Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Physiol Rev ; 97(3): 939-993, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28468833

RESUMEN

Dental enamel is the hardest and most mineralized tissue in extinct and extant vertebrate species and provides maximum durability that allows teeth to function as weapons and/or tools as well as for food processing. Enamel development and mineralization is an intricate process tightly regulated by cells of the enamel organ called ameloblasts. These heavily polarized cells form a monolayer around the developing enamel tissue and move as a single forming front in specified directions as they lay down a proteinaceous matrix that serves as a template for crystal growth. Ameloblasts maintain intercellular connections creating a semi-permeable barrier that at one end (basal/proximal) receives nutrients and ions from blood vessels, and at the opposite end (secretory/apical/distal) forms extracellular crystals within specified pH conditions. In this unique environment, ameloblasts orchestrate crystal growth via multiple cellular activities including modulating the transport of minerals and ions, pH regulation, proteolysis, and endocytosis. In many vertebrates, the bulk of the enamel tissue volume is first formed and subsequently mineralized by these same cells as they retransform their morphology and function. Cell death by apoptosis and regression are the fates of many ameloblasts following enamel maturation, and what cells remain of the enamel organ are shed during tooth eruption, or are incorporated into the tooth's epithelial attachment to the oral gingiva. In this review, we examine key aspects of dental enamel formation, from its developmental genesis to the ever-increasing wealth of data on the mechanisms mediating ionic transport, as well as the clinical outcomes resulting from abnormal ameloblast function.


Asunto(s)
Ameloblastos/metabolismo , Amelogénesis , Proteínas del Esmalte Dental/metabolismo , Esmalte Dental/metabolismo , Salud Bucal , Anomalías Dentarias/metabolismo , Enfermedades Dentales/metabolismo , Ameloblastos/patología , Animales , Esmalte Dental/patología , Esmalte Dental/fisiopatología , Proteínas del Esmalte Dental/genética , Evolución Molecular , Predisposición Genética a la Enfermedad , Humanos , Fenotipo , Especificidad de la Especie , Anomalías Dentarias/genética , Anomalías Dentarias/patología , Anomalías Dentarias/fisiopatología , Enfermedades Dentales/genética , Enfermedades Dentales/patología , Enfermedades Dentales/fisiopatología
2.
Development ; 147(11)2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32439755

RESUMEN

Epithelial signaling centers control epithelial invagination and organ development, but how these centers are specified remains unclear. We report that Pitx2 (the first transcriptional marker for tooth development) controls the embryonic formation and patterning of epithelial signaling centers during incisor development. We demonstrate using Krt14Cre /Pitx2flox/flox (Pitx2cKO ) and Rosa26CreERT/Pitx2flox/flox mice that loss of Pitx2 delays epithelial invagination, and decreases progenitor cell proliferation and dental epithelium cell differentiation. Developmentally, Pitx2 regulates formation of the Sox2+ labial cervical loop (LaCL) stem cell niche in concert with two signaling centers: the initiation knot and enamel knot. The loss of Pitx2 disrupted the patterning of these two signaling centers, resulting in tooth arrest at E14.5. Mechanistically, Pitx2 transcriptional activity and DNA binding is inhibited by Sox2, and this interaction controls gene expression in specific Sox2 and Pitx2 co-expression progenitor cell domains. We demonstrate new transcriptional mechanisms regulating signaling centers by Pitx2, Sox2, Lef1 and Irx1.


Asunto(s)
Células Epiteliales/metabolismo , Proteínas de Homeodominio/metabolismo , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Proliferación Celular , Esmalte Dental/metabolismo , Embrión de Mamíferos/metabolismo , Células Epiteliales/citología , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/metabolismo , Proteínas de Homeodominio/genética , Factor de Unión 1 al Potenciador Linfoide/genética , Ratones , Ratones Noqueados , Odontogénesis , Factores de Transcripción SOXB1/genética , Nicho de Células Madre , Células Madre/citología , Células Madre/metabolismo , Diente/citología , Diente/crecimiento & desarrollo , Diente/metabolismo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Proteínas Señalizadoras YAP , Proteína del Homeodomínio PITX2
3.
Calcif Tissue Int ; 101(5): 457-464, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28795233

RESUMEN

Amelogenesis (tooth enamel formation) is a biomineralization process consisting primarily of two stages (secretory stage and maturation stage) with unique features. During the secretory stage, the inner epithelium of the enamel organ (i.e., the ameloblast cells) synthesizes and secretes enamel matrix proteins (EMPs) into the enamel space. The protein-rich enamel matrix forms a highly organized architecture in a pH-neutral microenvironment. As amelogenesis transitions to maturation stage, EMPs are degraded and internalized by ameloblasts through endosomal-lysosomal pathways. Enamel crystallite formation is initiated early in the secretory stage, however, during maturation stage the more rapid deposition of calcium and phosphate into the enamel space results in a rapid expansion of crystallite length and mineral volume. During maturation-stage amelogenesis, the pH value of enamel varies considerably from slightly above neutral to acidic. Extracellular acid-base balance during enamel maturation is tightly controlled by ameloblast-mediated regulatory networks, which include significant synthesis and movement of bicarbonate ions from both the enamel papillary layer cells and ameloblasts. In this review we summarize the carbonic anhydrases and the carbonate transporters/exchangers involved in pH regulation in maturation-stage amelogenesis. Proteins that have been shown to be instrumental in this process include CA2, CA6, CFTR, AE2, NBCe1, SLC26A1/SAT1, SLC26A3/DRA, SLC26A4/PDS, SLC26A6/PAT1, and SLC26A7/SUT2. In addition, we discuss the association of miRNA regulation with bicarbonate transport in tooth enamel formation.


Asunto(s)
Amelogénesis , Bicarbonatos/metabolismo , Esmalte Dental/metabolismo , Animales , Proteínas de Transporte de Anión/metabolismo , Transporte Biológico , Anhidrasas Carbónicas/metabolismo , Antiportadores de Cloruro-Bicarbonato/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Esmalte Dental/crecimiento & desarrollo , Humanos , MicroARNs/metabolismo , Simportadores de Sodio-Bicarbonato/metabolismo
4.
J Biol Chem ; 290(34): 20661-20673, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26070558

RESUMEN

Enamel is a bioceramic tissue composed of thousands of hydroxyapatite crystallites aligned in parallel within boundaries fabricated by a single ameloblast cell. Enamel is the hardest tissue in the vertebrate body; however, it starts development as a self-organizing assembly of matrix proteins that control crystallite habit. Here, we examine ameloblastin, a protein that is initially distributed uniformly across the cell boundary but redistributes to the lateral margins of the extracellular matrix following secretion thus producing cell-defined boundaries within the matrix and the mineral phase. The yeast two-hybrid assay identified that proteasome subunit α type 3 (Psma3) interacts with ameloblastin. Confocal microscopy confirmed Psma3 co-distribution with ameloblastin at the ameloblast secretory end piece. Co-immunoprecipitation assay of mouse ameloblast cell lysates with either ameloblastin or Psma3 antibody identified each reciprocal protein partner. Protein engineering demonstrated that only the ameloblastin C terminus interacts with Psma3. We show that 20S proteasome digestion of ameloblastin in vitro generates an N-terminal cleavage fragment consistent with the in vivo pattern of ameloblastin distribution. These findings suggest a novel pathway participating in control of protein distribution within the extracellular space that serves to regulate the protein-mineral interactions essential to biomineralization.


Asunto(s)
Ameloblastos/metabolismo , Proteínas del Esmalte Dental/metabolismo , Esmalte Dental/metabolismo , Glutamato Carboxipeptidasa II/metabolismo , Incisivo/metabolismo , Glicoproteínas de Membrana/metabolismo , Odontogénesis/genética , Ameloblastos/citología , Animales , Citoplasma/química , Citoplasma/metabolismo , Esmalte Dental/citología , Esmalte Dental/crecimiento & desarrollo , Proteínas del Esmalte Dental/genética , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Biblioteca de Genes , Glutamato Carboxipeptidasa II/genética , Humanos , Incisivo/citología , Incisivo/crecimiento & desarrollo , Glicoproteínas de Membrana/genética , Ratones , Mutación , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Técnicas del Sistema de Dos Híbridos
5.
Hum Mol Genet ; 23(1): 194-208, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23975681

RESUMEN

Patients with Axenfeld-Rieger Syndrome (ARS) present various dental abnormalities, including hypodontia, and enamel hypoplasia. ARS is genetically associated with mutations in the PITX2 gene, which encodes one of the earliest transcription factors to initiate tooth development. Thus, Pitx2 has long been considered as an upstream regulator of the transcriptional hierarchy in early tooth development. However, because Pitx2 is also a major regulator of later stages of tooth development, especially during amelogenesis, it is unclear how mutant forms cause ARS dental anomalies. In this report, we outline the transcriptional mechanism that is defective in ARS. We demonstrate that during normal tooth development Pitx2 activates Amelogenin (Amel) expression, whose product is required for enamel formation, and that this regulation is perturbed by missense PITX2 mutations found in ARS patients. We further show that Pitx2-mediated Amel activation is controlled by chromatin-associated factor Hmgn2, and that Hmgn2 prevents Pitx2 from efficiently binding to and activating the Amel promoter. Consistent with a physiological significance to this interaction, we show that K14-Hmgn2 transgenic mice display a severe loss of Amel expression on the labial side of the lower incisors, as well as enamel hypoplasia-consistent with the human ARS phenotype. Collectively, these findings define transcriptional mechanisms involved in normal tooth development and shed light on the molecular underpinnings of the enamel defect observed in ARS patients who carry PITX2 mutations. Moreover, our findings validate the etiology of the enamel defect in a novel mouse model of ARS.


Asunto(s)
Amelogenina/metabolismo , Segmento Anterior del Ojo/anomalías , Anomalías del Ojo/patología , Proteína HMGN2/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Incisivo/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Amelogenina/genética , Animales , Segmento Anterior del Ojo/patología , Línea Celular , Esmalte Dental/metabolismo , Esmalte Dental/patología , Modelos Animales de Enfermedad , Embrión de Mamíferos , Anomalías del Ojo/genética , Enfermedades Hereditarias del Ojo , Regulación de la Expresión Génica , Proteína HMGN2/genética , Humanos , Incisivo/patología , Ratones , Ratones Noqueados , Mutación Missense , Regiones Promotoras Genéticas , Proteína del Homeodomínio PITX2
6.
Adv Funct Mater ; 25(15): 2296-2307, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26120294

RESUMEN

The host immune system is known to influence mesenchymal stem cell (MSC)-mediated bone tissue regeneration. However, the therapeutic capacity of hydrogel biomaterial to modulate the interplay between MSCs and T-lymphocytes is unknown. Here it is shown that encapsulating hydrogel affects this interplay when used to encapsulate MSCs for implantation by hindering the penetration of pro-inflammatory cells and/or cytokines, leading to improved viability of the encapsulated MSCs. This combats the effects of the host pro-inflammatory T-lymphocyte-induced nuclear factor kappaB pathway, which can reduce MSC viability through the CASPASE-3 and CAS-PASE-8 associated proapoptotic cascade, resulting in the apoptosis of MSCs. To corroborate rescue of engrafted MSCs from the insult of the host immune system, the incorporation of the anti-inflammatory drug indomethacin into the encapsulating alginate hydrogel further regulates the local microenvironment and prevents pro-inflammatory cytokine-induced apoptosis. These findings suggest that the encapsulating hydrogel can regulate the MSC-host immune cell interplay and direct the fate of the implanted MSCs, leading to enhanced tissue regeneration.

7.
BMC Genomics ; 15: 998, 2014 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-25406666

RESUMEN

BACKGROUND: In the rodent incisor during amelogenesis, as ameloblast cells transition from secretory stage to maturation stage, their morphology and transcriptome profiles change dramatically. Prior whole genome transcriptome analysis has given a broad picture of the molecular activities dominating both stages of amelogenesis, but this type of analysis has not included miRNA transcript profiling. In this study, we set out to document which miRNAs and corresponding target genes change significantly as ameloblasts transition from secretory- to maturation-stage amelogenesis. RESULTS: Total RNA samples from both secretory- and maturation-stage rat enamel organs were subjected to genome-wide miRNA and mRNA transcript profiling. We identified 59 miRNAs that were differentially expressed at the maturation stage relative to the secretory stage of enamel development (False Discovery Rate (FDR)<0.05, fold change (FC)≥1.8). In parallel, transcriptome profiling experiments identified 1,729 mRNA transcripts that were differentially expressed in the maturation stage compared to the secretory stage (FDR<0.05, FC≥1.8). Based on bioinformatics analyses, 5.8% (629 total) of these differentially expressed genes (DEGS) were highlighted as being the potential targets of 59 miRNAs that were differentially expressed in the opposite direction, in the same tissue samples. Although the number of predicted target DEGs was not higher than baseline expectations generated by examination of stably expressed miRNAs, Gene Ontology (GO) analysis showed that these 629 DEGS were enriched for ion transport, pH regulation, calcium handling, endocytotic, and apoptotic activities. Seven differentially expressed miRNAs (miR-21, miR-31, miR-488, miR-153, miR-135b, miR-135a and miR298) in secretory- and/or maturation-stage enamel organs were confirmed by in situ hybridization. Further, we used luciferase reporter assays to provide evidence that two of these differentially expressed miRNAs, miR-153 and miR-31, are potential regulators for their predicated target mRNAs, Lamp1 (miR-153) and Tfrc (miR-31). CONCLUSIONS: In conclusion, these data indicate that miRNAs exhibit a dynamic expression pattern during the transition from secretory-stage to maturation-stage tooth enamel formation. Although they represent only one of numerous mechanisms influencing gene activities, miRNAs specific to the maturation stage could be involved in regulating several key processes of enamel maturation by influencing mRNA stability and translation.


Asunto(s)
Amelogénesis/genética , Genoma , MicroARNs/genética , Transcriptoma/genética , Animales , Análisis por Conglomerados , Esmalte Dental/crecimiento & desarrollo , Esmalte Dental/metabolismo , Regulación hacia Abajo/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Ontología de Genes , Redes Reguladoras de Genes , Hibridación in Situ , Proteínas de Membrana de los Lisosomas/genética , Proteínas de Membrana de los Lisosomas/metabolismo , Masculino , MicroARNs/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Reproducibilidad de los Resultados , Regulación hacia Arriba/genética
8.
Eur J Oral Sci ; 122(1): 21-6, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24313748

RESUMEN

The sodium pump Na(+)/K(+)-ATPase, expressed in virtually all cells of higher organisms, is involved in establishing a resting membrane potential and in creating a sodium gradient to facilitate a number of membrane-associated transport activities. Na(+)/K(+)-ATPase is an oligomer of α, ß, and γ subunits. Four unique genes encode each of the α and ß subunits. In dental enamel cells, the spatiotemporal expression of Na(+)/K(+)-ATPase is poorly characterized. Using the rat incisor as a model, this study provides a comprehensive expression profile of all four α and all four ß Na(+)/K(+)-ATPase subunits throughout all stages of amelogenesis. Real-time PCR, western blot analysis, and immunolocalization revealed that α1, ß1, and ß3 are expressed in the enamel organ and that all three are most highly expressed during late-maturation-stage amelogenesis. Expression of ß3 was significantly higher than expression of ß1, suggesting that the dominant Na(+)/K(+)-ATPase consists of an α1ß3 dimer. Localization of α1, ß1, and ß3 subunits in ameloblasts was primarily to the cytoplasm and occasionally along the basolateral membranes. Weaker expression was also noted in papillary layer cells during early maturation. Our data support that Na(+)/K(+)-ATPase is functional in maturation-stage ameloblasts.


Asunto(s)
Órgano del Esmalte/enzimología , ATPasa Intercambiadora de Sodio-Potasio/genética , Ameloblastos/enzimología , Amelogénesis/genética , Animales , Western Blotting/métodos , Membrana Celular/enzimología , Citoplasma/enzimología , Proteínas del Esmalte Dental/genética , Perfilación de la Expresión Génica/métodos , Incisivo/embriología , Masculino , Modelos Animales , Multimerización de Proteína , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos
9.
Eur J Oral Sci ; 121(2): 76-85, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23489896

RESUMEN

Dentin sialophosphoprotein (DSPP) is a large precursor protein that is proteolytically processed into a NH2 -terminal fragment [composed of dentin sialoprotein (DSP) and a proteoglycan form (DSP-PG)] and a COOH-terminal fragment [dentin phosphoprotein (DPP)]. In vitro studies indicate that DPP is a strong initiator and regulator of hydroxyapatite crystal formation and growth, but the role(s) of the NH2 -terminal fragment of DSPP (i.e., DSP and DSP-PG) in dentinogenesis remain unclear. This study focuses on the function of the NH2 -terminal fragment of DSPP in dentinogenesis. Here, transgenic (Tg) mouse lines expressing the NH2 -terminal fragment of DSPP driven by a 3.6-kb type I collagen promoter (Col 1a1) were generated and cross-bred with Dspp null mice to obtain mice that express the transgene but lack the endogenous Dspp (Dspp KO/DSP Tg). We found that dentin from the Dspp KO/DSP Tg mice was much thinner, more poorly mineralized, and remarkably disorganized compared with dentin from the Dspp KO mice. The fact that Dspp KO/DSP Tg mice exhibited more severe dentin defects than did the Dspp null mice indicates that the NH2 -terminal fragment of DSPP may inhibit dentin mineralization or may serve as an antagonist against the accelerating action of DPP and serve to prevent predentin from being mineralized too rapidly during dentinogenesis.


Asunto(s)
Dentina/metabolismo , Dentinogénesis/fisiología , Proteínas de la Matriz Extracelular/metabolismo , Fosfoproteínas/metabolismo , Sialoglicoproteínas/metabolismo , Calcificación de Dientes/fisiología , Animales , Dentina/química , Dentinogénesis/genética , Proteínas de la Matriz Extracelular/química , Proteínas de la Matriz Extracelular/genética , Inmunohistoquímica , Ratones , Ratones Noqueados , Microscopía Electrónica de Rastreo , Fosfoproteínas/química , Fosfoproteínas/genética , ARN Mensajero , Reacción en Cadena en Tiempo Real de la Polimerasa , Sialoglicoproteínas/química , Sialoglicoproteínas/genética , Calcificación de Dientes/genética , Microtomografía por Rayos X
10.
J Cell Physiol ; 227(4): 1776-85, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21732355

RESUMEN

Transcellular bicarbonate transport is suspected to be an important pathway used by ameloblasts to regulate extracellular pH and support crystal growth during enamel maturation. Proteins that play a role in amelogenesis include members of the ABC transporters (SLC gene family and CFTR). A number of carbonic anhydrases (CAs) have also been identified. The defined functions of these genes are likely interlinked during enamel mineralization. The purpose of this study is to quantify relative mRNA levels of individual SLC, Cftr, and CAs in enamel cells obtained from secretory and maturation stages on rat incisors. We also present novel data on the enamel phenotypes for two animal models, a mutant porcine (CFTR-ΔF508) and the NBCe1-null mouse. Our data show that two SLCs (AE2 and NBCe1), Cftr, and Car2, Car3, Car6, and Car12 are all significantly up-regulated at the onset of the maturation stage of amelogenesis when compared to the secretory stage. The remaining SLCs and CA gene transcripts showed negligible expression or no significant change in expression from secretory to maturation stages. The enamel of CFTR-ΔF508 adult pigs was hypomineralized and showed abnormal crystal growth. NBCe1-null mice enamel was structurally defective and had a marked decrease in mineral content relative to wild-type. These data demonstrate the importance of many non-matrix proteins to amelogenesis and that the expression levels of multiple genes regulating extracellular pH are modulated during enamel maturation in response to an increased need for pH buffering during hydroxyapatite crystal growth.


Asunto(s)
Esmalte Dental/crecimiento & desarrollo , Esmalte Dental/metabolismo , Amelogénesis/genética , Amelogénesis/fisiología , Animales , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Antiportadores/genética , Antiportadores/metabolismo , Secuencia de Bases , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Cartilla de ADN/genética , Esmalte Dental/anomalías , Concentración de Iones de Hidrógeno , Transporte Iónico , Masculino , Ratones , Ratones Noqueados , Microscopía Electrónica de Rastreo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Proteínas SLC4A , Simportadores de Sodio-Bicarbonato/deficiencia , Simportadores de Sodio-Bicarbonato/genética , Simportadores de Sodio-Bicarbonato/metabolismo , Intercambiador de Sodio-Calcio/genética , Sus scrofa
11.
J Cell Physiol ; 227(5): 2264-75, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-21809343

RESUMEN

The gene repertoire regulating vertebrate biomineralization is poorly understood. Dental enamel, the most highly mineralized tissue in mammals, differs from other calcifying systems in that the formative cells (ameloblasts) lack remodeling activity and largely degrade and resorb the initial extracellular matrix. Enamel mineralization requires that ameloblasts undergo a profound functional switch from matrix-secreting to maturational (calcium transport, protein resorption) roles as mineralization progresses. During the maturation stage, extracellular pH decreases markedly, placing high demands on ameloblasts to regulate acidic environments present around the growing hydroxyapatite crystals. To identify the genetic events driving enamel mineralization, we conducted genome-wide transcript profiling of the developing enamel organ from rat incisors and highlight over 300 genes differentially expressed during maturation. Using multiple bioinformatics analyses, we identified groups of maturation-associated genes whose functions are linked to key mineralization processes including pH regulation, calcium handling, and matrix turnover. Subsequent qPCR and Western blot analyses revealed that a number of solute carrier (SLC) gene family members were up-regulated during maturation, including the novel protein Slc24a4 involved in calcium handling as well as other proteins of similar function (Stim1). By providing the first global overview of the cellular machinery required for enamel maturation, this study provide a strong foundation for improving basic understanding of biomineralization and its practical applications in healthcare.


Asunto(s)
Amelogénesis/fisiología , Esmalte Dental/química , Esmalte Dental/metabolismo , Perfilación de la Expresión Génica/métodos , Genoma , Calcificación de Dientes/genética , Ameloblastos/metabolismo , Animales , Calcio/metabolismo , Matriz Extracelular/metabolismo , Expresión Génica , Humanos , Incisivo/anatomía & histología , Incisivo/metabolismo , Ratas , Ratas Wistar
12.
Cells Tissues Organs ; 196(6): 501-9, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22677781

RESUMEN

Transcellular calcium transport is an essential activity in mineralized tissue formation, including dental hard tissues. In many organ systems, this activity is regulated by membrane-bound sodium/calcium (Na(+)/Ca(2+)) exchangers, which include the NCX and NCKX [sodium/calcium-potassium (Na(+)/Ca(2+)-K(+)) exchanger] proteins. During enamel maturation, when crystals expand in thickness, Ca(2+) requirements vastly increase but exactly how Ca(2+) traffics through ameloblasts remains uncertain. Previous studies have shown that several NCX proteins are expressed in ameloblasts, although no significant shifts in expression were observed during maturation which pointed to the possible identification of other Ca(2+) membrane transporters. NCKX proteins are encoded by members of the solute carrier gene family, Slc24a, which include 6 different proteins (NCKX1-6). NCKX are bidirectional electrogenic transporters regulating Ca(2+) transport in and out of cells dependent on the transmembrane ion gradient. In this study we show that all NCKX mRNAs are expressed in dental tissues. Real-time PCR indicates that of all the members of the NCKX group, NCKX4 is the most highly expressed gene transcript during the late stages of amelogenesis. In situ hybridization and immunolocalization analyses clearly establish that in the enamel organ, NCKX4 is expressed primarily by ameloblasts during the maturation stage. Further, during the mid-late maturation stages of amelogenesis, the expression of NCKX4 in ameloblasts is most prominent at the apical poles and at the lateral membranes proximal to the apical ends. These data suggest that NCKX4 might be an important regulator of Ca(2+) transport during amelogenesis.


Asunto(s)
Ameloblastos/metabolismo , Antiportadores/biosíntesis , Ameloblastos/citología , Amelogénesis/fisiología , Animales , Antiportadores/genética , Transporte Biológico , Inmunohistoquímica , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa
13.
J Biol Chem ; 285(32): 24432-8, 2010 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-20529845

RESUMEN

Proximal renal tubular acidosis (pRTA) is a syndrome caused by abnormal proximal tubule reabsorption of bicarbonate resulting in metabolic acidosis. Patients with mutations to the SLC4A4 gene (coding for the sodium bicarbonate cotransporter NBCe1), have pRTA, growth delay, ocular defects, and enamel abnormalities. In an earlier report, we provided the first evidence that enamel cells, the ameloblasts, express NBCe1 in a polarized fashion, thereby contributing to trans-cellular bicarbonate transport. To determine whether NBCe1 plays a critical role in enamel development, we studied the expression of NBCe1 at various stages of enamel formation in wild-type mice and characterized the biophysical properties of enamel in NBCe1(-/-) animals. The enamel of NBCe1(-/-) animals was extremely hypomineralized and weak with an abnormal prismatic architecture. The expression profile of amelogenin, a known enamel-specific gene, was not altered in NBCe1(-/-) animals. Our results show for the first time that NBCe1 expression is required for the development of normal enamel. This study provides a mechanistic model to account for enamel abnormalities in certain patients with pRTA.


Asunto(s)
Simportadores de Sodio-Bicarbonato/metabolismo , Diente/embriología , Animales , Concentración de Iones de Hidrógeno , Túbulos Renales/metabolismo , Ratones , Ratones Transgénicos , Microscopía Electrónica de Rastreo/métodos , Modelos Biológicos , Mutación , Fenotipo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sodio/química , Simportadores de Sodio-Bicarbonato/química , Microtomografía por Rayos X/métodos
14.
Cells Tissues Organs ; 194(2-4): 249-54, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21525720

RESUMEN

Cystic fibrosis (CF) is caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR), a phosphorylation- and ATP-regulated anion channel. CFTR expression and activity is frequently associated with an anion exchanger (AE) such as AE2 coded by the Slc4a2 gene. Mice null for Cftr and mice null for Slc4a2 have enamel defects, and there are some case reports of enamel anomalies in patients with CF. In this study we demonstrate that both Cftr and AE2 expression increased significantly during the rat enamel maturation stage versus the earlier secretory stage (5.6- and 2.9-fold, respectively). These qPCR data im- ply that there is a greater demand for Cl(-) and bicarbonate (HCO3⁻) transport during the maturation stage of enamel formation, and that this is, at least in part, provided by changes in Cftr and AE2 expression. In addition, the enamel phenotypes of 2 porcine models of CF, CFTR-null, and CFTR-ΔF508 have been examined using backscattered electron microscopy in a scanning electron microscope. The enamel of newborn CFTR-null and CFTR-ΔF508 animals is hypomineralized. Together, these data provide a molecular basis for interpreting enamel disease associated with disruptions to CFTR and AE2 expression.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/deficiencia , Esmalte Dental/patología , Modelos Animales , Sus scrofa/metabolismo , Amelogénesis/genética , Animales , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Antiportadores/genética , Antiportadores/metabolismo , Calcificación Fisiológica/genética , Diferenciación Celular/genética , Antiportadores de Cloruro-Bicarbonato , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Esmalte Dental/crecimiento & desarrollo , Disección , Ratones , Especificidad de Órganos/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Reproducibilidad de los Resultados , Proteínas SLC4A , Regulación hacia Arriba/genética
15.
Eur J Oral Sci ; 119 Suppl 1: 286-92, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22243258

RESUMEN

Ameloblastin (AMBN) was originally described as a tooth-specific extracellular matrix protein, but current data have shown that AMBN is present in many different tissues of mesenchymal origin. The identification of regulatory elements in the promoter region of the Ambn gene would assist in identifying potential mesenchymal-specific transcriptional factors. In this study we subcloned a 3,788-bp region upstream (and a 54-bp region downstream) of the mouse Ambn transcriptional start site into a LacZ reporter construct and called this construct 3788-Ambn-lacZ. In silico analysis of the 3,788-bp Ambn promoter region identified 50 potential cis-regulatory elements, 29 of which are known to be functional in cell populations of mesenchymal origin. The reporter construct was activated in transfected bone marrow cells, and the promoter activity was induced in cell cultures following addition of recombinant AMBN, interferon-γ, serotonin, or dexamethasone. We discuss the relative significance of the potential cis-acting gene-regulatory elements of Ambn in relation to bone morphogenesis. Knowledge of Ambn gene-regulatory elements will be of importance when developing strategies for bone repair and replacement in a clinical surgical setting.


Asunto(s)
Proteínas del Esmalte Dental/genética , Regulación del Desarrollo de la Expresión Génica , Osteogénesis/genética , Regiones Promotoras Genéticas/genética , Secuencias Reguladoras de Ácidos Nucleicos , Activación Transcripcional , Animales , Sitios de Unión , Células de la Médula Ósea , Línea Celular , Clonación Molecular , Proteínas del Esmalte Dental/farmacología , Proteínas del Esmalte Dental/fisiología , Dexametasona/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Genes Reporteros , Interferón gamma/farmacología , Mesodermo/citología , Ratones , Ratones Endogámicos BALB C , Proteínas Recombinantes , Serotonina/farmacología , Células del Estroma , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional/efectos de los fármacos , beta-Galactosidasa
16.
Eur J Oral Sci ; 119 Suppl 1: 136-41, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22243239

RESUMEN

In rodent incisors two distinct stages of enamel formation can be identified visually based on cell morphology: the secretory stage and the maturation stage. The expression profiles of many genes characterize both stages, including the bicarbonate transport protein NBCe1. Bicarbonate is a requirement for the mineralizing enamel matrix to buffer excessive protons that form as a consequence of hydroxyapatite formation. NBCe1-B mRNA is up-regulated during the maturation stage of amelogenesis, where hydroxyapatite formation predominates. In this study, a presumed 572-bp NBCe1-B promoter region was subcloned into a reporter construct, and within this 572-bp region of DNA we characterized a 285-bp segment that shows an increase of ≈ 2.3-fold in gene-transcription activity when transfected into ameloblast-like cells and cultured in medium maintained at pH 6.8 (vs. pH 7.4). A presumed pH-responsive transcriptional factor-binding domain(s) thus resides in the 285-bp NBCe1-B promoter region where candidate domains include the nuclear factor of kappa light polypeptide gene enhancer in B-cells1(NFKB1), jun proto-oncogene (JUN), and tumor protein p53(TP53)-binding sites. Mutagenesis studies identify that both the NFKB1- and TP53-binding sites are responsive to changes in the extracellular pH. These data help to explain how ameloblasts respond to the altered extracellular milieu of protons by changing their gene-expression profile throughout the stages of amelogenesis.


Asunto(s)
Ameloblastos/metabolismo , Amelogénesis/genética , Regulación del Desarrollo de la Expresión Génica/genética , Regiones Promotoras Genéticas , Simportadores de Sodio-Bicarbonato/genética , Sitio de Iniciación de la Transcripción , Sitios de Unión , Células Cultivadas , Clonación Molecular , Durapatita/metabolismo , Genes Reporteros , Humanos , Concentración de Iones de Hidrógeno , Subunidad p50 de NF-kappa B/genética , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-jun/genética , Análisis de Secuencia de ADN , Simportadores de Sodio-Bicarbonato/biosíntesis , Activación Transcripcional , Proteína p53 Supresora de Tumor/genética , Regulación hacia Arriba
17.
Eur J Oral Sci ; 119 Suppl 1: 149-57, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22243241

RESUMEN

Enamel maturation is a dynamic process that involves high rates of mineral acquisition, associated fluctuations in extracellular pH, and resorption of extracellular enamel proteins. During maturation, ameloblasts change from having a tall, thin, and highly polarized organization, characteristic of the secretory stage, to having a low columnar and widened morphology in the maturation stage. To identify potential differences in gene expression throughout maturation, we obtained enamel organ epithelial cells derived from the early- and late-maturation stages of rat incisor and analyzed the global gene-expression profiles at each stage. Sixty-three candidate genes were identified as having potential roles in the maturation process. Quantitative PCR was used to confirm the results of this genome-wide analysis in a subset of genes. Transcripts enriched during late maturation (n = 38) included those associated with lysosomal activity, solute carrier transport, and calcium signaling. Also up-regulated were transcripts involved in cellular responses to oxidative stress, proton transport, cell death, and the immune system. Transcripts down-regulated during the late maturation stage (n =25) included those with functions related to cell adhesion, cell signaling, and T-cell activation. These results indicate that ameloblasts undergo widespread molecular changes during the maturation stage of amelogenesis and hence provide a basis for future functional investigations into the mechanistic basis of enamel mineralization.


Asunto(s)
Ameloblastos/citología , Amelogénesis/fisiología , Órgano del Esmalte/fisiología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Calcificación de Dientes/genética , Ameloblastos/metabolismo , Amelogénesis/genética , Animales , Transporte Biológico/genética , Señalización del Calcio/genética , Adhesión Celular/genética , Estudio de Asociación del Genoma Completo , Concentración de Iones de Hidrógeno , Activación de Linfocitos/genética , Lisosomas/fisiología , Ratas , Ratas Wistar , Transcriptoma/genética , Regulación hacia Arriba
18.
Biochem Biophys Res Commun ; 393(4): 883-7, 2010 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-20175995

RESUMEN

Enamel formation requires rigid control of pH homeostasis during all stages of development to prevent disruptions to crystal growth. The acceleration of the generation of bicarbonate by carbonic anhydrases (CA) has been suggested as one of the pathways used by ameloblasts cells to regulate extracellular pH yet only two isozymes (CA II and CA VI) have been reported to date during enamel formation. The mammalian CA family contains 16 different isoforms of which 13 are enzymatically active. We have conducted a systematic screening by RT-PCR on the expression of all known CA isoforms in mouse enamel organ epithelium (EOE) cells dissected from new born, in secretory ameloblasts derived from 7-day-old animals, and in the LS8 ameloblast cell line. Results show that all CA isoforms are expressed by EOE/ameloblast cells in vivo. The most highly expressed are the catalytic isozymes CA II, VI, IX, and XIII, and the acatalytic CA XI isoform. Only minor differences were found in CA expression levels between 1-day EOE cells and 7-day-old secretory-stage ameloblasts, whereas LS8 cells expressed fewer CA isoforms than both of these. The broad expression of CAs by ameloblasts reported here contributes to our understanding of pH homeostasis during enamel development and demonstrates its complexity. Our results also highlight the critical role that regulation of pH plays during the development of enamel.


Asunto(s)
Ameloblastos/enzimología , Amelogénesis , Anhidrasas Carbónicas/biosíntesis , Órgano del Esmalte/enzimología , ARN Mensajero/biosíntesis , Animales , Línea Celular , Órgano del Esmalte/embriología , Isoenzimas/biosíntesis , Ratones , Ratones Endogámicos
19.
Calcif Tissue Int ; 86(2): 91-103, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20016979

RESUMEN

During amelogenesis, extracellular matrix proteins interact with growing hydroxyapatite crystals to create one of the most architecturally complex biological tissues. The process of enamel formation is a unique biomineralizing system characterized first by an increase in crystallite length during the secretory phase of amelogenesis, followed by a vast increase in crystallite width and thickness in the later maturation phase when organic complexes are enzymatically removed. Crystal growth is modulated by changes in the pH of the enamel microenvironment that is critical for proper enamel biomineralization. Whereas the genetic bases for most abnormal enamel phenotypes (amelogenesis imperfecta) are generally associated with mutations to enamel matrix specific genes, mutations to genes involved in pH regulation may result in severely affected enamel structure, highlighting the importance of pH regulation for normal enamel development. This review summarizes the intra- and extracellular mechanisms employed by the enamel-forming cells, ameloblasts, to maintain pH homeostasis and, also, discusses the enamel phenotypes associated with disruptions to genes involved in pH regulation.


Asunto(s)
Equilibrio Ácido-Base/fisiología , Ameloblastos/fisiología , Amelogénesis/fisiología , Esmalte Dental/embriología , Diente/embriología , Calcificación Fisiológica/fisiología , Cristalización , Esmalte Dental/crecimiento & desarrollo , Matriz Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Concentración de Iones de Hidrógeno , Diente/crecimiento & desarrollo
20.
Biochem Biophys Res Commun ; 390(3): 1044-50, 2009 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-19857462

RESUMEN

Tuftelin-interacting protein 11 (TFIP11) is a protein component of the spliceosome complex that promotes the release of the lariat-intron during late-stage splicing through a direct recruitment and interaction with DHX15/PRP43. Expression of TFIP11 is essential for cell and organismal survival. TFIP11 contains a G-patch domain, a signature motif of RNA-processing proteins that is responsible for TFIP11-DHX15 interactions. No other functional domains within TFIP11 have been described. TFIP11 is localized to distinct speckled regions within the cell nucleus, although excluded from the nucleolus. In this study sequential C-terminal deletions and mutational analyses have identified two novel protein elements in mouse TFIP11. The first domain covers amino acids 701-706 (VKDKFN) and is an atypical nuclear localization signal (NLS). The second domain is contained within amino acids 711-735 and defines TFIP11's distinct speckled nuclear localization. The identification of a novel TFIP11 nuclear speckle-targeting sequence (TFIP11-STS) suggests that this domain directly interacts with additional spliceosomal components. These data help define the mechanism of nuclear/nuclear speckle localization of the splicing factor TFIP11, with implications for it's function.


Asunto(s)
Señales de Localización Nuclear/metabolismo , Proteínas Nucleares/metabolismo , ARN Helicasas/metabolismo , Empalmosomas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Núcleo Celular/metabolismo , Humanos , Ratones , Datos de Secuencia Molecular , Señales de Localización Nuclear/genética , Proteínas Nucleares/genética , Estructura Terciaria de Proteína , ARN Helicasas/genética , Empalme del ARN , Factores de Empalme de ARN , Proteínas de Unión al ARN , Proteínas de Transporte Vesicular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA