RESUMEN
G protein-coupled receptors (GPCRs) mediate diverse signaling in part through interaction with arrestins, whose binding promotes receptor internalization and signaling through G protein-independent pathways. High-affinity arrestin binding requires receptor phosphorylation, often at the receptor's C-terminal tail. Here, we report an X-ray free electron laser (XFEL) crystal structure of the rhodopsin-arrestin complex, in which the phosphorylated C terminus of rhodopsin forms an extended intermolecular ß sheet with the N-terminal ß strands of arrestin. Phosphorylation was detected at rhodopsin C-terminal tail residues T336 and S338. These two phospho-residues, together with E341, form an extensive network of electrostatic interactions with three positively charged pockets in arrestin in a mode that resembles binding of the phosphorylated vasopressin-2 receptor tail to ß-arrestin-1. Based on these observations, we derived and validated a set of phosphorylation codes that serve as a common mechanism for phosphorylation-dependent recruitment of arrestins by GPCRs.
Asunto(s)
Arrestinas/química , Rodopsina/química , Secuencia de Aminoácidos , Animales , Arrestinas/metabolismo , Cromatografía Liquida , Humanos , Ratones , Modelos Moleculares , Fosforilación , Ratas , Rodopsina/metabolismo , Alineación de Secuencia , Espectrometría de Masas en Tándem , Rayos XRESUMEN
Class B G-protein-coupled receptors are exciting drug targets, yet the structure of a complete receptor bound to a peptide agonist has remained elusive. Coin et al. present a model of the receptor CRF1R bound to its native ligand based on partial structures and 44 spatial constraints revealed by new crosslinking approaches.
Asunto(s)
Modelos Moleculares , Receptores de Hormona Liberadora de Corticotropina/química , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Urocortinas/química , Urocortinas/metabolismo , Animales , HumanosRESUMEN
The development of metal complexes that function as both photocatalyst and cross-coupling catalyst remains a challenging research topic. So far, progress has been shown in palladium(0) excited-state transition metal catalysis for the construction of carbon-carbon bonds where the oxidative addition of alkyl/aryl halides to zero-valent palladium (Pd0 ) is achievable at room temperature. In contrast, the analogous process with divalent palladium (PdII ) is uphill and endothermic. For the first time, we report that divalent palladium can act as a light-absorbing species that undergoes double excitation to realize carbon-nitrogen (C-N) cross-couplings under air. Differently substituted aryl halides can be applied in the mild, and selective cross-coupling amination using palladium acetate as both photocatalyst and cross-coupling catalyst at room temperature. Density functional theory studies supported by mechanistic investigations provide insight into the reaction mechanism.
RESUMEN
Our study unveils a pioneering methodology that effectively distributes Pd species within a zeolitic imidazolate framework-8 (ZIF-8). We demonstrate that Pd can be encapsulated within ZIF-8 as atomically dispersed Pd species that function as an excited-state transition metal catalyst for promoting carbon-carbon (C-C) cross-couplings at room temperature using visible light as the driving force. Furthermore, the same material can be reduced at 250 °C, forming Pd metal nanoparticles encapsulated in ZIF-8. This catalyst shows high rates and selectivity for carbon dioxide hydrogenation to methanol under industrially relevant conditions (250 °C, 50â bar): 7.46â molmethanol molmetal -1 h-1 and >99 %. Our results demonstrate the correlations of the catalyst structure with the performances at experimental and theoretical levels.
RESUMEN
We introduce a modification to the standard expression for tree-level CP violation in scattering processes at the LHC, which is important when the initial state is not self-conjugate. Based on that, we propose a generic and model-independent search strategy for probing tree-level CP violation in inclusive multilepton signals. We then use TeV-scale 4-fermion operators of the form tuââ and tcââ with complex Wilson coefficients as an illustrative example and show that it may generate O(10%) CP asymmetries that should be accessible at the LHC with an integrated luminosity of O(1000) fb^{-1}.
RESUMEN
The catecholase activities were routinely modeled using transition metal complexes as catalyst and in some case basic pH were used as a reaction condition. In this article, the catalytic aerobic oxidation of proxy substrate 3,5-di-tert-butylcatechol (DTBC) in methanol using triethylamine/diethylamine as catalyst was demonstrated as a functional mimic of catecholase activity. The kinetic manifestation of DTBC oxidation was explained as enzymatic substrate inhibition pattern in Michaelis-Menten kinetic model. The mechanistic insight of the aerobic oxidation of DTBC was further validated using various spectroscopic techniques and DFT methods.
Asunto(s)
Catecol Oxidasa , Complejos de Coordinación , Catecol Oxidasa/química , Catecol Oxidasa/metabolismo , Catecoles/química , Complejos de Coordinación/química , Metales , Oxidación-Reducción , Cobre/química , Cristalografía por Rayos XRESUMEN
We herein report two salicyaldehyde-quinoxaline (HQS and HQSN) conjugates and a benzaldehyde-quinoxaline (QBN) conjugate to fabricate selective chemosensors for F- and Hg2+ in the micromolar range. This work demonstrates how sensing outcomes are affected by modulating proton acidity by introducing an electron donating group, -NEt2 , in the probe backbone. Interestingly, the un-substituted probe HQS can selectively detect F- , whereas HQSN and QBN are selective for Hg2+ . In order to gain insights into the mechanism of sensing, geometry optimizations have been carried out on QS(-1) , QS(-1) â â â HF, QSN(-1) and QSN(-1) â â â HF and the experimental data are validated in terms of free energy and pKa values. Detailed DFT and TD-DFT analyses provide ample support towards the mechanism of sensing of the analytes.
Asunto(s)
Colorimetría , Mercurio , Benzaldehídos , Protones , QuinoxalinasRESUMEN
Herein, we present a substrate-controlled regiodivergent strategy for the selective synthesis of C3 or C2-alkynylated indoles via ruthenium-catalyzed [3 + 2]-annulation of readily available pyrazolidinones and 1,3-diynes. Remarkably, C3-alkynylated indoles were obtained in good yields when 1,4-diarylbuta-1,3-diynes were employed as the coupling partners. On the other hand, dialkyl-1,3-diynes led to the selective formation of C2-alkynylated indoles. The key features of the strategy are the operationally simple conditions and external-oxidant-free, broad-scope, and substrate-switchable indole synthesis. Scale-up reactions and further transformations expanded the synthetic utility of the protocol.
RESUMEN
Synthesizing hydrosulfido Cu thiolate complexes is quite challenging. In this report, two new and rare hydrosulfido Cu thiolate complexes, [Et4N]2[(mnt)Cu-SH] (2, mnt = maleonitrile dithiolene = S2C2(CN)2) and [Et4N]3[(mnt)Cu-(µ-SH)-Cu(mnt)] (3), have been synthesized. Coordination sites and O2 activation by complex 2 resemble the formylglycine generating enzyme (FGE), an enzyme recently crystallographically characterized with sulfur-only coordination around Cu (three thiolate ligands). The function of this enzyme (and complex 2) is surprising because vulnerable thiolates should not be well suited for O2 activation rationally. Indeed, activation of oxygen by such an all-sulfur-coordinated Cu complex 2 is lacking in the literature. Aerial O2 (ambient O2 from the air) activation by complex 2 could proceed through a superoxide radical intermediate and a sulfur radical intermediate detected by resonance Raman (rR) spectroscopy and electron paramagnetic resonance (EPR) spectroscopy, respectively. The chemistry of 2 has been examined by its reactivity, crystal structure, and spectroscopic and cyclic voltammetric analyses. In addition, the results have been complemented with density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations.
Asunto(s)
Cobre , Oxígeno , Cobre/química , Espectroscopía de Resonancia por Spin del Electrón , Glicina/análogos & derivados , Ligandos , Oxígeno/química , Azufre/químicaRESUMEN
Over the past decade, α-imino carbenoids generated via transition metal (such as rhodium, nickel, copper, palladium, silver) catalyzed denitrogenative ring-opening of N-sulfonyl-1,2,3-triazoles have found an extensive account of applications in synthetic organic chemistry. Particularly, they have been widely utilized as a donor/acceptor carbene complex in a range of transformations leading to diverse nitrogen containing compounds and heterocycles. Along the same direction, 3-diazoindolin-2-imines were successfully applied as an alternative source of α-imino carbenoid precursors for the development of a number of methodologies to access diverse indole derivatives. This review summarizes the insertion reactions of α-imino metal carbenes derived from N-sulfonyl-1,2,3-triazoles and 3-diazoindolin-2-imines.
Asunto(s)
Rodio , Catálisis , Cobre , Iminas , PaladioRESUMEN
G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a â¼20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.
Asunto(s)
Arrestina/química , Arrestina/metabolismo , Rodopsina/química , Rodopsina/metabolismo , Animales , Sitios de Unión , Cristalografía por Rayos X , Disulfuros/química , Disulfuros/metabolismo , Humanos , Rayos Láser , Ratones , Modelos Moleculares , Complejos Multiproteicos/biosíntesis , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Unión Proteica , Reproducibilidad de los Resultados , Transducción de Señal , Rayos XRESUMEN
Two configurationally isomeric ligands, namely, 2-((E)-benzylideneamino)-3-((pyridin-2-ylmethyl)amino)maleonitrile (HL1) and 2-(benzylamino)-3-((E)-(pyridin-2-ylmethylene)amino)maleonitrile (HL2), were synthesized and fully characterized, which are malenonitrile-tethered, N atom donors tridentate ligands. Structurally, they differ in the interchangeable position of amine and imine group only. Under the same reaction condition, Ni(II) invoked the transformation of (L1)- to (L2)- via simultaneous oxidation of amine to imine and the reduction of imine to amine. Two sequential 1,5-proton transfer pathways were anticipated for this type of unusual amine-imine oxidation/reduction process under acidic medium. In contrast, Co(II) was silent to such amine-imine interconversion reactions under both HL1 and HL2 ligand environment. The variation in electronic requirement might differentiate between both ligands such that HL2 influenced the arial oxidation of Co(II) to Co(III) but HL1 could not. The redox chemistry of Co(II)/Co(III) complexes with either HL1 or HL2 was explained using cyclic voltammetry and UV-vis spectroscopy.
RESUMEN
A rhodium-catalyzed intramolecular denitrogenative transannulation of N-sulfonyl-1,2,3-triazole-tethered cyclohexadienones has been achieved for the synthesis of benzofurans and cyclopropa[cd]indole-carbaldehydes in an operationally simple procedure. Remarkably, the reaction pathway is fully dependent on the linker heteroatom (O or N) present between the cyclohexadienone unit and triazole moiety. In the case of O-linked triazoles, a cascade sequence consisting of intramolecular cyclopropanation and rearrangement takes place, leading to the formation of benzofurans, while, in the case of N-linked triazoles, cyclopropa[cd]indole-carbaldehydes were isolated exclusively.
RESUMEN
A convenient and simple, RhII -catalyzed denitrogenative method for the synthesis of biologically interesting 2-amino-benzoxazinones and 5-amino-oxadiazoles from readily available isatoic anhydrides and oxadiazolones has been developed. These reactions proceed via an O-H insertion onto α-imino RhII -carbenoid species followed by a rearrangement. The scope of the reaction can also be extended to benzoxazinones to access amino-substituted benzoxazines.
RESUMEN
The bis-pyrazolato pyridine complex LCo(PEt3)2 serves as a masked form of three-coordinate CoII and shows diverse reactivity in its reaction with several potential outer sphere oxidants and oxygen atom transfer reagents. N-Methylmorpholine N-oxide (NMO) oxidizes coordinated PEt3 from LCo(PEt3)2, but the final cobalt product is still divalent cobalt, in LCo(NMO)2. The thermodynamics of a variety of oxygen atom transfer reagents, including NMO, are calculated by density functional theory, to rank their oxidizing power. Oxidation of LCo(PEt3)2 with AgOTf in the presence of LiCl as a trapping nucleophile forms the unusual aggregate [LCo(PEt3)2Cl(LiOTf)2]2 held together by Li+ binding to very nucleophilic chloride on Co(III) and triflate binding to those Li+. In contrast, Cp2Fe+ effects oxidation to trivalent cobalt, to form (HL)Co(PEt3)2Cl+; proton and the chloride originate from solvent in a rare example of CH2Cl2 dehydrochlorination. An unexpected noncomplementary redox reaction is reported involving attack by 2e reductant PEt3 nucleophile on carbon of the 1e oxidant radical Cp2Fe+, forming a P-C bond and H+; this reaction competes in the reaction of LCo(PEt3)2 with Cp2Fe+.
RESUMEN
G protein-coupled receptors (GPCRs) from the secretin-like (class B) family are key players in hormonal homeostasis and are important drug targets for the treatment of metabolic disorders and neuronal diseases. They consist of a large N-terminal extracellular domain (ECD) and a transmembrane domain (TMD) with the GPCR signature of seven transmembrane helices. Class B GPCRs are activated by peptide hormones with their C termini bound to the receptor ECD and their N termini bound to the TMD. It is thought that the ECD functions as an affinity trap to bind and localize the hormone to the receptor. This in turn would allow the hormone N terminus to insert into the TMD and induce conformational changes of the TMD to activate downstream signaling. In contrast to this prevailing model, we demonstrate that human class B GPCRs vary widely in their requirement of the ECD for activation. In one group, represented by corticotrophin-releasing factor receptor 1 (CRF1R), parathyroid hormone receptor (PTH1R), and pituitary adenylate cyclase activating polypeptide type 1 receptor (PAC1R), the ECD requirement for high affinity hormone binding can be bypassed by induced proximity and mass action effects, whereas in the other group, represented by glucagon receptor (GCGR) and glucagon-like peptide-1 receptor (GLP-1R), the ECD is required for signaling even when the hormone is covalently linked to the TMD. Furthermore, the activation of GLP-1R by small molecules that interact with the intracellular side of the receptor is dependent on the presence of its ECD, suggesting a direct role of the ECD in GLP-1R activation.
Asunto(s)
Receptor del Péptido 1 Similar al Glucagón/química , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Glucagón/química , Receptores de Glucagón/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Glucagón/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/genética , Células HEK293 , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Dominios Proteicos , Receptores Acoplados a Proteínas G/clasificación , Receptores de Glucagón/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Transducción de SeñalRESUMEN
In the presence of stoichiometric or catalytic amounts of [M{N(SiMe3 )2 }2 ] (M=Fe, Co), N-heterocyclic carbenes (NHCs) react with primary phosphines to give a series of carbene phosphinidenes of the type (NHC)â PAr. The formation of (IMe4 )â PMes (Mes=mesityl) is also catalyzed by the phosphinidene-bridged complex [(IMe4 )2 Fe(µ-PMes)]2 , which provides evidence for metal-catalyzed phosphinidene transfer.
RESUMEN
The fucose post-translational modification is frequently increased in pancreatic cancer, thus forming the basis for promising biomarkers, but a subset of pancreatic cancer patients does not elevate the known fucose-containing biomarkers. We hypothesized that such patients elevate glycan motifs with fucose in linkages and contexts different from the known fucose-containing biomarkers. We used a database of glycan array data to identify the lectins CCL2 to detect glycan motifs with fucose in a 3' linkage; CGL2 for motifs with fucose in a 2' linkage; and RSL for fucose in all linkages. We used several practical methods to test the lectins and determine the optimal mode of detection, and we then tested whether the lectins detected glycans in pancreatic cancer patients who did not elevate the sialyl-Lewis A glycan, which is upregulated in â¼75% of pancreatic adenocarcinomas. Patients who did not upregulate sialyl-Lewis A, which contains fucose in a 4' linkage, tended to upregulate fucose in a 3' linkage, as detected by CCL2, but they did not upregulate total fucose or fucose in a 2' linkage. CCL2 binding was high in cancerous epithelia from pancreatic tumors, including areas negative for sialyl-Lewis A and a related motif containing 3' fucose, sialyl-Lewis X. Thus, glycans containing 3' fucose may complement sialyl-Lewis A to contribute to improved detection of pancreatic cancer. Furthermore, the use of panels of recombinant lectins may uncover details about glycosylation that could be important for characterizing and detecting cancer.
Asunto(s)
Adenocarcinoma/metabolismo , Fucosa/metabolismo , Lectinas/metabolismo , Neoplasias Pancreáticas/metabolismo , Polisacáridos/metabolismo , Regulación hacia Arriba , Quimiocina CCL2/metabolismo , Humanos , Sondas Moleculares , Polisacáridos/químicaRESUMEN
The synthesis and molecular structures of the cobalt(II) N-heterocyclic carbene (NHC) complexes [(NHC)Co{N(SiMe3)2}2], where NHC = 1,3-bis(diisopropylphenyl)imidazolylidene (IPr) (6), 1,3-bis(mesityl)imidazolylidene (IMes) (7), and 1,3-bis(tert-butyl)imidazol-2-ylidene (I(t)Bu) (8), are reported. Complexes 6-8 are rare examples of three-coordinate cobalt NHC complexes. The steric congestion within the coordination environments of the cobalt(II) centers in 6 and 7 results in the longest Co-C(NHC) distances currently known. Investigating the thermal stability of 6-8, we have found that the steric congestion in 6 is such that heating the complex to reflux in toluene prompts a rearrangement from the normal, C2-bonding mode of the IPr ligand to the corresponding "abnormal" or mesoionic bonding mode. The rearrangement results in formation of [(aIPr)Co{N(SiMe3)2}2] (9), which is the first cobalt complex of an abnormal NHC ligand. The Co-C bond in 9 is 0.06 Å shorter than the analogous bond in 6, suggesting that, although the rearrangement occurs due to the spatial demands of the IPr ligand, there is also a thermodynamic driving force in terms of the Co-C bond. In contrast to the case for 6, complex 7 is stable with respect to the normal-to-abnormal rearrangement. Refluxing complex 8 in toluene results in activation of a tert-butyl substituent, which is eliminated as isobutene, followed by formation of the 1-tert-butylimidazole complex [((t)BuIm)Co{N(SiMe3)2}2] (10).
RESUMEN
The complex [Ph4P]2[Cu(bdt)2] (1(red)) was synthesized by the reaction of [Ph4P]2[S2MoS2CuCl] with H2bdt (bdt = benzene-1,2-dithiolate) in basic medium. 1(red) is highly susceptible toward dioxygen, affording the one electron oxidized diamagnetic compound [Ph4P][Cu(bdt)2] (1(ox)). The interconversion between these two oxidation states can be switched by addition of O2 or base (Et4NOH = tetraethylammonium hydroxide), as demonstrated by cyclic voltammetry and UV-visible and EPR spectroscopies. Thiomolybdates, in free or complex forms with copper ions, play an important role in the stability of 1(red) during its synthesis, since in its absence, 1(ox) is isolated. Both 1(red) and 1(ox) were structurally characterized by X-ray crystallography. EPR experiments showed that 1(red) is a Cu(II)-sulfur complex and revealed strong covalency on the copper-sulfur bonds. DFT calculations confirmed the spin density delocalization over the four sulfur atoms (76%) and copper (24%) atom, suggesting that 1(red) has a "thiyl radical character". Time dependent DFT calculations identified such ligand to ligand charge transfer transitions. Accordingly, 1(red) is better described by the two isoelectronic structures [Cu(I)(bdt2, 4S(3-,)*)](2-) â [Cu(II)(bdt2, 4S(4-))](2-). On thermodynamic grounds, oxidation of 1(red) (doublet state) leads to 1(ox) singlet state, [Cu(III)(bdt2, 4S(4-))](1-).