Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochemistry ; 63(12): 1513-1533, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38788673

RESUMEN

Glycogen synthase kinase 3 (GSK3) plays a pivotal role in signaling pathways involved in insulin metabolism and the pathogenesis of neurodegenerative disorders. In particular, the GSK3ß isoform is implicated in Alzheimer's disease (AD) as one of the key kinases involved in the hyperphosphorylation of tau protein, one of the neuropathological hallmarks of AD. As a constitutively active serine/threonine kinase, GSK3 is inactivated by Akt/PKB-mediated phosphorylation of Ser9 in the N-terminal disordered domain, and for most of its substrates, requires priming (prephosphorylation) by another kinase that targets the substrate to a phosphate-specific pocket near the active site. GSK3 has also been shown to be post-translationally modified by O-linked ß-N-acetylglucosaminylation (O-GlcNAcylation), with still unknown functions. Here, we have found that binding of Akt inhibits GSK3ß kinase activity on both primed and unprimed tau substrates. Akt-mediated Ser9 phosphorylation restores the GSK3ß kinase activity only on primed tau, thereby selectively inactivating GSK3ß toward unprimed tau protein. Additionally, we have shown that GSK3ß is highly O-GlcNAcylated at multiple sites within the kinase domain and the disordered N- and C-terminal domains, including Ser9. In contrast to Akt-mediated regulation, neither the O-GlcNAc transferase nor O-GlcNAcylation significantly alters GSK3ß kinase activity, but high O-GlcNAc levels reduce Ser9 phosphorylation by Akt. Reciprocally, Akt phosphorylation downregulates the overall O-GlcNAcylation of GSK3ß, indicating a crosstalk between both post-translational modifications. Our results indicate that specific O-GlcNAc profiles may be involved in the phosphorylation-dependent Akt-mediated regulation of GSK3ß kinase activity.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta , Proteínas Proto-Oncogénicas c-akt , Proteínas tau , Proteínas tau/metabolismo , Proteínas tau/química , Fosforilación , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Procesamiento Proteico-Postraduccional , Glucógeno Sintasa Quinasa 3/metabolismo , Acetilglucosamina/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , N-Acetilglucosaminiltransferasas/química , Glicosilación , Animales
2.
PLoS Pathog ; 18(4): e1010458, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35395062

RESUMEN

Two-component regulatory systems (TCS) are among the most widespread mechanisms that bacteria use to sense and respond to environmental changes. In the human pathogen Streptococcus pneumoniae, a total of 13 TCS have been identified and many of them have been linked to pathogenicity. Notably, TCS01 strongly contributes to pneumococcal virulence in several infection models. However, it remains one of the least studied TCS in pneumococci and its functional role is still unclear. In this study, we demonstrate that TCS01 cooperates with a BceAB-type ABC transporter to sense and induce resistance to structurally-unrelated antimicrobial peptides of bacterial origin that all target undecaprenyl-pyrophosphate or lipid II, which are essential precursors of cell wall biosynthesis. Even though tcs01 and bceAB genes do not locate in the same gene cluster, disruption of either of them equally sensitized the bacterium to the same set of antimicrobial peptides. We show that the key function of TCS01 is to upregulate the expression of the transporter, while the latter appears the main actor in resistance. Electrophoretic mobility shift assays further demonstrated that the response regulator of TCS01 binds to the promoter region of the bceAB genes, implying a direct control of these genes. The BceAB transporter was overexpressed and purified from E. coli. After reconstitution in liposomes, it displayed substantial ATPase and GTPase activities that were stimulated by antimicrobial peptides to which it confers resistance to, revealing new functional features of a BceAB-type transporter. Altogether, this inducible defense mechanism likely contributes to the survival of the opportunistic microorganism in the human host, in which competition among commensal microorganisms is a key determinant for effective host colonization and invasive path.


Asunto(s)
Péptidos Antimicrobianos , Farmacorresistencia Bacteriana , Regulación Bacteriana de la Expresión Génica , Streptococcus pneumoniae , Péptidos Antimicrobianos/farmacología , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana/genética , Escherichia coli/metabolismo , Humanos , Proteínas de Transporte de Membrana/metabolismo , Péptidos/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo
3.
Biochem Biophys Res Commun ; 553: 51-57, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33756345

RESUMEN

The tumor suppressor gene HIC1 (Hypermethylated in Cancer 1) encodes a transcriptional repressor involved in the DNA-damage response. A SUMOylation increase on HIC1 Lysine314 favors the direct transcriptional repression of SIRT1 and thus the P53-dependent apoptotic response to irreparable DNA double strand breaks (DSBs). HIC1 is also essential for DSBs repair but in a SUMOylation-independent manner. Here, we show that repairable DSBs induced by a 1 h Etoposide treatment results in three specific posttranslational modifications (PTMs) of HIC1. Two of these PTMs, phosphorylation of Serine 694 and Acetylation of Lysine 623 are located in the conserved HIC1 C-terminal region located downstream of the Zinc Finger DNA-binding domain. By contrast, phosphorylation of Serine 285 found in the poorly conserved central region is unique to the human protein. We showed that Ser694 phosphorylation is mediated mainly by the PIKK kinase ATM and is essential for the DNA repair activity of HIC1 as demonstrated by the lack of efficiency of the S694A point mutant in Comet assays. Thus, our results provide the first evidence for a functional role of the conserved HIC1 C-terminal region as a novel ATM substrate that plays an essential role in the cellular HIC1-mediated cellular response to repairable DSBs.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Reparación del ADN , Factores de Transcripción de Tipo Kruppel/química , Factores de Transcripción de Tipo Kruppel/metabolismo , Fosfoserina/metabolismo , Animales , Línea Celular , Ensayo Cometa , Secuencia Conservada , Daño del ADN , Humanos , Fosforilación
4.
J Am Soc Nephrol ; 31(7): 1462-1477, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32518085

RESUMEN

BACKGROUND: CKD is associated with increased oxidative stress that correlates with occurrence of cardiovascular events. Modifications induced by increased oxidative stress particularly affect circulating lipoproteins such as HDL that exhibit antiatheromatous and antithrombotic properties in vitro. METHODS: To explore the specific role of oxidative modifications of HDL in CKD and their effect on the platelet-targeting antiaggregant properties of HDL, we used a CKD (5/6 nephrectomy) rabbit model. For ex vivo assessment of the antiaggregant properties of HDL, we collected blood samples from 15 healthy volunteers, 25 patients on hemodialysis, and 20 on peritoneal dialysis. We analyzed malondialdehyde, 4-hydroxynonenal (HNE), and 4-hydroxy-2-hexenal protein adduct levels. Platelet aggregation and activation were assessed by aggregometry, thromboxane B2 assay, or FACS. We modified HDL from controls by incubating it overnight at 37°C with 100 µM of HNE. RESULTS: HDL from CKD rabbits and patients on hemodialysis had HNE adducts. The percentage of platelet aggregation or activation induced by collagen was significantly higher when platelets were incubated with HDL from CKD rabbit and hemodialysis groups than with HDL from the control group. In both rabbits and humans, platelet aggregation and activation were significantly higher in the presence of HNE-modified HDL than with HDL from their respective controls. Incubation of platelets with a blocking antibody directed against CD36 or with a pharmacologic inhibitor of SRC kinases restored the antiaggregative phenotype in the presence of HDL from CKD rabbits, patients on hemodialysis and peritoneal dialysis, and HNE-modified HDL. CONCLUSIONS: HDL from CKD rabbits and patients on hemodialysis exhibited an impaired ability to inhibit platelet aggregation, suggesting that altered HDL properties may contribute to the increased cardiovascular risk in this population.


Asunto(s)
Aldehídos/sangre , Lipoproteínas HDL/sangre , Lipoproteínas HDL/farmacología , Estrés Oxidativo , Agregación Plaquetaria/efectos de los fármacos , Insuficiencia Renal Crónica/sangre , Adulto , Anciano , Anciano de 80 o más Años , Animales , Anticuerpos/farmacología , Plaquetas , Antígenos CD36/inmunología , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Malondialdehído/sangre , Persona de Mediana Edad , Oxidación-Reducción , Diálisis Peritoneal , Fosforilación , Carbonilación Proteica , Inhibidores de Proteínas Quinasas/farmacología , Conejos , Insuficiencia Renal Crónica/terapia , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/metabolismo
5.
EMBO J ; 35(12): 1276-97, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27103069

RESUMEN

An intronic expansion of GGGGCC repeats within the C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD). Ataxin-2 with intermediate length of polyglutamine expansions (Ataxin-2 Q30x) is a genetic modifier of the disease. Here, we found that C9ORF72 forms a complex with the WDR41 and SMCR8 proteins to act as a GDP/GTP exchange factor for RAB8a and RAB39b and to thereby control autophagic flux. Depletion of C9orf72 in neurons partly impairs autophagy and leads to accumulation of aggregates of TDP-43 and P62 proteins, which are histopathological hallmarks of ALS-FTD SMCR8 is phosphorylated by TBK1 and depletion of TBK1 can be rescued by phosphomimetic mutants of SMCR8 or by constitutively active RAB39b, suggesting that TBK1, SMCR8, C9ORF72, and RAB39b belong to a common pathway regulating autophagy. While depletion of C9ORF72 only has a partial deleterious effect on neuron survival, it synergizes with Ataxin-2 Q30x toxicity to induce motor neuron dysfunction and neuronal cell death. These results indicate that partial loss of function of C9ORF72 is not deleterious by itself but synergizes with Ataxin-2 toxicity, suggesting a double-hit pathological mechanism in ALS-FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Ataxina-2/metabolismo , Autofagia , Demencia Frontotemporal/patología , Neuronas Motoras/fisiología , Péptidos/metabolismo , Proteínas/metabolismo , Proteína C9orf72 , Muerte Celular , Humanos , Neuronas Motoras/metabolismo
6.
Biochim Biophys Acta Gen Subj ; 1862(4): 825-835, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29337275

RESUMEN

Lamin B Receptor (LBR) is an integral protein of the interphase inner nuclear membrane that is implicated in chromatin anchorage to the nuclear envelope. Phosphorylation of a stretch of arginine-serine (RS) dipeptides in the amino-terminal nucleoplasmic domain of LBR regulates the interactions of the receptor with other nuclear proteins, DNA and RNA and thus modulates tethering of heterochromatin to the nuclear envelope. While phosphorylation has been extensively studied, very little is known about other post-translational modifications of the protein. There is only one report on the O-ß-linked N-acetyl-glucosaminylation (O-GlcNAcylation) of a serine residue downstream of the RS domain of rat LBR. In the present study we identify additional O-GlcNAcylation sites by using as substrates of O-ß-N-acetylglucosaminyltransferase (OGT) a set of peptides containing the entire LBR RS domain or parts of it as well as flanking sequences. The in vitro activity of OGT was assessed by tandem mass spectrometry and NMR spectroscopy. Furthermore, we provide evidence that O-GlcNAcylation hampers DNA binding while it marginally affects RS domain phosphorylation mediated by SRPK1, Akt2 and cdk1 kinases. GENERAL SIGNIFICANCE: Our methodology providing a quantitative description of O-GlcNAc patterns based on a combination of mass spectrometry and high resolution NMR spectroscopy on short peptide substrates allows subsequent functional analyses. Hence, our approach is of general interest to a wide audience of biologists aiming at deciphering the functional role of O-GlcNAc glycosylation and its crosstalk with phosphorylation.


Asunto(s)
Acetilglucosamina/metabolismo , ADN/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , ADN/genética , Glicosilación , Humanos , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Péptidos/genética , Péptidos/metabolismo , Fosforilación , Unión Proteica , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Homología de Secuencia de Aminoácido , Pavos , Receptor de Lamina B
7.
iScience ; 27(4): 109505, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38577105

RESUMEN

Antibiotics inhibiting the fatty acid synthesis pathway (FASII) of the major pathogen Staphylococcus aureus reach their enzyme targets, but bacteria continue growth by using environmental fatty acids (eFAs) to produce phospholipids. We assessed the consequences and effectors of FASII-antibiotic (anti-FASII) adaptation. Anti-FASII induced lasting expression changes without genomic rearrangements. Several identified regulators affected the timing of adaptation outgrowth. Adaptation resulted in decreased expression of major virulence factors. Conversely, stress responses were globally increased and adapted bacteria were more resistant to peroxide killing. Importantly, pre-exposure to peroxide led to faster anti-FASII-adaptation by stimulating eFA incorporation. This adaptation differs from reports of peroxide-stimulated antibiotic efflux, which leads to tolerance. In vivo, anti-FASII-adapted S. aureus killed the insect host more slowly but continued multiplying. We conclude that staphylococcal adaptation to FASII antibiotics involves reprogramming, which decreases virulence and increases stress resistance. Peroxide, produced by the host to combat infection, favors anti-FASII adaptation.

8.
J Biol Chem ; 287(3): 1923-31, 2012 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-22128158

RESUMEN

The precursor of nerve growth factor (proNGF) has been described as a biologically active polypeptide able to induce apoptosis in neuronal cells, via the neurotrophin receptor p75(NTR) and the sortilin receptor. Herein, it is shown that proNGF is produced and secreted by breast cancer cells, stimulating their invasion. Using Western blotting and mass spectrometry, proNGF was detected in a panel of breast cancer cells as well as in their conditioned media. Immunohistochemical analysis indicated an overproduction of proNGF in breast tumors, when compared with benign and normal breast biopsies, and a relationship to lymph node invasion in ductal carcinomas. Interestingly, siRNA against proNGF induced a decrease of breast cancer cell invasion that was restored by the addition of non-cleavable proNGF. The activation of TrkA, Akt, and Src, but not the MAP kinases, was observed. In addition, the proNGF invasive effect was inhibited by the Trk pharmacological inhibitor K252a, a kinase-dead TrkA, and siRNA against TrkA sortilin, neurotensin, whereas siRNA against p75(NTR) and the MAP kinase inhibitor PD98059 had no impact. These data reveal the existence of an autocrine loop stimulated by proNGF and mediated by TrkA and sortilin, with the activation of Akt and Src, for the stimulation of breast cancer cell invasion.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Comunicación Autocrina , Neoplasias de la Mama/metabolismo , Carcinoma Ductal/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Precursores de Proteínas/metabolismo , Receptor trkA/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Biopsia , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carbazoles/farmacología , Carcinoma Ductal/genética , Carcinoma Ductal/patología , Línea Celular Tumoral , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Inhibidores Enzimáticos/farmacología , Femenino , Humanos , Alcaloides Indólicos/farmacología , Metástasis Linfática , Invasividad Neoplásica , Factor de Crecimiento Nervioso/genética , Precursores de Proteínas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor trkA/genética , Receptores de Factor de Crecimiento Nervioso/genética , Receptores de Factor de Crecimiento Nervioso/metabolismo , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
9.
J Am Chem Soc ; 135(2): 733-40, 2013 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-23265191

RESUMEN

Iron-sulfur (Fe-S) cluster-containing proteins are essential components of cells. In eukaryotes, Fe-S clusters are synthesized by the mitochondrial iron-sulfur cluster (ISC) machinery and the cytosolic iron-sulfur assembly (CIA) system. In the mammalian ISC machinery, preassembly of the Fe-S cluster on the scaffold protein (ISCU) involves a cysteine desulfurase complex (NFS1/ISD11) and frataxin (FXN), the protein deficient in Friedreich's ataxia. Here, by comparing the biochemical and spectroscopic properties of quaternary (ISCU/NFS1/ISD11/FXN) and ternary (ISCU/NFS1/ISD11) complexes, we show that FXN stabilizes the quaternary complex and controls iron entry to the complex through activation of cysteine desulfurization. Furthermore, we show for the first time that in the presence of iron and L-cysteine, an [Fe(4)S(4)] cluster is formed within the quaternary complex that can be transferred to mammalian aconitase (mACO2) to generate an active enzyme. In the absence of FXN, although the ternary complex can assemble an Fe-S cluster, the cluster is inefficiently transferred to ACO2. Taken together, these data help to unravel further the Fe-S cluster assembly process and the molecular basis of Friedreich's ataxia.


Asunto(s)
Proteínas de Unión a Hierro/fisiología , Proteínas Hierro-Azufre/química , Hierro/metabolismo , Azufre/metabolismo , Animales , Complejos de Coordinación/química , Humanos , Modelos Moleculares , Frataxina
10.
J Proteomics ; 251: 104397, 2022 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-34678517

RESUMEN

A striking feature of skin organization is that the extracellular matrix (ECM) occupies a larger volume than the cells. Skin ECM also directly contributes to aging and most cutaneous diseases. In recent years, specific ECM enrichment protocols combined with in silico approaches allowed the proteomic description of the matrisome of various organs and tumor samples. Nevertheless, the skin matrisome remains under-studied and protocols allowing the efficient recovery of the diverse ECM found in skin are still to be described. Here, we compared four protocols allowing the enrichment of ECM proteins from adult mouse back skin and found that all protocols led to a significant enrichment (up to 65%) of matrisome proteins when compared to total skin lysates. The protocols based on decellularization and solubility profiling gave the best results in terms of numbers of proteins identified and confirmed that skin matrisome proteins exhibit very diverse solubility and abundance profiles. We also report the first description of the skin matrisome of healthy adult mice that includes 236 proteins comprising 95 core matrisome proteins and 141 associated matrisome proteins. These results provide a reliable basis for future characterizations of skin ECM proteins and their dysregulations in disease-specific contexts. SIGNIFICANCE: Extracellular matrix proteins are key players in skin physiopathology and have been involved in several diseases such as genetic disorders, wound healing defects, scleroderma and skin carcinoma. However, skin ECM proteins are numerous, diverse and challenging to analyze by mass spectrometry due to the multiplicity of their post-translational modifications and to the heterogeneity of their solubility profiles. Here, we performed the thorough evaluation of four ECM enrichment protocols compatible with the proteomic analysis of mouse back skin and provide the first description of the adult mouse skin matrisome in homeostasis conditions. Our work will greatly facilitate the future characterization of skin ECM alterations in preclinical mouse models and will inspire new optimizations to analyze the skin matrisome of other species and of human clinical samples.


Asunto(s)
Matriz Extracelular , Proteómica , Animales , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/análisis , Espectrometría de Masas , Ratones , Proteómica/métodos , Piel/metabolismo
11.
Commun Biol ; 5(1): 1158, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36316540

RESUMEN

Metacaspases are caspase-like homologs which undergo a complex maturation process involving multiple intra-chain cleavages resulting in a composite enzyme made of a p10 and a p20 domain. Their proteolytic activity involving a cysteine-histidine catalytic dyad, show peptide bond cleavage specificity in the C-terminal to lysine and arginine, with both maturation- and catalytic processes being calcium-dependent. Here, we present the structure of a metacaspase from the yeast Candida glabrata, CgMCA-I, in complex with a unique calcium along with a structure in which three magnesium ions are bound. We show that the Ca2+ ion interacts with a loop in the vicinity of the catalytic site. The reorganization of this cation binding loop, by bringing together the two catalytic residues, could be one of the main structural determinants triggering metacaspase activation. Enzymatic exploration of CgMCA-I confirmed that the maturation process implies a trans mechanism with sequential cleavages.


Asunto(s)
Calcio , Candida glabrata , Calcio/metabolismo , Candida glabrata/genética , Caspasas/química , Caspasas/metabolismo , Lisina/metabolismo , Arginina/química
12.
Oncogene ; 41(5): 745-756, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34845374

RESUMEN

Alteration of O-GlcNAcylation, a dynamic posttranslational modification, is associated with tumorigenesis and tumor progression. Its role in chemotherapy response is poorly investigated. Standard treatment for colorectal cancer (CRC), 5-fluorouracil (5-FU), mainly targets Thymidylate Synthase (TS). TS O-GlcNAcylation was reported but not investigated yet. We hypothesize that O-GlcNAcylation interferes with 5-FU CRC sensitivity by regulating TS. In vivo, we observed that combined 5-FU with Thiamet-G (O-GlcNAcase (OGA) inhibitor) treatment had a synergistic inhibitory effect on grade and tumor progression. 5-FU decreased O-GlcNAcylation and, reciprocally, elevation of O-GlcNAcylation was associated with TS increase. In vitro in non-cancerous and cancerous colon cells, we showed that 5-FU impacts O-GlcNAcylation by decreasing O-GlcNAc Transferase (OGT) expression both at mRNA and protein levels. Reciprocally, OGT knockdown decreased 5-FU-induced cancer cell apoptosis by reducing TS protein level and activity. Mass spectrometry, mutagenesis and structural studies mapped O-GlcNAcylated sites on T251 and T306 residues and deciphered their role in TS proteasomal degradation. We reveal a crosstalk between O-GlcNAcylation and 5-FU metabolism in vitro and in vivo that converges to 5-FU CRC sensitization by stabilizing TS. Overall, our data propose that combining 5-FU-based chemotherapy with Thiamet-G could be a new way to enhance CRC response to 5-FU.


Asunto(s)
Timidilato Sintasa
13.
Front Mol Biosci ; 8: 821755, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35282608

RESUMEN

We here establish the phosphorylation sites in the human hepatitis B virus (HBV) large envelope protein (L). L is involved in several functionally important interactions in the viral life cycle, including with the HBV cellular receptor, HBV capsid, Hsc70 chaperone, and cellular membranes during fusion. We have recently shown that cell-free synthesis of the homologous L protein of duck HBV in wheat germ extract results in very similar phosphorylation events to those previously observed in animal cells. Here, we used mass spectrometry and NMR to establish the phosphorylation patterns of human HBV L protein produced by both in vitro cell-free synthesis and in E. coli with the co-expression of the human MAPK14 kinase. While in the avian virus the phosphorylation of L has been shown to be dispensable for infectivity, the identified locations in the human virus protein, both in the PreS1 and PreS2 domains, raise the intriguing possibility that they might play a functional role, since they are found at strategic sites predicted to be involved in L interactions. This would warrant the further investigation of a possible function in virion formation or cell entry.

14.
Mol Cell Proteomics ; 7(11): 2229-45, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18617508

RESUMEN

O-Linked N-acetylglucosaminylation (O-GlcNAcylation) (or O-linked N-acetylglucosamine (O-GlcNAc)) is an abundant and reversible glycosylation type found within the cytosolic and the nuclear compartments. We have described previously the sudden O-GlcNAcylation increase occurring during the Xenopus laevis oocyte G(2)/M transition, and we have demonstrated that the inhibition of O-GlcNAc-transferase (OGT) blocked this process, showing that the O-GlcNAcylation dynamism interferes with the cell cycle progression. In this work, we identified proteins that are O-GlcNAc-modified during the G(2)/M transition. Because of a low expression of O-GlcNAcylation in Xenopus oocyte, classical enrichment of O-GlcNAc-bearing proteins using O-GlcNAc-directed antibodies or wheat germ agglutinin lectin affinity were hard to apply, albeit these techniques allowed the identification of actin and erk2. Therefore, another strategy based on an in vitro enzymatic labeling of O-GlcNAc residues with azido-GalNAc followed by a chemical addition of a biotin alkyne probe and by enrichment of the tagged proteins on avidin beads was used. Bound proteins were analyzed by nano-LC-nano-ESI-MS/MS allowing for the identification of an average of 20 X. laevis oocyte O-GlcNAcylated proteins. In addition to actin and beta-tubulin, we identified metabolic/functional proteins such as PP2A, proliferating cell nuclear antigen, transitional endoplasmic reticulum ATPase, aldolase, lactate dehydrogenase, and ribosomal proteins. This labeling allowed for the mapping of a major O-GlcNAcylation site within the 318-324 region of beta-actin. Furthermore immunofluorescence microscopy enabled the direct visualization of O-GlcNAcylation and OGT on the meiotic spindle as well as the observation that chromosomally bound proteins were enriched in O-GlcNAc and OGT. The biological relevance of this post-translational modification both on microtubules and on chromosomes remains to be determined. However, the mapping of the O-GlcNAcylation sites will help to underline the function of this post-translational modification on each identified protein and will provide a better understanding of O-GlcNAcylation in the control of the cell cycle.


Asunto(s)
Acetilglucosamina/química , Oocitos/metabolismo , Proteínas de Xenopus/química , Actinas/química , Actinas/aislamiento & purificación , Actinas/metabolismo , Animales , Femenino , Glicoproteínas/química , Glicoproteínas/aislamiento & purificación , Glicoproteínas/metabolismo , Oocitos/citología , Proteómica , Espectrometría de Masas en Tándem , Proteínas de Xenopus/aislamiento & purificación , Proteínas de Xenopus/metabolismo , Xenopus laevis
15.
Proteomics ; 9(8): 2139-48, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19322778

RESUMEN

O-linked beta-N-acetylglucosamine (O-GlcNAc) is a widespread modification of serine/threonine residues of nucleocytoplasmic proteins. Recently, several key contractile proteins in rat skeletal muscle (i.e., myosin heavy and light chains and actin) were identified as O-GlcNAc modified. Moreover, it was demonstrated that O-GlcNAc moieties involved in contractile protein interactions could modulate Ca(2+) activation parameters of contraction. In order to better understand how O-GlcNAc can modulate the contractile activity of muscle fibers, we decided to identify the sites of O-GlcNAc modification in purified contractile protein homogenates. Using an MS-based method that relies on mild beta-elimination followed by Michael addition of DTT (BEMAD), we determined the localization of one O-GlcNAc site in the subdomain four of actin and four O-GlcNAc sites in the light meromyosin region of myosin heavy chains (MHC). According to previous reports concerning the role of these regions, our data suggest that O-GlcNAc sites might modulate the actin-tropomyosin interaction, and be involved in MHC polymerization or interactions between MHC and other contractile proteins. Thus, the results suggest that this PTM might be involved in protein-protein interactions but could also modulate the contractile properties of skeletal muscle.


Asunto(s)
Acetilglucosamina/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Procesamiento Proteico-Postraduccional , Actinas/aislamiento & purificación , Actinas/metabolismo , Animales , Glicosilación , Proteínas Musculares/aislamiento & purificación , Cadenas Pesadas de Miosina/aislamiento & purificación , Cadenas Pesadas de Miosina/metabolismo , Cadenas Ligeras de Miosina/aislamiento & purificación , Cadenas Ligeras de Miosina/metabolismo , Mapeo Peptídico , Ratas , Serina/metabolismo , Espectrometría de Masas en Tándem
16.
Science ; 364(6442): 778-782, 2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-31123134

RESUMEN

Drug-resistance dissemination by horizontal gene transfer remains poorly understood at the cellular scale. Using live-cell microscopy, we reveal the dynamics of resistance acquisition by transfer of the Escherichia coli fertility factor-conjugation plasmid encoding the tetracycline-efflux pump TetA. The entry of the single-stranded DNA plasmid into the recipient cell is rapidly followed by complementary-strand synthesis, plasmid-gene expression, and production of TetA. In the presence of translation-inhibiting antibiotics, resistance acquisition depends on the AcrAB-TolC multidrug efflux pump, because it reduces tetracycline concentrations in the cell. Protein synthesis can thus persist and TetA expression can be initiated immediately after plasmid acquisition. AcrAB-TolC efflux activity can also preserve resistance acquisition by plasmid transfer in the presence of antibiotics with other modes of action.


Asunto(s)
Proteínas Portadoras/fisiología , Farmacorresistencia Bacteriana Múltiple/genética , Proteínas de Escherichia coli/fisiología , Escherichia coli/fisiología , Factor F/fisiología , Antibacterianos/farmacología , Antiportadores/antagonistas & inhibidores , Antiportadores/biosíntesis , Antiportadores/genética , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Conjugación Genética , ADN de Cadena Simple , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Factor F/genética , Microscopía , Biosíntesis de Proteínas/efectos de los fármacos , Tetraciclina/farmacología
17.
Toxins (Basel) ; 11(11)2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31731787

RESUMEN

Chronic kidney disease is associated with an increased cardiovascular risk, and altered biological properties of high-density lipoproteins (HDL) may play a role in these events. This study aimed to describe the HDL proteome from non-diabetic hemodialysis patients and identify potential pathways affected by the dysregulated expression of HDL proteins. HDL were sampled from nine non-diabetic hemodialysis (HD) and eight control patients. Samples were analyzed using a nano-RSLC coupled with a Q-Orbitrap. Data were processed by database searching using SequestHT against a human Swissprot database and quantified with a label-free quantification approach. Proteins that were in at least five of the eight control and six of the nine HD patients were analyzed. Analysis was based on pairwise ratios and the ANOVA hypothesis test. Among 522 potential proteins, 326 proteins were identified to be in the HDL proteome from HD and control patients, among which 10 were significantly upregulated and nine downregulated in HD patients compared to the control patients (p < 0.05). Up and downregulated proteins were involved in lipid metabolism, hemostasis, wound healing, oxidative stress, and apoptosis pathways. This difference in composition could partly explain HDL dysfunction in the chronic kidney disease (CKD) population and participate in the higher cardiovascular risk observed in this population.


Asunto(s)
Lipoproteínas HDL/metabolismo , Proteómica/métodos , Diálisis Renal , Apoptosis , Estudios de Casos y Controles , Regulación hacia Abajo , Hemostasis , Humanos , Metabolismo de los Lípidos , Espectrometría de Masas/métodos , Estrés Oxidativo , Regulación hacia Arriba , Cicatrización de Heridas
18.
Front Mol Biosci ; 6: 138, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31850370

RESUMEN

Wheat-germ cell-free protein synthesis (WG-CFPS) is a potent platform for the high-yield production of proteins. It is especially of interest for difficult-to-express eukaryotic proteins, such as toxic and transmembrane proteins, and presents an important tool in high-throughput protein screening. Until recently, an assumed drawback of WG-CFPS was a reduced capacity for post-translational modifications. Meanwhile, phosphorylation has been observed in WG-CFPS; yet, authenticity of the respective phosphorylation sites remained unclear. Here we show that a viral membrane protein, the duck hepatitis B virus (DHBV) large envelope protein (DHBs L), produced by WG-CFPS, is phosphorylated upon translation at the same sites as DHBs L produced during DHBV infection of primary hepatocytes. Furthermore, we show that alternative translation initiation of the L protein, previously identified in virus-producing hepatic cells, occurs on WG-CFPS as well. Together, these findings further strengthen the high potential of WG-CFPS to include the reproduction of specific modifications proteins experience in vivo.

19.
FEBS Open Bio ; 9(2): 396-404, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30761263

RESUMEN

Transglutaminases (TGs) are a family of structurally and functionally related enzymes that catalyse calcium-dependent post-translational modifications of proteins through protein-protein crosslinking, amine incorporation, or deamidation. For many years deamidation mediated by TGs was considered to be a side reaction, but recently substrate-specific deamidations have been reported. Here we describe an optimised SDS/PAGE assay for the easy and rapid monitoring of the TG reaction with small peptides. The relative proportion of deamidation to transamidation was evaluated by densitometric analysis and confirmed by nano-liquid chromatography-nano-electrospray ionisation MS. We further investigated the effect of reaction conditions on transamidation and deamidation of TG1, TG2 and blood coagulation factor XIII A-subunit (FXIII-A) enzymes using a panel of glutamine-containing peptide substrates. The ratio of transamidation to deamidation was enhanced at high excess of the acyl-acceptor substrate and increasing pH. In addition, it was influenced by peptide substrates as well. Whereas deamidation was favoured at low cadaverine concentrations and acidic pH, no significant effect of calcium was observed on the ratio of transamidation/deamidation. Under our experimental conditions, deamidation always occurred in vitro even at high excess of the acyl-acceptor substrate, and the reaction outcome was shifted to deamidation at neutral pH. Our results provide clear evidence of the deamidation in the TG reaction, and may serve as an important approach for in vivo analysis of deamidation to better understand the role of TGs in biological events.


Asunto(s)
Amidas/metabolismo , Transglutaminasas/metabolismo , Cromatografía Liquida , Electroforesis en Gel de Poliacrilamida , Humanos , Concentración de Iones de Hidrógeno , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA