD) and cancer, the leading causes of morbidity and mortality worldwide. This makes macrophage burden a valuable diagnostic marker and several strategies to monitor these cells have been reported. However, such strategies are often high-priced, non-specific, invasive, and/or not quantitative. Here, we developed a positron emission tomography (PET) radiotracer based on apolipoprotein A1 (ApoA1), the main protein component of high-density lipoprotein (HDL), which has an inherent affinity for macrophages. We radiolabeled an ApoA1-mimetic peptide (mA1) with zirconium-89 (89Zr) to generate a lipoprotein-avid PET probe (89Zr-mA1). We first characterized 89Zr-mA1's affinity for lipoproteins in vitro by size exclusion chromatography. To study 89Zr-mA1's in vivo behavior and interaction with endogenous lipoproteins, we performed extensive studies in wildtype C57BL/6 and Apoe-/- hypercholesterolemic mice. Subsequently, we used in vivo PET imaging to study macrophages in melanoma and myocardial infarction using mouse models. The tracer's cell specificity was assessed by histology and mass cytometry (CyTOF). Our data show that 89Zr-mA1 associates with lipoproteins in vitro. This is in line with our in vivo experiments, in which we observed longer 89Zr-mA1 circulation times in hypercholesterolemic mice compared to C57BL/6 controls. 89Zr-mA1 displayed a tissue distribution profile similar to ApoA1 and HDL, with high kidney and liver uptake as well as substantial signal in the bone marrow and spleen. The tracer also accumulated in tumors of melanoma-bearing mice and in the ischemic myocardium of infarcted animals. In these sites, CyTOF analyses revealed that natZr-mA1 was predominantly taken up by macrophages. Our results demonstrate that 89Zr-mA1 associates with lipoproteins and hence accumulates in macrophages in vivo. 89Zr-mA1's high uptake in these cells makes it a promising radiotracer for non-invasively and quantitatively studying conditions characterized by marked changes in macrophage burden.

18.
Bioorg Med Chem Lett ; 23(18): 5170-3, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23910595

RESUMEN

In vivo imaging of voltage-gated sodium channels (VGSCs) can potentially provide insights into the activation of neuronal pathways and aid the diagnosis of a number of neurological diseases. The iminodihydroquinoline WIN17317-3 is one of the most potent sodium channel blockers reported to date and binds with high affinity to VGSCs throughout the rat brain. We have synthesized a (125)I-labeled analogue of WIN17317-3 and evaluated the potential of the tracer for imaging of VGSCs with SPECT. Automated patch clamp studies with CHO cells expressing the Nav1.2 isoform and displacement studies with [(3)H]BTX yielded comparable results for the non-radioactive iodinated iminodihydroquinoline and WIN17317-3. However, the (125)I-labeled tracer was rapidly metabolized in vivo, and suffered from low brain uptake and high accumulation of radioactivity in the intestines. The results suggest that iminodihydroquinolines are poorly suited for tracer development.


Asunto(s)
Radioisótopos de Yodo/farmacología , Quinolinas/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Canales de Sodio Activados por Voltaje/efectos de los fármacos , Animales , Células CHO , Cricetulus , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Radioisótopos de Yodo/química , Radioisótopos de Yodo/metabolismo , Ratones , Ratones Endogámicos BALB C , Estructura Molecular , Quinolinas/química , Quinolinas/metabolismo , Relación Estructura-Actividad , Distribución Tisular , Bloqueadores del Canal de Sodio Activado por Voltaje/química , Bloqueadores del Canal de Sodio Activado por Voltaje/metabolismo
19.
JACC Basic Transl Sci ; 8(7): 801-816, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37547068

RESUMEN

In the past 2 decades, research on atherosclerotic cardiovascular disease has uncovered inflammation to be a key driver of the pathophysiological process. A pressing need therefore exists to quantitatively and longitudinally probe inflammation, in preclinical models and in cardiovascular disease patients, ideally using non-invasive methods and at multiple levels. Here, we developed and employed in vivo multiparametric imaging approaches to investigate the immune response following myocardial infarction. The myocardial infarction models encompassed either transient or permanent left anterior descending coronary artery occlusion in C57BL/6 and Apoe-/-mice. We performed nanotracer-based fluorine magnetic resonance imaging and positron emission tomography (PET) imaging using a CD11b-specific nanobody and a C-C motif chemokine receptor 2-binding probe. We found that immune cell influx in the infarct was more pronounced in the permanent occlusion model. Further, using 18F-fluorothymidine and 18F-fluorodeoxyglucose PET, we detected increased hematopoietic activity after myocardial infarction, with no difference between the models. Finally, we observed persistent systemic inflammation and exacerbated atherosclerosis in Apoe-/- mice, regardless of which infarction model was used. Taken together, we showed the strengths and capabilities of multiparametric imaging in detecting inflammatory activity in cardiovascular disease, which augments the development of clinical readouts.

20.
Nat Biomed Eng ; 7(9): 1097-1112, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37291433

RESUMEN

Immunoparalysis is a compensatory and persistent anti-inflammatory response to trauma, sepsis or another serious insult, which increases the risk of opportunistic infections, morbidity and mortality. Here, we show that in cultured primary human monocytes, interleukin-4 (IL4) inhibits acute inflammation, while simultaneously inducing a long-lasting innate immune memory named trained immunity. To take advantage of this paradoxical IL4 feature in vivo, we developed a fusion protein of apolipoprotein A1 (apoA1) and IL4, which integrates into a lipid nanoparticle. In mice and non-human primates, an intravenously injected apoA1-IL4-embedding nanoparticle targets myeloid-cell-rich haematopoietic organs, in particular, the spleen and bone marrow. We subsequently demonstrate that IL4 nanotherapy resolved immunoparalysis in mice with lipopolysaccharide-induced hyperinflammation, as well as in ex vivo human sepsis models and in experimental endotoxemia. Our findings support the translational development of nanoparticle formulations of apoA1-IL4 for the treatment of patients with sepsis at risk of immunoparalysis-induced complications.


Asunto(s)
Interleucina-4 , Sepsis , Humanos , Animales , Ratones , Interleucina-4/metabolismo , Inmunidad Entrenada , Monocitos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA