Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nat Mater ; 22(7): 880-887, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37337069

RESUMEN

Two-dimensional conjugated polymers (2DCPs), composed of multiple strands of linear conjugated polymers with extended in-plane π-conjugation, are emerging crystalline semiconducting polymers for organic (opto)electronics. They are represented by two-dimensional π-conjugated covalent organic frameworks, which typically suffer from poor π-conjugation and thus low charge carrier mobilities. Here we overcome this limitation by demonstrating two semiconducting phthalocyanine-based poly(benzimidazobenzophenanthroline)-ladder-type 2DCPs (2DCP-MPc, with M = Cu or Ni), which are constructed from octaaminophthalocyaninato metal(II) and naphthalenetetracarboxylic dianhydride by polycondensation under solvothermal conditions. The 2DCP-MPcs exhibit optical bandgaps of ~1.3 eV with highly delocalized π-electrons. Density functional theory calculations unveil strongly dispersive energy bands with small electron-hole reduced effective masses of ~0.15m0 for the layer-stacked 2DCP-MPcs. Terahertz spectroscopy reveals the band transport of Drude-type free carriers in 2DCP-MPcs with exceptionally high sum mobility of electrons and holes of ~970 cm2 V-1 s-1 at room temperature, surpassing that of the reported linear conjugated polymers and 2DCPs. This work highlights the critical role of effective conjugation in enhancing the charge transport properties of 2DCPs and the great potential of high-mobility 2DCPs for future (opto)electronics.


Asunto(s)
Estructuras Metalorgánicas , Polímeros , Electrónica , Electrones , Indoles
2.
Phys Chem Chem Phys ; 25(44): 30237-30245, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37921503

RESUMEN

Two-dimensional (2D) materials, like 2D covalent organic frameworks (COFs), have been attracting increasing research interest. They are usually obtained as polycrystalline powders. Solid-state NMR spectroscopy is capable of delivering structural information about such materials. Previous studies have applied, for example, 13C cross-polarization magic angle spinning (CP MAS) NMR experiments to characterize 2D COFs. Herein, we demonstrate the usefulness of high-field and fast-spinning 1H MAS NMR spectroscopy to resolve and quantify the signals of different 1H species within 2D COFs, including the edge sites and/or defects. Moreover, 1H-13C heteronuclear correlation (HETCOR) spectroscopy has also been applied and can provide improved resolution to obtain further information about stacking effects as well as edge sites/defects.

3.
Angew Chem Int Ed Engl ; 62(35): e202305978, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37271733

RESUMEN

Linear conjugated polymers have attracted significant attention in organic electronics in recent decades. However, despite intrachain π-delocalization, interchain hopping is their transport bottleneck. In contrast, two-dimensional (2D) conjugated polymers, as represented by 2D π-conjugated covalent organic frameworks (2D c-COFs), can provide multiple conjugated strands to enhance the delocalization of charge carriers in space. Herein, we demonstrate the first example of thiophene-based 2D poly(arylene vinylene)s (PAVs, 2DPAV-BDT-BT and 2DPAV-BDT-BP, BDT=benzodithiophene, BT=bithiophene, BP=biphenyl) via Knoevenagel polycondensation. Compared with 2DPAV-BDT-BP, the fully thiophene-based 2DPAV-BDT-BT exhibits enhanced planarity and π-delocalization with a small band gap (1.62 eV) and large electronic band dispersion, as revealed by the optical absorption and density functional calculations. Remarkably, temperature-dependent terahertz spectroscopy discloses a unique band-like transport and outstanding room-temperature charge mobility for 2DPAV-BDT-BT (65 cm2  V-1 s-1 ), which far exceeds that of the linear PAVs, 2DPAV-BDT-BP, and the reported 2D c-COFs in the powder form. This work highlights the great potential of thiophene-based 2D PAVs as candidates for high-performance opto-electronics.

4.
Angew Chem Int Ed Engl ; 62(46): e202310937, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37691002

RESUMEN

Electrochemical proton storage plays an essential role in designing next-generation high-rate energy storage devices, e.g., aqueous batteries. Two-dimensional conjugated covalent organic frameworks (2D c-COFs) are promising electrode materials, but their competitive proton and metal-ion insertion mechanisms remain elusive, and proton storage in COFs is rarely explored. Here, we report a perinone-based poly(benzimidazobenzophenanthroline) (BBL)-ladder-type 2D c-COF for fast proton storage in both a mild aqueous Zn-ion electrolyte and strong acid. We unveil that the discharged C-O- groups exhibit largely reduced basicity due to the considerable π-delocalization in perinone, thus affording the 2D c-COF a unique affinity for protons with fast kinetics. As a consequence, the 2D c-COF electrode presents an outstanding rate capability of up to 200 A g-1 (over 2500 C), surpassing the state-of-the-art conjugated polymers, COFs, and metal-organic frameworks. Our work reports the first example of pure proton storage among COFs and highlights the great potential of BBL-ladder-type 2D conjugated polymers in future energy devices.

5.
Chemistry ; 28(20): e202104502, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35157327

RESUMEN

The interest in two-dimensional conjugated polymers (2D CPs) has increased significantly in recent years. In particular, vinylene-linked 2D CPs with fully in-plane sp2 -carbon-conjugated structures, high thermal and chemical stability, have become the focus of attention. Although the Horner-Wadsworth-Emmons (HWE) reaction has been recently demonstrated in synthesizing vinylene-linked 2D CPs, it remains largely unexplored due to the challenge in synthesis. In this work, we reveal the control of crystallinity of 2D CPs during the solvothermal synthesis of 2D-poly(phenylene-quinoxaline-vinylene)s (2D-PPQVs) and 2D-poly(phenylene-vinylene)s through the HWE polycondensation. The employment of fluorinated phosphonates and rigid aldehyde building blocks is demonstrated as crucial factors in enhancing the crystallinity of the obtained 2D CPs. Density functional theory (DFT) calculations reveal the critical role of the fluorinated phosphonate in enhancing the reversibility of the (semi)reversible C-C single bond formation.

6.
Environ Res ; 212(Pt C): 113333, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35483410

RESUMEN

High-efficient and fast adsorption of uranium is important to reduce the hazards caused by the uranium contamination of water environment due to the increased human activities. Herein, brewer's spent grain (BSG)-supported superabsorbent polymers (SAP) with different cross-linking densities are prepared as cheap and eco-friendly adsorbents for the first time via one-pot swelling and graft polymerization. A 7 wt% NaOH solution is used to swell BSG before grafting and subsequently neutralize the acrylic acid to control the reaction rate without producing alkaline wastewater. Compared with the traditional methods, swelling improves the grafting density and the utilization of raw materials due to the increased disorder degree of the BSG fibers. This results in the grafting of abundant carboxyl and amide groups onto the BSG backbone, forming a strongly hydrophilic polymer network of the BSG-SAP. Compared with the reference polymers without BSG, BSG-SAP presents higher adsorption capacity and enhanced reusability. The highly cross-linked BSG-SAP (BSG-SAP-H) shows an outstanding adsorption capacity of U(VI) (1465 mg/g at pH0 = 4.6), a fast adsorption rate (81% of equilibrium adsorption capacity in 15 min), and a high selectivity in the presence of competing ions. Adsorption mechanism studies reveal the involvement of amide groups, a bidentate binding structure between UO22+ and the carboxyl groups, and a cation exchange between Na+ and UO22+. More importantly, the adsorption capacity of BSG-SAP-H reaches 254.4 mg/g in the fixed-bed column experiment at a low initial concentration (c0(U) = 30 mg/L) and keeps 80% of the adsorption capacity after four cycles, indicating a great potential for uranium removal from wastewater. This work shows a suitable approach to explore the untreated biomass to prepare SAP with enhanced adsorption performance via a general and low-cost strategy.


Asunto(s)
Uranio , Aguas Residuales , Adsorción , Amidas/análisis , Amidas/metabolismo , Grano Comestible/química , Humanos , Polímeros/análisis , Uranio/análisis , Aguas Residuales/análisis
7.
Angew Chem Int Ed Engl ; 59(52): 23620-23625, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-32959467

RESUMEN

In this work, we demonstrate the first synthesis of vinylene-linked 2D CPs, namely, 2D poly(phenylenequinoxalinevinylene)s 2D-PPQV1 and 2D-PPQV2, via the Horner-Wadsworth-Emmons (HWE) reaction of C2 -symmetric 1,4-bis(diethylphosphonomethyl)benzene or 4,4'-bis(diethylphosphonomethyl)biphenyl with C3 -symmetric 2,3,8,9,14,15-hexa(4-formylphenyl)diquinoxalino[2,3-a:2',3'-c]phenazine as monomers. Density functional theory (DFT) simulations unveil the crucial role of the initial reversible C-C single bond formation for the synthesis of crystalline 2D CPs. Powder X-ray diffraction (PXRD) studies and nitrogen adsorption-desorption measurements demonstrate the formation of proclaimed crystalline, dual-pore structures with surface areas of up to 440 m2 g-1 . More importantly, the optoelectronic properties of the obtained 2D-PPQV1 (Eg =2.2 eV) and 2D-PPQV2 (Eg =2.2 eV) are compared with those of cyano-vinylene-linked 2D-CN-PPQV1 (Eg =2.4 eV) produced by the Knoevenagel reaction and imine-linked 2D COF analog (2D-C=N-PPQV1, Eg =2.3 eV), unambiguously proving the superior conjugation of the vinylene-linked 2D CPs using the HWE reaction.

8.
J Am Chem Soc ; 141(42): 16810-16816, 2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31557002

RESUMEN

π-Conjugated two-dimensional covalent organic frameworks (2D COFs) are emerging as a novel class of electroactive materials for (opto)electronic and chemiresistive sensing applications. However, understanding the intricate interplay between chemistry, structure, and conductivity in π-conjugated 2D COFs remains elusive. Here, we report a detailed characterization for the electronic properties of two novel samples consisting of Zn- and Cu-phthalocyanine-based pyrazine-linked 2D COFs. These 2D COFs are synthesized by condensation of metal-phthalocyanine (M = Zn and Cu) and pyrene derivatives. The obtained polycrystalline-layered COFs are p-type semiconductors both with a band gap of ∼1.2 eV. A record device-relevant mobility up to ∼5 cm2/(V s) is resolved in the dc limit, which represents a lower threshold induced by charge carrier localization at crystalline grain boundaries. Hall effect measurements (dc limit) and terahertz (THz) spectroscopy (ac limit) in combination with density functional theory (DFT) calculations demonstrate that varying metal center from Cu to Zn in the phthalocyanine moiety has a negligible effect in the conductivity (∼5 × 10-7 S/cm), charge carrier density (∼1012 cm-3), charge carrier scattering rate (∼3 × 1013 s-1), and effective mass (∼2.3m0) of majority carriers (holes). Notably, charge carrier transport is found to be anisotropic, with hole mobilities being practically null in-plane and finite out-of-plane for these 2D COFs.

9.
Chemistry ; 25(26): 6562-6568, 2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-30900781

RESUMEN

Cyano-substituted polyphenylene vinylenes (PPVs) have been the focus of research for several decades owing to their interesting optoelectronic properties and potential applications in organic electronics. With the advent of organic two-dimensional (2D) crystals, the question arose as to how the chemical and optoelectronic advantages of PPVs evolve in 2D compared with their linear counterparts. In this work, we present the efficient synthesis of two novel 2D fully sp2 -carbon-linked crystalline PPVs and investigate the essentiality of inorganic bases for their catalytic formation. Notably, among all bases screened, cesium carbonate (Cs2 CO3 ) plays a crucial role and enables reversibility in the first step with subsequent structure locking by formation of a C=C double bond to maintain crystallinity, which is supported by density functional theory (DFT) calculations. A quantifiable energy diagram of a "quasi-reversible reaction" is proposed, which allows the identification of further suitable C-C bond formation reactions for 2D polymerizations. Moreover, the narrowing of the HOMO-LUMO gap is delineated by expanding the conjugation into two dimensions. To enable environmentally benign processing, the post-modification of 2D PPVs is further performed, which renders stable dispersions in the aqueous phase.

10.
Langmuir ; 35(8): 3162-3170, 2019 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-30695636

RESUMEN

Metal-organic frameworks are promising candidates for selective separation processes such as CO2 removal from methane (natural gas sweetening). Framework flexibility, that is, the ability of a MOF lattice to change its structure as a function of parameters like pressure, temperature, and type of adsorbed molecules, is only observed for some special compounds. The main question of our present work is: does framework flexibility influence the adsorption selectivity? As a direct quantitative method to monitor the adsorption of both, carbon dioxide and methane, we make use of high-pressure in situ 13C NMR spectroscopy of 13CO2/13CH4 gas mixtures. This method allows to distinguish between the two gases as well as between adsorbed molecules and the interparticle gas phase. Gas mixture adsorption is studied under isothermal conditions. The selectivity factor for CO2 adsorption from CO2/CH4 mixtures is measured as a function of total gas pressure. The flexible material SNU-9 as well as the flexible and the nonflexible variant of DUT-8(Ni) are compared. Maximum selectivity factors for CO2 are observed for the flexible variant of DUT-8(Ni) in its open, large-pore state. In contrast, the rigid variant of DUT-8(Ni) and SNU-9 especially in its intermediate state exhibits lower adsorption selectivity factors. This observation indicates significant influence of the framework elasticity on the adsorption selectivity.

11.
Angew Chem Int Ed Engl ; 58(3): 849-853, 2019 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-30461145

RESUMEN

A two-dimensional (2D) sp2 -carbon-linked conjugated polymer framework (2D CCP-HATN) has a nitrogen-doped skeleton, a periodical dual-pore structure and high chemical stability. The polymer backbone consists of hexaazatrinaphthalene (HATN) and cyanovinylene units linked entirely by carbon-carbon double bonds. Profiting from the shape-persistent framework of 2D CCP-HATN integrated with the electrochemical redox-active HATN and the robust sp2 carbon-carbon linkage, 2D CCP-HATN hybridized with carbon nanotubes shows a high capacity of 116 mA h g-1 , with high utilization of its redox-active sites and superb cycling stability (91 % after 1000 cycles) and rate capability (82 %, 1.0 A g-1 vs. 0.1 A g-1 ) as an organic cathode material for lithium-ion batteries.

12.
Chemistry ; 24(70): 18629-18633, 2018 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-30284341

RESUMEN

The successful incorporation of a thermally fragile imidazolium moiety into a covalent triazine framework resulted in a heterogeneous organocatalyst active in carbene-catalyzed umpolung reaction. The structural integrity of the imidazolium moiety was confirmed by combining solid-state NMR and XPS experiments.

13.
Chemistry ; 24(42): 10868-10875, 2018 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-29808944

RESUMEN

Porous organic polymers (POPs) have attracted significant attention towards molecular adsorption in recent years due to their high porosity, diverse functionality and excellent chemical stability. In this work, we present a systematic case study on the formation of thiazolo[5,4-d]thiazole (TzTz) linkages through model compounds and its integration to synthesize a set of three novel, thermo-chemically stable TzTz-linked POPs, namely TzTz-POP-3, TzTz-POP-4, and TzTz-POP-5 with triphenylbenzene, tetraphenylpyrene and tetra(hydroxyphenyl)methane cores, respectively. Interestingly, the integrated TzTz moiety of the represented TzTz-POP-3 renders chemoselective removal of organic dye fluorescein (FL) from a mixture with parafuchsine (FU) in aqueous solution. The TzTz-POP-3 offered excellent chemoselectivity of ≈1:7 (FL:FU), compared to alike porous materials demonstrated for similar applications due to the presence of multiple active anchoring sites coupled with permanent porosity and appropriate pore window.

14.
Biofouling ; 30(4): 513-23, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24689803

RESUMEN

Many aquatic organisms are able to colonize surfaces through the secretion of underwater adhesives. Diatoms are unicellular algae that have the capability to colonize any natural and man-made submerged surfaces. There is great technological interest in both mimicking and preventing diatom adhesion, yet the biomolecules responsible have so far remained unidentified. A new method for the isolation of diatom adhesive material is described and its amino acid and carbohydrate composition determined. The adhesive materials from two model diatoms show differences in their amino acid and carbohydrate compositions, but also share characteristic features including a high content of uronic acids, the predominance of hydrophilic amino acid residues, and the presence of 3,4-dihydroxyproline, an extremely rare amino acid. Proteins containing dihydroxyphenylalanine, which mediate underwater adhesion of mussels, are absent. The data on the composition of diatom adhesives are consistent with an adhesion mechanism based on complex coacervation of polyelectrolyte-like biomolecules.


Asunto(s)
Adhesivos/aislamiento & purificación , Diatomeas/química , Adhesivos/análisis , Aminoácidos/análisis , Carbohidratos/análisis , Espectroscopía de Resonancia Magnética
15.
J Struct Biol ; 183(3): 474-483, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23831449

RESUMEN

This work demonstrates that chitin is an important structural component within the skeletal fibers of the freshwater sponge Spongilla lacustris. Using a variety of analytical techniques ((13)C solid state NMR, FT-IR, Raman, NEXAFS, ESI-MS, Morgan-Elson assay and Calcofluor White Staining); we show that this sponge chitin is much closer to α-chitin, known to be present in other animals, than to ß-chitin. Genetic analysis confirmed the presence of chitin synthases, which are described for the first time in a sponge. The presence of chitin in both marine (demosponges and hexactinellids) and freshwater sponges indicates that this important structural biopolymer was already present in their common ancestor.


Asunto(s)
Quitina/biosíntesis , Poríferos/metabolismo , Acetilglucosamina/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Quitina/química , Quitina Sintasa/química , Quitina Sintasa/genética , Clonación Molecular , Datos de Secuencia Molecular , Poríferos/genética , Espectrometría de Masa por Ionización de Electrospray , Espectroscopía Infrarroja por Transformada de Fourier , Espectroscopía de Absorción de Rayos X
16.
Phys Chem Chem Phys ; 15(36): 15177-84, 2013 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-23925570

RESUMEN

Electrochemical double-layer capacitors (EDLCs or supercapacitors) are of special potential interest with respect to energy storage. Nearly all EDLCs make use of porous carbons as electrode materials. Further tuning of their performance in EDLC applications requires a better understanding of their properties. In particular, the understanding of the interactions between carbon-based materials and electrolyte solutions is of fundamental interest with respect to future applications. Since the capacitance of carbon-based electrode materials is known to depend on the pore size, we have studied different porous carbon materials of well-defined, variable pore size loaded with 1 M TEABF4 in acetonitrile or with pure acetonitrile using solid-state magic angle spinning (MAS) (1)H, (11)B, and (13)C NMR spectroscopy.


Asunto(s)
Carbono/química , Técnicas Electroquímicas , Electrólitos/química , Espectroscopía de Resonancia Magnética , Tamaño de la Partícula , Porosidad , Propiedades de Superficie
17.
Biometals ; 26(1): 141-50, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23266794

RESUMEN

The eukaryotic diatoms are unicellular algae. They are well known for their filigree micro- and nanostructured cell walls which mainly consist of amorphous silica as well as various organic compounds. However, diatoms are also known to incorporate certain amounts of aluminium into their cell walls. Unexpectedly, enhanced Al concentrations in the Southern Yellow Sea were found to be correlated with a diatom spring bloom. Therefore, we have analyzed the influence of strongly enhanced Al concentrations in the culture medium upon the growth behaviour of the diatom Stephanopyxis turris (S. turris). The uptake and incorporation of Al into the cell walls was monitored. It turned out that S. turris survives aluminium concentrations up to 105.5 µM (2.85 mg/l) in the culture medium. Under the applied conditions, this corresponds to an Al/Si ratio of 1:1. These large amounts of Al had to be offered in the form of bis-tris-chelates in order to prevent uncontrolled precipitation. Under these conditions, the Al/Si ratio in the cell walls could be increased up to about 1:15 as determined by ICP-OES, the highest amount of aluminium found in diatom cell walls yet. Structural characterization of the biosilica by ATR-FTIR and solid-state (27)Al NMR spectroscopy revealed that an amorphous aluminosilicate phase is formed where the aluminium exists as four- and sixfold-coordinated species.


Asunto(s)
Compuestos de Aluminio/metabolismo , Pared Celular/metabolismo , Cloruros/metabolismo , Diatomeas/metabolismo , Cloruro de Aluminio , Organismos Acuáticos , Pared Celular/ultraestructura , Medios de Cultivo , Diatomeas/crecimiento & desarrollo , Diatomeas/ultraestructura , Espectroscopía de Resonancia Magnética , Microscopía Electrónica de Rastreo , Dióxido de Silicio/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier
18.
J Am Chem Soc ; 133(22): 8681-90, 2011 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-21539397

RESUMEN

Recently, we have described the metal-organic framework Ni(2)(2,6-ndc)(2)(dabco), denoted as DUT-8(Ni) (1) (DUT = Dresden University of Technology, 2,6-ndc = 2,6-naphthalenedicarboxylate, dabco = 1,4-diazabicyclo[2.2.2]octane). Upon adsorption of molecules such as nitrogen and xenon, this material exhibits a pronounced gate-pressure effect which is accompanied by a large change of the specific volume. Here, we describe the use of high-pressure in situ (129)Xe NMR spectroscopy, i.e., the NMR spectroscopic measurements of xenon adsorption/desorption isotherms and isobars, to characterize this effect. It appears that the pore system of DUT-8(Ni) takes up xenon until a liquid-like state is reached. Deeper insight into the interactions between the host DUT-8(Ni) and the guest atom xenon is gained from ab initio molecular dynamics (MD) simulations. van der Waals interactions are included for the first time in these calculations on a metal-organic framework compound. MD simulations allow the identification of preferred adsorption sites for xenon as well as insight into the breathing effect at a molecular scale. Grand canonical Monte Carlo (GCMC) simulations have been performed in order to simulate adsorption isotherms. Furthermore, the favorable influence of a sample pretreatment using solvent exchange and drying with supercritical CO(2) as well as the influence of repeated pore opening/closure processes, i.e., the "aging behavior" of the compound, can be visualized by (129)Xe NMR spectroscopy.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Simulación de Dinámica Molecular , Níquel/química , Compuestos Organometálicos/química , Xenón/química , Modelos Moleculares
19.
Materials (Basel) ; 14(14)2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34300916

RESUMEN

Activated carbons (ACs) were prepared from dried spent coffee (SCD), a biological waste product, to produce adsorbents for methylene blue (MB) and methyl orange (MO) from aqueous solution. Pre-pyrolysis activation of SCD was achieved via treatment of the SCD with aqueous sodium hydroxide solutions at 90 °C. Pyrolysis of the pretreated SCD at 500 °C for 1 h produced powders with typical characteristics of AC suitable and effective for dye adsorption. As an alternative to the rather harsh base treatment, calcium carbonate powder, a very common and abundant resource, was also studied as an activator. Mixtures of SCD and CaCO3 (1:1 w/w) yielded effective ACs for MO and MB removal upon pyrolysis needing only small amounts of AC to clear the solutions. A selectivity of the adsorption process toward anionic (MO) or cationic (MB) dyes was not observed.

20.
ACS Omega ; 6(30): 19364-19377, 2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34368523

RESUMEN

Developing biosorbents derived from agro-industrial biomass is considered as an economic and sustainable method for dealing with uranium-contaminated wastewater. The present study explores the feasibility of oxidizing a representative protein-rich biomass, brewer's spent grain (BSG), to an effective and reusable uranyl ion adsorbent to reduce the cost and waste generation during water treatment. The unique composition of BSG favors the oxidation process and yields in a high carboxyl group content (1.3 mmol/g) of the biosorbent. This makes BSG a cheap, sustainable, and suitable raw material independent from pre-treatment. The oxidized brewer's spent grain (OBSG) presents a high adsorption capacity of U(VI) of 297.3 mg/g (c 0(U) = 900 mg/L, pH = 4.7) and fast adsorption kinetics (1 h) compared with other biosorbents reported in the literature. Infrared spectra (Fourier transform infrared), 13C solid-state nuclear magnetic resonance spectra, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and thermogravimetric analysis were employed to characterize the biosorbents and reveal the adsorption mechanisms. The desorption and reusability of OBSG were tested for five cycles, resulting in a remaining adsorption of U(VI) of 100.3 mg/g and a desorption ratio of 89%. This study offers a viable and sustainable approach to convert agro-industrial waste into effective and reusable biosorbents for uranium removal from wastewater.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA