Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 351
Filtrar
Más filtros

Intervalo de año de publicación
1.
Genes Dev ; 37(19-20): 901-912, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37914351

RESUMEN

Fertilization in mammals is accompanied by an intense period of chromatin remodeling and major changes in nuclear organization. How the earliest events in embryogenesis, including zygotic genome activation (ZGA) during maternal-to-zygotic transition, influence such remodeling remains unknown. Here, we have investigated the establishment of nuclear architecture, focusing on the remodeling of lamina-associated domains (LADs) during this transition. We report that LADs reorganize gradually in two-cell embryos and that blocking ZGA leads to major changes in nuclear organization, including altered chromatin and genomic features of LADs and redistribution of H3K4me3 toward the nuclear lamina. Our data indicate that the rearrangement of LADs is an integral component of the maternal-to-zygotic transition and that transcription contributes to shaping nuclear organization at the beginning of mammalian development.


Asunto(s)
ARN Polimerasa II , Transcripción Genética , Animales , Ratones , ARN Polimerasa II/genética , Desarrollo Embrionario/genética , Cigoto , Mamíferos/genética , Regulación del Desarrollo de la Expresión Génica , Cromatina
2.
Genes Dev ; 37(7-8): 336-350, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-37072228

RESUMEN

The majority of our genome is composed of repeated DNA sequences that assemble into heterochromatin, a highly compacted structure that constrains their mutational potential. How heterochromatin forms during development and how its structure is maintained are not fully understood. Here, we show that mouse heterochromatin phase-separates after fertilization, during the earliest stages of mammalian embryogenesis. Using high-resolution quantitative imaging and molecular biology approaches, we show that pericentromeric heterochromatin displays properties consistent with a liquid-like state at the two-cell stage, which change at the four-cell stage, when chromocenters mature and heterochromatin becomes silent. Disrupting the condensates results in altered transcript levels of pericentromeric heterochromatin, suggesting a functional role for phase separation in heterochromatin function. Thus, our work shows that mouse heterochromatin forms membrane-less compartments with biophysical properties that change during development and provides new insights into the self-organization of chromatin domains during mammalian embryogenesis.


Asunto(s)
Cromatina , Heterocromatina , Animales , Ratones , Embrión de Mamíferos , Genoma , Mamíferos/genética
4.
Nature ; 625(7994): 401-409, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38123678

RESUMEN

DNA replication enables genetic inheritance across the kingdoms of life. Replication occurs with a defined temporal order known as the replication timing (RT) programme, leading to organization of the genome into early- or late-replicating regions. RT is cell-type specific, is tightly linked to the three-dimensional nuclear organization of the genome1,2 and is considered an epigenetic fingerprint3. In spite of its importance in maintaining the epigenome4, the developmental regulation of RT in mammals in vivo has not been explored. Here, using single-cell Repli-seq5, we generated genome-wide RT maps of mouse embryos from the zygote to the blastocyst stage. Our data show that RT is initially not well defined but becomes defined progressively from the 4-cell stage, coinciding with strengthening of the A and B compartments. We show that transcription contributes to the precision of the RT programme and that the difference in RT between the A and B compartments depends on RNA polymerase II at zygotic genome activation. Our data indicate that the establishment of nuclear organization precedes the acquisition of defined RT features and primes the partitioning of the genome into early- and late-replicating domains. Our work sheds light on the establishment of the epigenome at the beginning of mammalian development and reveals the organizing principles of genome organization.


Asunto(s)
Momento de Replicación del ADN , Embrión de Mamíferos , Genoma , Animales , Ratones , Blastocisto/citología , Blastocisto/metabolismo , Cromatina/genética , Epigenoma/genética , Genoma/genética , ARN Polimerasa II/metabolismo , Cigoto/citología , Cigoto/crecimiento & desarrollo , Cigoto/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo
5.
Genes Dev ; 35(1-2): 22-39, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33397727

RESUMEN

Transposable elements (TEs) are genetic elements capable of changing position within the genome. Although their mobilization can constitute a threat to genome integrity, nearly half of modern mammalian genomes are composed of remnants of TE insertions. The first critical step for a successful transposition cycle is the generation of a full-length transcript. TEs have evolved cis-regulatory elements enabling them to recruit host-encoded factors driving their own, selfish transcription. TEs are generally transcriptionally silenced in somatic cells, and the mechanisms underlying their repression have been extensively studied. However, during germline formation, preimplantation development, and tumorigenesis, specific TE families are highly expressed. Understanding the molecular players at stake in these contexts is of utmost importance to establish the mechanisms regulating TEs, as well as the importance of their transcription to the biology of the host. Here, we review the transcription factors known to be involved in the sequence-specific recognition and transcriptional activation of specific TE families or subfamilies. We discuss the diversity of TE regulatory elements within mammalian genomes and highlight the importance of TE mobilization in the dispersal of transcription factor-binding sites over the course of evolution.


Asunto(s)
Elementos Transponibles de ADN/genética , Factores de Transcripción/genética , Animales , Evolución Molecular , Regulación de la Expresión Génica/genética , Genoma/genética , Humanos , Mamíferos/genética , Factores de Transcripción/metabolismo
6.
Genes Dev ; 35(15-16): 1142-1160, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34244292

RESUMEN

The establishment of cell fates involves alterations of transcription factor repertoires and repurposing of transcription factors by post-translational modifications. In embryonic stem cells (ESCs), the chromatin organizers SATB2 and SATB1 balance pluripotency and differentiation by activating and repressing pluripotency genes, respectively. Here, we show that conditional Satb2 gene inactivation weakens ESC pluripotency, and we identify SUMO2 modification of SATB2 by the E3 ligase ZFP451 as a potential driver of ESC differentiation. Mutations of two SUMO-acceptor lysines of Satb2 (Satb2K →R ) or knockout of Zfp451 impair the ability of ESCs to silence pluripotency genes and activate differentiation-associated genes in response to retinoic acid (RA) treatment. Notably, the forced expression of a SUMO2-SATB2 fusion protein in either Satb2K →R or Zfp451-/- ESCs rescues, in part, their impaired differentiation potential and enhances the down-regulation of Nanog The differentiation defect of Satb2K →R ESCs correlates with altered higher-order chromatin interactions relative to Satb2wt ESCs. Upon RA treatment of Satb2wt ESCs, SATB2 interacts with ZFP451 and the LSD1/CoREST complex and gains binding at differentiation genes, which is not observed in RA-treated Satb2K →R cells. Thus, SATB2 SUMOylation may contribute to the rewiring of transcriptional networks and the chromatin interactome of ESCs in the transition of pluripotency to differentiation.


Asunto(s)
Células Madre Embrionarias , Sumoilación , Ubiquitina-Proteína Ligasas/metabolismo , Diferenciación Celular/genética , Cromatina/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Annu Rev Genet ; 54: 167-187, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-32867543

RESUMEN

Cellular heterogeneity is a property of any living system; however, its relationship with cellular fate decision remains an open question. Recent technological advances have enabled valuable insights, especially in complex systems such as the mouse embryo. In this review, we discuss recent studies that characterize cellular heterogeneity at different levels during mouse development, from the two-cell stage up to gastrulation. In addition to key experimental findings, we review mathematical modeling approaches that help researchers interpret these findings. Disentangling the role of heterogeneity in cell fate decision will likely rely on the refined integration of experiments, large-scale omics data, and mathematical modeling, complemented by the use of synthetic embryos and gastruloids as promising in vitro models.


Asunto(s)
Embrión de Mamíferos/fisiología , Animales , Diferenciación Celular/fisiología , Humanos , Ratones
8.
N Engl J Med ; 388(16): 1451-1464, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37018474

RESUMEN

BACKGROUND: Whether vaccination during pregnancy could reduce the burden of respiratory syncytial virus (RSV)-associated lower respiratory tract illness in newborns and infants is uncertain. METHODS: In this phase 3, double-blind trial conducted in 18 countries, we randomly assigned, in a 1:1 ratio, pregnant women at 24 through 36 weeks' gestation to receive a single intramuscular injection of 120 µg of a bivalent RSV prefusion F protein-based (RSVpreF) vaccine or placebo. The two primary efficacy end points were medically attended severe RSV-associated lower respiratory tract illness and medically attended RSV-associated lower respiratory tract illness in infants within 90, 120, 150, and 180 days after birth. A lower boundary of the confidence interval for vaccine efficacy (99.5% confidence interval [CI] at 90 days; 97.58% CI at later intervals) greater than 20% was considered to meet the success criterion for vaccine efficacy with respect to the primary end points. RESULTS: At this prespecified interim analysis, the success criterion for vaccine efficacy was met with respect to one primary end point. Overall, 3682 maternal participants received vaccine and 3676 received placebo; 3570 and 3558 infants, respectively, were evaluated. Medically attended severe lower respiratory tract illness occurred within 90 days after birth in 6 infants of women in the vaccine group and 33 infants of women in the placebo group (vaccine efficacy, 81.8%; 99.5% CI, 40.6 to 96.3); 19 cases and 62 cases, respectively, occurred within 180 days after birth (vaccine efficacy, 69.4%; 97.58% CI, 44.3 to 84.1). Medically attended RSV-associated lower respiratory tract illness occurred within 90 days after birth in 24 infants of women in the vaccine group and 56 infants of women in the placebo group (vaccine efficacy, 57.1%; 99.5% CI, 14.7 to 79.8); these results did not meet the statistical success criterion. No safety signals were detected in maternal participants or in infants and toddlers up to 24 months of age. The incidences of adverse events reported within 1 month after injection or within 1 month after birth were similar in the vaccine group (13.8% of women and 37.1% of infants) and the placebo group (13.1% and 34.5%, respectively). CONCLUSIONS: RSVpreF vaccine administered during pregnancy was effective against medically attended severe RSV-associated lower respiratory tract illness in infants, and no safety concerns were identified. (Funded by Pfizer; MATISSE ClinicalTrials.gov number, NCT04424316.).


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Vacunas contra Virus Sincitial Respiratorio , Infecciones del Sistema Respiratorio , Femenino , Humanos , Lactante , Recién Nacido , Embarazo , Anticuerpos Antivirales , Enfermedades Transmisibles/terapia , Método Doble Ciego , Inyecciones Intramusculares , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/prevención & control , Vacunas contra Virus Sincitial Respiratorio/administración & dosificación , Vacunas contra Virus Sincitial Respiratorio/efectos adversos , Vacunas contra Virus Sincitial Respiratorio/uso terapéutico , Virus Sincitiales Respiratorios , Resultado del Tratamiento , Vacunación/efectos adversos , Vacunación/métodos , Eficacia de las Vacunas , Vacunas Combinadas/administración & dosificación , Vacunas Combinadas/efectos adversos , Vacunas Combinadas/uso terapéutico , Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/prevención & control
9.
Development ; 150(11)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37294170

RESUMEN

A powerful feature of single-cell genomics is the possibility of identifying cell types from their molecular profiles. In particular, identifying novel rare cell types and their marker genes is a key potential of single-cell RNA sequencing. Standard clustering approaches perform well in identifying relatively abundant cell types, but tend to miss rarer cell types. Here, we have developed CIARA (Cluster Independent Algorithm for the identification of markers of RAre cell types), a cluster-independent computational tool designed to select genes that are likely to be markers of rare cell types. Genes selected by CIARA are subsequently integrated with common clustering algorithms to single out groups of rare cell types. CIARA outperforms existing methods for rare cell type detection, and we use it to find previously uncharacterized rare populations of cells in a human gastrula and among mouse embryonic stem cells treated with retinoic acid. Moreover, CIARA can be applied more generally to any type of single-cell omic data, thus allowing the identification of rare cells across multiple data modalities. We provide implementations of CIARA in user-friendly packages available in R and Python.


Asunto(s)
Algoritmos , Análisis de la Célula Individual , Animales , Humanos , Ratones , Análisis de Secuencia de ARN/métodos , Análisis por Conglomerados , Análisis de la Célula Individual/métodos , Perfilación de la Expresión Génica/métodos
10.
EMBO Rep ; 25(4): 1721-1733, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38528171

RESUMEN

Remnants of transposable elements (TEs) are widely expressed throughout mammalian embryo development. Originally infesting our genomes as selfish elements and acting as a source of genome instability, several of these elements have been co-opted as part of a complex system of genome regulation. Many TEs have lost transposition ability and their transcriptional potential has been tampered as a result of interactions with the host throughout evolutionary time. It has been proposed that TEs have been ultimately repurposed to function as gene regulatory hubs scattered throughout our genomes. In the early embryo in particular, TEs find a perfect environment of naïve chromatin to escape transcriptional repression by the host. As a consequence, it is thought that hosts found ways to co-opt TE sequences to regulate large-scale changes in chromatin and transcription state of their genomes. In this review, we discuss several examples of TEs expressed during embryo development, their potential for co-option in genome regulation and the evolutionary pressures on TEs and on our genomes.


Asunto(s)
Elementos Transponibles de ADN , Regulación de la Expresión Génica , Animales , Elementos Transponibles de ADN/genética , Evolución Biológica , Cromatina/genética , Embrión de Mamíferos , Evolución Molecular , Mamíferos/genética
11.
Nat Rev Mol Cell Biol ; 15(11): 723-34, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25303116

RESUMEN

Following fertilization, gametes undergo epigenetic reprogramming in order to revert to a totipotent state. How embryonic cells subsequently acquire their fate and the role of chromatin dynamics in this process are unknown. Genetic and experimental embryology approaches have identified some of the players and morphological changes that are involved in early mammalian development, but the exact events underlying cell fate allocation in single embryonic cells have remained elusive. Experimental and technological advances have recently provided novel insights into chromatin dynamics and nuclear architecture in single cells; these insights have reshaped our understanding of the mechanisms underlying cell fate allocation and plasticity in early mammalian development.


Asunto(s)
Blastocisto/metabolismo , Cromatina/metabolismo , Desarrollo Embrionario/genética , Histonas/metabolismo , Células Madre Totipotentes/metabolismo , Factores de Transcripción/metabolismo , Animales , Blastocisto/citología , Diferenciación Celular , Cromatina/química , Epigénesis Genética , Fertilización , Regulación del Desarrollo de la Expresión Génica , Células Germinativas , Histonas/genética , Transducción de Señal , Análisis de la Célula Individual , Células Madre Totipotentes/citología , Factores de Transcripción/genética
12.
Nature ; 587(7834): 377-386, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32894860

RESUMEN

Here we describe the LifeTime Initiative, which aims to track, understand and target human cells during the onset and progression of complex diseases, and to analyse their response to therapy at single-cell resolution. This mission will be implemented through the development, integration and application of single-cell multi-omics and imaging, artificial intelligence and patient-derived experimental disease models during the progression from health to disease. The analysis of large molecular and clinical datasets will identify molecular mechanisms, create predictive computational models of disease progression, and reveal new drug targets and therapies. The timely detection and interception of disease embedded in an ethical and patient-centred vision will be achieved through interactions across academia, hospitals, patient associations, health data management systems and industry. The application of this strategy to key medical challenges in cancer, neurological and neuropsychiatric disorders, and infectious, chronic inflammatory and cardiovascular diseases at the single-cell level will usher in cell-based interceptive medicine in Europe over the next decade.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Atención a la Salud/métodos , Atención a la Salud/tendencias , Medicina/métodos , Medicina/tendencias , Patología , Análisis de la Célula Individual , Inteligencia Artificial , Atención a la Salud/ética , Atención a la Salud/normas , Diagnóstico Precoz , Educación Médica , Europa (Continente) , Femenino , Salud , Humanos , Legislación Médica , Masculino , Medicina/normas
13.
Genes Dev ; 37(1-2): 56-57, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37061962
14.
EMBO Rep ; 24(9): e56194, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37432066

RESUMEN

Mouse embryonic stem cells (ESCs) display pluripotency features characteristic of the inner cell mass of the blastocyst. Mouse embryonic stem cell cultures are highly heterogeneous and include a rare population of cells, which recapitulate characteristics of the 2-cell embryo, referred to as 2-cell-like cells (2CLCs). Whether and how ESC and 2CLC respond to environmental cues has not been fully elucidated. Here, we investigate the impact of mechanical stress on the reprogramming of ESC to 2CLC. We show that hyperosmotic stress induces 2CLC and that this induction can occur even after a recovery time from hyperosmotic stress, suggesting a memory response. Hyperosmotic stress in ESCs leads to accumulation of reactive-oxygen species (ROS) and ATR checkpoint activation. Importantly, preventing either elevated ROS levels or ATR activation impairs hyperosmotic-mediated 2CLC induction. We further show that ROS generation and the ATR checkpoint act within the same molecular pathway in response to hyperosmotic stress to induce 2CLCs. Altogether, these results shed light on the response of ESC to mechanical stress and on our understanding of 2CLC reprogramming.


Asunto(s)
Células Madre Embrionarias , Transducción de Señal , Animales , Ratones , Especies Reactivas de Oxígeno/metabolismo , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Blastocisto/metabolismo , Diferenciación Celular
15.
Nature ; 569(7758): 729-733, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31118510

RESUMEN

In mammals, the emergence of totipotency after fertilization involves extensive rearrangements of the spatial positioning of the genome1,2. However, the contribution of spatial genome organization to the regulation of developmental programs is unclear3. Here we generate high-resolution maps of genomic interactions with the nuclear lamina (a filamentous meshwork that lines the inner nuclear membrane) in mouse pre-implantation embryos. We reveal that nuclear organization is not inherited from the maternal germline but is instead established de novo shortly after fertilization. The two parental genomes establish lamina-associated domains (LADs)4 with different features that converge after the 8-cell stage. We find that the mechanism of LAD establishment is unrelated to DNA replication. Instead, we show that paternal LAD formation in zygotes is prevented by ectopic expression of Kdm5b, which suggests that LAD establishment may be dependent on remodelling of H3K4 methylation. Our data suggest a step-wise assembly model whereby early LAD formation precedes consolidation of topologically associating domains.


Asunto(s)
Posicionamiento de Cromosoma , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Genoma/fisiología , Lámina Nuclear/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos/embriología , Desarrollo Embrionario , Femenino , Fertilización , Histona Demetilasas con Dominio de Jumonji/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Oocitos/citología , Oocitos/metabolismo , Cigoto/citología , Cigoto/metabolismo
16.
EMBO J ; 39(19): e105725, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32894572

RESUMEN

This commentary outlines challenges with identifying and implementing ethical, legal and societal considerations when initiating large-scale scientific programs and suggests best practices to ensure responsible research.


Asunto(s)
Discusiones Bioéticas , Investigación Biomédica/ética , Humanos
17.
J Hum Genet ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714835

RESUMEN

Contemporary research on the genomics of Attention Deficit Hyperactivity Disorder (ADHD) often underrepresents admixed populations of diverse genomic ancestries, such as Latin Americans. This study explores the relationship between admixture and genetic associations for ADHD in Colombian and Mexican cohorts. Some 546 participants in two groups, ADHD and Control, were genotyped with Infinium PsychArray®. Global ancestry levels were estimated using overall admixture proportions and principal component analysis, while local ancestry was determined using a method to estimate ancestral components along the genome. Genome-wide association analysis (GWAS) was conducted to identify significant associations. Differences between Colombia and Mexico were evaluated using appropriate statistical tests. 354 Single-nucleotide polymorphisms (SNPs) and Single-nucleotide variants (SNVs) related to some genes and intergenic regions exhibited suggestive significance (p-value < 5*10e-5) in the GWAS. None of the variants revealed genome-wide significance (p-value < 5*10e-8). The study identified a significant relationship between risk SNPs and the European component of admixture, notably observed in the LOC105379109 gene. Despite differences in risk association loci, such as FOXP2, our findings suggest a possible homogeneity in genetic variation's impact on ADHD between Colombian and Mexican populations. Current reference datasets for ADHD predominantly consist of samples with high European ancestry, underscoring the need for further research to enhance the representation of reference populations and improve the identification of ADHD risk traits in Latin Americans.

18.
Pediatr Blood Cancer ; 71(7): e31004, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38637875

RESUMEN

Pleuroparenchymal fibroelastosis (PPFE) is a rare interstitial pneumonia with distinct clinicopathologic features. It has been associated with exposure to hematopoietic stem cell transplantation (HSCT) and classical alkylating agents. Here, we highlight PPFE as a late complication of childhood cancer therapy by describing the cases of four survivors of childhood cancer with a diagnosis of treatment-related PPFE. All patients received high-dose alkylating agents. PPFE should be considered in the differential diagnosis of restrictive lung disease in patients with history of exposure to alkylating agents or HSCT. Development of PPFE-specific, noninvasive diagnostic tools and disease-modifying therapies will clinically benefit these patients.


Asunto(s)
Enfermedades Pulmonares Intersticiales , Humanos , Masculino , Femenino , Niño , Adolescente , Enfermedades Pulmonares Intersticiales/patología , Enfermedades Pulmonares Intersticiales/etiología , Enfermedades Pulmonares Intersticiales/inducido químicamente , Enfermedades Pulmonares Intersticiales/terapia , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Neoplasias/tratamiento farmacológico , Neoplasias/complicaciones , Neoplasias/patología , Fibrosis Pulmonar/etiología , Fibrosis Pulmonar/patología , Preescolar , Antineoplásicos Alquilantes/efectos adversos
19.
Transpl Int ; 37: 12732, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38773987

RESUMEN

Sex inequities in liver transplantation (LT) have been documented in several, mostly US-based, studies. Our aim was to describe sex-related differences in access to LT in a system with short waiting times. All adult patients registered in the RETH-Spanish Liver Transplant Registry (2000-2022) for LT were included. Baseline demographics, presence of hepatocellular carcinoma, cause and severity of liver disease, time on the waiting list (WL), access to transplantation, and reasons for removal from the WL were assessed. 14,385 patients were analysed (77% men, 56.2 ± 8.7 years). Model for end-stage liver disease (MELD) score was reported for 5,475 patients (mean value: 16.6 ± 5.7). Women were less likely to receive a transplant than men (OR 0.78, 95% CI 0.63, 0.97) with a trend to a higher risk of exclusion for deterioration (HR 1.17, 95% CI 0.99, 1.38), despite similar disease severity. Women waited longer on the WL (198.6 ± 338.9 vs. 173.3 ± 285.5 days, p < 0.001). Recently, women's risk of dropout has reduced, concomitantly with shorter WL times. Even in countries with short waiting times, women are disadvantaged in LT. Policies directed at optimizing the whole LT network should be encouraged to guarantee a fair and equal access of all patients to this life saving resource.


Asunto(s)
Accesibilidad a los Servicios de Salud , Trasplante de Hígado , Sistema de Registros , Listas de Espera , Humanos , Femenino , Trasplante de Hígado/estadística & datos numéricos , Persona de Mediana Edad , Masculino , Accesibilidad a los Servicios de Salud/estadística & datos numéricos , Anciano , España , Enfermedad Hepática en Estado Terminal/cirugía , Disparidades en Atención de Salud/estadística & datos numéricos , Factores Sexuales , Adulto , Estados Unidos , Índice de Severidad de la Enfermedad , Carcinoma Hepatocelular/cirugía , Neoplasias Hepáticas/cirugía
20.
Transpl Int ; 37: 12791, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38681973

RESUMEN

Intensive Care to facilitate Organ Donation (ICOD) consists of the initiation or continuation of intensive care measures in patients with a devastating brain injury (DBI) in whom curative treatment is deemed futile and death by neurological criteria (DNC) is foreseen, to incorporate organ donation into their end-of-life plans. In this study we evaluate the outcomes of patients subject to ICOD and identify radiological and clinical factors associated with progression to DNC. In this first prospective multicenter study we tested by multivariate regression the association of clinical and radiological severity features with progression to DNC. Of the 194 patients, 144 (74.2%) patients fulfilled DNC after a median of 25 h (95% IQR: 17-44) from ICOD onset. Two patients (1%) shifted from ICOD to curative treatment, both were alive at discharge. Factors associated with progression to DNC included: age below 70 years, clinical score consistent with severe brain injury, instability, intracranial hemorrhage, midline shift ≥5 mm and certain types of brain herniation. Overall 151 (77.8%) patients progressed to organ donation. Based on these results, we conclude that ICOD is a beneficial and efficient practice that can contribute to the pool of deceased donors.


Asunto(s)
Cuidados Críticos , Obtención de Tejidos y Órganos , Humanos , Estudios Prospectivos , Masculino , Femenino , Obtención de Tejidos y Órganos/métodos , Persona de Mediana Edad , Anciano , España , Adulto , Lesiones Encefálicas , Muerte Encefálica , Unidades de Cuidados Intensivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA