Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Plant Physiol ; 195(3): 2428-2442, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38590143

RESUMEN

Despite lignin being a key component of wood, the dynamics of tracheid lignification are generally overlooked in xylogenesis studies, which hampers our understanding of environmental drivers and blurs the interpretation of isotopic and anatomical signals stored in tree rings. Here, we analyzed cell wall formation in silver fir (Abies alba Mill.) tracheids to determine if cell wall lignification lags behind secondary wall deposition. For this purpose, we applied a multimodal imaging approach combining transmitted light microscopy (TLM), confocal laser scanning microscopy (CLSM), and confocal Raman microspectroscopy (RMS) on anatomical sections of wood microcores collected in northeast France on 11 dates during the 2010 growing season. Wood autofluorescence after laser excitation at 405 and 488 nm associated with the RMS scattering of lignin and cellulose, respectively, which allowed identification of lignifying cells (cells showing lignified and nonlignified wall fractions at the same time) in CLSM images. The number of lignifying cells in CLSM images mirrored the number of wall-thickening birefringent cells in polarized TLM images, revealing highly synchronized kinetics for wall thickening and lignification (similar timings and durations at the cell level). CLSM images and RMS chemical maps revealed a substantial incorporation of lignin into the wall at early stages of secondary wall deposition. Our results show that most of the cellulose and lignin contained in the cell wall undergo concurrent periods of deposition. This suggests a strong synchronization between cellulose and lignin-related features in conifer tree-ring records, as they originated over highly overlapped time frames.


Asunto(s)
Abies , Pared Celular , Celulosa , Lignina , Microscopía Confocal , Lignina/metabolismo , Celulosa/metabolismo , Pared Celular/metabolismo , Abies/metabolismo , Madera/química , Madera/anatomía & histología , Imagen Multimodal/métodos , Espectrometría Raman/métodos
2.
New Phytol ; 239(2): 792-805, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37161713

RESUMEN

The kinetics of wood formation in angiosperms are largely unknown because their complex xylem anatomy precludes using the radial position of vessels and fibers to infer their time of differentiation. We analyzed xylogenesis in ring-porous ash (Fraxinus angustifolia) and diffuse-porous beech (Fagus sylvatica) over 1 yr and proposed a novel procedure to assess the period of vessel and fiber enlargement using a referential radial file (RRF). Our approach captured the dynamics of wood formation and provided a robust estimation of the kinetics of vessel and fiber enlargement. In beech, fibers and vessels had a similar duration of enlargement, decreasing from 14 to 5 d between April and July. In ash, wide vessels formed in April enlarged at a rate of 27 × 103 µm2 d-1 , requiring half the time of contemporary fibers (6 vs 12 d), and less time than the narrower vessels (14 d) formed in May. These findings reveal distinct cell-type-dependent mechanisms for differentiation in diffuse-porous and ring-porous trees, enhancing our understanding of angiosperm wood cell kinetics. Our approach presents an effective method for investigating angiosperm wood formation and provides a more accurate representation of vessel and fiber morphogenesis in wood formation models.


Asunto(s)
Fagus , Magnoliopsida , Madera/anatomía & histología , Xilema/anatomía & histología , Árboles , Carbohidratos , Fagus/anatomía & histología
3.
New Phytol ; 233(3): 1520-1534, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34797916

RESUMEN

Tree-ring anatomy, microdensity and isotope records provide valuable intra-annual information. However, extracting signals at that scale is challenged by the complexity of xylogenesis, where two major processes - cell enlargement and wall thickening - occur at different times and rates. We characterized the space-for-time association in the tree rings of three conifer species by examining the duration, overlapping, inter-tree synchronicity and interannual stability during cell enlargement and wall thickening across regular tree-ring sectors (portions of equal tangential width). The number of cells and cell differentiation rates determined the duration of sector formation, which augmented more rapidly throughout the ring for wall thickening than for enlargement. Increasing the number of sectors above c. 15 had a limited effect on improving time resolution because consecutive sector formation overlapped greatly in time, especially in narrow rings and during wall thickening. Increasing the number of sectors also resulted in lower synchronicity and stability of intermediate-sector enlargement, whereas all sectors showed high synchronicity and stability during wall thickening. Increasing the number of sectors had a stronger effect on enhancing time-series resolution for enlargement- than for wall-thickening-related traits, which would nevertheless produce more reliable intra-annual chronologies as a result of the more similar calendars across trees and years in wall thickening.


Asunto(s)
Picea , Tracheophyta , Diferenciación Celular , Picea/anatomía & histología , Madera/anatomía & histología , Xilema
4.
Ann Bot ; 130(3): 355-365, 2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-35274669

RESUMEN

BACKGROUND AND AIMS: The onset of spring growth and vessel formation were examined within three deciduous woody plant species, Acer rubrum, Populus balsamifera ssp. trichocarpa and Quercus rubra. We were broadly interested in the lag between the onset of girth expansion and the formation of mature and hydraulically conductive vessels within the new xylem. METHODS: Dendrometers were installed on 20 trees (6-7 per species), and expansion of both bole and distal stems was monitored throughout the growing season in a common garden. For each species, four to six distal stems were harvested every other week for anatomical examination of vessel formation. Additionally, for Populus and Quercus, hydraulic conductivity measurements and active xylem staining were completed on all stem samples. KEY RESULTS: For all three species, the timing of girth expansion was similar. Expansion of distal branches occurred 12-37 d earlier than that of the bole. Vessel formation initiated several weeks prior to leaf-out, but no new earlywood vessels were mature at the time of bud break for Acer and Populus and only a few were present in Quercus. Initial stem girth expansion occurred 2 to >6 weeks before the maturation of the first current-year vessels, and there was an additional delay of up to 4 weeks before mature vessels became hydraulically functional. Hydraulic conductivity was strongly correlated with the number and diameter of stained vessels. CONCLUSIONS: Bud break and leaf expansion relied predominantly on water supplied by vessels formed during prior seasons. Early-season activity is likely affected by the function of older xylem vessels and the environmental factors that influence their structure and function. Understanding the functional lifespan of vessels and the varying contributions of new and older vessels to conductivity are critical to understanding of the phenology and vascular function of long-lived woody plants in response to changing climates.


Asunto(s)
Acer , Populus , Quercus , Hojas de la Planta/fisiología , Quercus/fisiología , Estaciones del Año , Árboles , Agua , Xilema/fisiología
5.
New Phytol ; 209(2): 521-30, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26295692

RESUMEN

This study addresses relationships between leaf phenology, xylogenesis, and functional xylem anatomy in two ring-porous oak species, the temperate Quercus robur and the sub-Mediterranean Q. pyrenaica. Earlywood vessel (EV) formation and leaf phenology were monitored in 2012 and 2013. Ten individuals per species were sampled at each of three sites located in NW Iberian Peninsula. EV areas measured on microcore sections were used to calculate the hydraulic tree diameter (Dh ), in order to model relationships to phenology. Thermal requirements were evaluated using growing degree days (GDD). A species-specific timing of growth resumption was found. The onset of EV formation and budburst were associated to a particular GDD in each species. The onset and duration of EV enlargement affected Dh (and EV size) in Q. robur, but hardly in Q. pyrenaica. The relationship between the timings of EV formation and xylem structure appears to be stronger for the temperate oak, whose larger vessels may result from thermal-induced earlier resumption. In contrast, the sub-Mediterranean oak would maintain a more conservative hydraulic architecture under warming conditions.


Asunto(s)
Quercus/anatomía & histología , Quercus/crecimiento & desarrollo , Xilema/anatomía & histología , Hojas de la Planta/fisiología , Quercus/fisiología , España , Especificidad de la Especie , Árboles/crecimiento & desarrollo , Tiempo (Meteorología) , Madera/crecimiento & desarrollo , Xilema/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA