Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33452137

RESUMEN

Transmitter receptors constitute a key component of the molecular machinery for intercellular communication in the brain. Recent efforts have mapped the density of diverse transmitter receptors across the human cerebral cortex with an unprecedented level of detail. Here, we distill these observations into key organizational principles. We demonstrate that receptor densities form a natural axis in the human cerebral cortex, reflecting decreases in differentiation at the level of laminar organization and a sensory-to-association axis at the functional level. Along this natural axis, key organizational principles are discerned: progressive molecular diversity (increase of the diversity of receptor density); excitation/inhibition (increase of the ratio of excitatory-to-inhibitory receptor density); and mirrored, orderly changes of the density of ionotropic and metabotropic receptors. The uncovered natural axis formed by the distribution of receptors aligns with the axis that is formed by other dimensions of cortical organization, such as the myelo- and cytoarchitectonic levels. Therefore, the uncovered natural axis constitutes a unifying organizational feature linking multiple dimensions of the cerebral cortex, thus bringing order to the heterogeneity of cortical organization.


Asunto(s)
Encéfalo/metabolismo , Comunicación Celular/genética , Corteza Cerebral/metabolismo , Receptores de Neurotransmisores/genética , Autorradiografía , Encéfalo/diagnóstico por imagen , Encéfalo/ultraestructura , Mapeo Encefálico , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/ultraestructura , Humanos , Receptores AMPA/genética , Receptores AMPA/aislamiento & purificación , Receptores de GABA-A/genética , Receptores de GABA-A/aislamiento & purificación , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/aislamiento & purificación , Receptores de Neurotransmisores/química , Receptores de Neurotransmisores/clasificación , Receptores de Neurotransmisores/ultraestructura
2.
Neuroimage ; 273: 120095, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37030412

RESUMEN

Neurotransmitter receptors are key molecules in signal transmission, their alterations are associated with brain dysfunction. Relationships between receptors and their corresponding genes are poorly understood, especially in humans. We combined in vitro receptor autoradiography and RNA sequencing to quantify, in the same tissue samples (7 subjects), the densities of 14 receptors and expression levels of their corresponding 43 genes in the Cornu Ammonis (CA) and dentate gyrus (DG) of human hippocampus. Significant differences in receptor densities between both structures were found only for metabotropic receptors, whereas significant differences in RNA expression levels mostly pertained ionotropic receptors. Receptor fingerprints of CA and DG differ in shapes but have similar sizes; the opposite holds true for their "RNA fingerprints", which represent the expression levels of multiple genes in a single area. In addition, the correlation coefficients between receptor densities and corresponding gene expression levels vary widely and the mean correlation strength was weak-to-moderate. Our results suggest that receptor densities are not only controlled by corresponding RNA expression levels, but also by multiple regionally specific post-translational factors.


Asunto(s)
Hipocampo , Receptores de Neurotransmisores , Humanos , Hipocampo/fisiología , Receptores de Neurotransmisores/genética , Receptores de Neurotransmisores/metabolismo , ARN/metabolismo , Autorradiografía
3.
PLoS Biol ; 18(4): e3000678, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32243449

RESUMEN

Histological atlases of the cerebral cortex, such as those made famous by Brodmann and von Economo, are invaluable for understanding human brain microstructure and its relationship with functional organization in the brain. However, these existing atlases are limited to small numbers of manually annotated samples from a single cerebral hemisphere, measured from 2D histological sections. We present the first whole-brain quantitative 3D laminar atlas of the human cerebral cortex. It was derived from a 3D histological atlas of the human brain at 20-micrometer isotropic resolution (BigBrain), using a convolutional neural network to segment, automatically, the cortical layers in both hemispheres. Our approach overcomes many of the historical challenges with measurement of histological thickness in 2D, and the resultant laminar atlas provides an unprecedented level of precision and detail. We utilized this BigBrain cortical atlas to test whether previously reported thickness gradients, as measured by MRI in sensory and motor processing cortices, were present in a histological atlas of cortical thickness and which cortical layers were contributing to these gradients. Cortical thickness increased across sensory processing hierarchies, primarily driven by layers III, V, and VI. In contrast, motor-frontal cortices showed the opposite pattern, with decreases in total and pyramidal layer thickness from motor to frontal association cortices. These findings illustrate how this laminar atlas will provide a link between single-neuron morphology, mesoscale cortical layering, macroscopic cortical thickness, and, ultimately, functional neuroanatomy.


Asunto(s)
Corteza Cerebral/anatomía & histología , Corteza Cerebral/diagnóstico por imagen , Imagenología Tridimensional/métodos , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Redes Neurales de la Computación
4.
Brain ; 145(5): 1785-1804, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34605898

RESUMEN

Alzheimer's disease involves many neurobiological alterations from molecular to macroscopic spatial scales, but we currently lack integrative, mechanistic brain models characterizing how factors across different biological scales interact to cause clinical deterioration in a way that is subject-specific or personalized. As important signalling molecules and mediators of many neurobiological interactions, neurotransmitter receptors are promising candidates for identifying molecular mechanisms and drug targets in Alzheimer's disease. We present a neurotransmitter receptor-enriched multifactorial brain model, which integrates spatial distribution patterns of 15 neurotransmitter receptors from post-mortem autoradiography with multiple in vivo neuroimaging modalities (tau, amyloid-ß and glucose PET, and structural, functional and arterial spin labelling MRI) in a personalized, generative, whole-brain formulation. In a heterogeneous aged population (n = 423, ADNI data), models with personalized receptor-neuroimaging interactions showed a significant improvement over neuroimaging-only models, explaining about 70% (±20%) of the variance in longitudinal changes to the six neuroimaging modalities. In Alzheimer's disease patients (n = 25, ADNI data), receptor-imaging interactions explained up to 39.7% (P < 0.003, family-wise error-rate-corrected) of inter-individual variability in cognitive deterioration, via an axis primarily affecting executive function. Notably, based on their contribution to the clinical severity in Alzheimer's disease, we found significant functional alterations to glutamatergic interactions affecting tau accumulation and neural activity dysfunction and GABAergic interactions concurrently affecting neural activity dysfunction, amyloid and tau distributions, as well as significant cholinergic receptor effects on tau accumulation. Overall, GABAergic alterations had the largest effect on cognitive impairment (particularly executive function) in our Alzheimer's disease cohort (n = 25). Furthermore, we demonstrate the clinical applicability of this approach by characterizing subjects based on individualized 'fingerprints' of receptor alterations. This study introduces the first robust, data-driven framework for integrating several neurotransmitter receptors, multimodal neuroimaging and clinical data in a flexible and interpretable brain model. It enables further understanding of the mechanistic neuropathological basis of neurodegenerative progression and heterogeneity, and constitutes a promising step towards implementing personalized, neurotransmitter-based treatments.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Disfunción Cognitiva , Anciano , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Disfunción Cognitiva/patología , Humanos , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Tomografía de Emisión de Positrones/métodos , Receptores de Neurotransmisores , Proteínas tau/metabolismo
5.
Alzheimers Dement ; 19(11): 4787-4804, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37014937

RESUMEN

INTRODUCTION: Hippocampal local and network dysfunction is the hallmark of Alzheimer's disease (AD). METHODS: We characterized the spatial patterns of hippocampus differentiation based on brain co-metabolism in healthy elderly participants and demonstrated their relevance to study local metabolic changes and associated dysfunction in pathological aging. RESULTS: The hippocampus can be differentiated into anterior/posterior and dorsal cornu ammonis (CA)/ventral (subiculum) subregions. While anterior/posterior CA show co-metabolism with different regions of the subcortical limbic networks, the anterior/posterior subiculum are parts of cortical networks supporting object-centered memory and higher cognitive demands, respectively. Both networks show relationships with the spatial patterns of gene expression pertaining to cell energy metabolism and AD's process. Finally, while local metabolism is generally lower in posterior regions, the anterior-posterior imbalance is maximal in late mild cognitive impairment with the anterior subiculum being relatively preserved. DISCUSSION: Future studies should consider bidimensional hippocampal differentiation and in particular the posterior subicular region to better understand pathological aging.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Anciano , Imagen por Resonancia Magnética/métodos , Hipocampo/patología , Envejecimiento , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Disfunción Cognitiva/patología
6.
Neuroimage ; 257: 119286, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35597401

RESUMEN

Brain areas show specific cellular, molecular, and gene expression patterns that are linked to function, but their precise relationships are largely unknown. To unravel these structure-function relationships, a combined analysis of 53 neurotransmitter receptor genes, receptor densities of six transmitter systems and cytoarchitectonic data of the auditory, somatosensory, visual, motor systems was conducted. Besides covariation of areal gene expression with receptor density, the study reveals specific gene expression patterns in functional systems, which are most prominent for the inhibitory GABAA and excitatory glutamatergic NMDA receptors. Furthermore, gene expression-receptor relationships changed in a systematic manner according to information flow from primary to higher associative areas. The findings shed new light on the relationship of anatomical, functional, and molecular and transcriptomic principles of cortical segregation towards a more comprehensive understanding of human brain organization.


Asunto(s)
Encéfalo , Transcriptoma , Encéfalo/metabolismo , Mapeo Encefálico , Humanos , Receptores de Neurotransmisores/metabolismo
7.
Neuroimage ; 264: 119671, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36209794

RESUMEN

Neurotransmitter receptors modulate signaling between neurons. Thus, neurotransmitter receptors and transporters play a key role in shaping brain function. Due to the lack of comprehensive neurotransmitter receptor/transporter density datasets, microarray gene expression measuring mRNA transcripts is often used as a proxy for receptor densities. In the present report, we comprehensively test the spatial correlation between gene expression and protein density for a total of 27 neurotransmitter receptors, receptor binding-sites, and transporters across 9 different neurotransmitter systems, using both PET and autoradiography radioligand-based imaging modalities. We find poor spatial correspondences between gene expression and density for all neurotransmitter receptors and transporters except four single-protein metabotropic receptors (5-HT1A, CB1, D2, and MOR). These expression-density associations are related to gene differential stability and can vary between cortical and subcortical structures. Altogether, we recommend using direct measures of receptor and transporter density when relating neurotransmitter systems to brain structure and function.


Asunto(s)
Encéfalo , Receptores de Neurotransmisores , Humanos , Receptores de Neurotransmisores/genética , Receptores de Neurotransmisores/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Autorradiografía , Neurotransmisores/metabolismo , Proteínas Portadoras/metabolismo , Expresión Génica
8.
Hum Brain Mapp ; 43(11): 3386-3403, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35384130

RESUMEN

Resting-state functional magnetic resonance imaging (fMRI) has been used in numerous studies to map networks in the brain that employ spatially disparate regions. However, attempts to map networks with high spatial resolution have been hampered by conflicting technical demands and associated problems. Results from recent fMRI studies have shown that spatial resolution remains around 0.7 × 0.7 × 0.7 mm3 , with only partial brain coverage. Therefore, this work aims to present a novel fMRI technique that was developed based on echo-planar-imaging with keyhole (EPIK) combined with repetition-time-external (TR-external) EPI phase correction. Each technique has been previously shown to be effective in enhancing the spatial resolution of fMRI, and in this work, the combination of the two techniques into TR-external EPIK provided a nominal spatial resolution of 0.51 × 0.51 × 1.00 mm3 (0.26 mm3 voxel) with whole-cerebrum coverage. Here, the feasibility of using half-millimetre in-plane TR-external EPIK for resting-state fMRI was validated using 13 healthy subjects and the corresponding reproducible mapping of resting-state networks was demonstrated. Furthermore, TR-external EPIK enabled the identification of various resting-state networks distributed throughout the brain from a single fMRI session, with mapping fidelity onto the grey matter at 7T. The high-resolution functional image further revealed mesoscale anatomical structures, such as small cerebral vessels and the internal granular layer of the cortex within the postcentral gyrus.


Asunto(s)
Mapeo Encefálico , Cerebro , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Imagen Eco-Planar/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos
9.
Cereb Cortex ; 31(9): 4115-4139, 2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-34003210

RESUMEN

Noradrenaline (NA) in the thalamus has important roles in physiological, pharmacological, and pathological neuromodulation. In this work, a complete characterization of NA axons and Alpha adrenoceptors distributions is provided. NA axons, revealed by immunohistochemistry against the synthesizing enzyme and the NA transporter, are present in all thalamic nuclei. The most densely innervated ones are the midline nuclei, intralaminar nuclei (paracentral and parafascicular), and the medial sector of the mediodorsal nucleus (MDm). The ventral motor nuclei and most somatosensory relay nuclei receive a moderate NA innervation. The pulvinar complex receives a heterogeneous innervation. The lateral geniculate nucleus (GL) has the lowest NA innervation. Alpha adrenoceptors were analyzed by in vitro quantitative autoradiography. Alpha-1 receptor densities are higher than Alpha-2 densities. Overall, axonal densities and Alpha adrenoceptor densities coincide; although some mismatches were identified. The nuclei with the highest Alpha-1 values are MDm, the parvocellular part of the ventral posterior medial nucleus, medial pulvinar, and midline nuclei. The nucleus with the lowest Alpha-1 receptor density is GL. Alpha-2 receptor densities are highest in the lateral dorsal, centromedian, medial and inferior pulvinar, and midline nuclei. These results suggest a role for NA in modulating thalamic involvement in consciousness, limbic, cognitive, and executive functions.


Asunto(s)
Norepinefrina/fisiología , Receptores Adrenérgicos/fisiología , Sistema Nervioso Simpático/fisiología , Tálamo/fisiología , Animales , Autorradiografía , Axones/fisiología , Dopamina beta-Hidroxilasa/metabolismo , Fenómenos Electrofisiológicos , Femenino , Macaca mulatta , Macaca nemestrina , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo , Receptores Adrenérgicos/efectos de los fármacos , Receptores Adrenérgicos alfa 1/efectos de los fármacos , Receptores Adrenérgicos alfa 1/genética , Receptores Adrenérgicos alfa 1/metabolismo , Sistema Nervioso Simpático/diagnóstico por imagen , Sistema Nervioso Simpático/efectos de los fármacos
10.
J Neurosci ; 40(47): 9028-9042, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33046545

RESUMEN

Local measures of neurotransmitters provide crucial insights into neurobiological changes underlying altered functional connectivity in psychiatric disorders. However, noninvasive neuroimaging techniques such as magnetic resonance spectroscopy (MRS) may cover anatomically and functionally distinct areas, such as p32 and p24 of the pregenual anterior cingulate cortex (pgACC). Here, we aimed to overcome this low spatial specificity of MRS by predicting local glutamate and GABA based on functional characteristics and neuroanatomy in a sample of 88 human participants (35 females), using complementary machine learning approaches. Functional connectivity profiles of pgACC area p32 predicted pgACC glutamate better than chance (R2 = 0.324) and explained more variance compared with area p24 using both elastic net and partial least-squares regression. In contrast, GABA could not be robustly predicted. To summarize, machine learning helps exploit the high resolution of fMRI to improve the interpretation of local neurometabolism. Our augmented multimodal imaging analysis can deliver novel insights into neurobiology by using complementary information.SIGNIFICANCE STATEMENT Magnetic resonance spectroscopy (MRS) measures local glutamate and GABA noninvasively. However, conventional MRS requires large voxels compared with fMRI, because of its inherently low signal-to-noise ratio. Consequently, a single MRS voxel may cover areas with distinct cytoarchitecture. In the largest multimodal 7 tesla machine learning study to date, we overcome this limitation by capitalizing on the spatial resolution of fMRI to predict local neurotransmitters in the PFC. Critically, we found that prefrontal glutamate could be robustly and exclusively predicted from the functional connectivity fingerprint of one of two anatomically and functionally defined areas that form the pregenual anterior cingulate cortex. Our approach provides greater spatial specificity on neurotransmitter levels, potentially improving the understanding of altered functional connectivity in mental disorders.


Asunto(s)
Ácido Glutámico/fisiología , Giro del Cíngulo/fisiología , Vías Nerviosas/fisiología , Neurotransmisores/fisiología , Adulto , Encéfalo , Mapeo Encefálico , Femenino , Ácido Glutámico/genética , Sustancia Gris/diagnóstico por imagen , Giro del Cíngulo/diagnóstico por imagen , Giro del Cíngulo/crecimiento & desarrollo , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Masculino , Vías Nerviosas/diagnóstico por imagen , Neurotransmisores/genética , Ácido gamma-Aminobutírico/genética , Ácido gamma-Aminobutírico/metabolismo
11.
Neuroimage ; 231: 117843, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33577936

RESUMEN

The macaque monkey inferior parietal lobe (IPL) is a structurally heterogeneous brain region, although the number of areas it contains and the anatomical/functional relationship of identified subdivisions remains controversial. Neurotransmitter receptor distribution patterns not only reveal the position of the cortical borders, but also segregate areas associated to different functional systems. Thus we carried out a multimodal quantitative analysis of the cyto- and receptor architecture of the macaque IPL to determine the number and extent of distinct areas it encompasses. We identified four areas on the IPL convexity arranged in a caudo-rostral sequence, as well as two areas in the parietal operculum, which we projected onto the Yerkes19 surface. We found rostral areas to have relatively smaller receptor fingerprints than the caudal ones, which is in an agreement with the functional gradient along the caudo-rostral axis described in previous studies. The hierarchical analysis segregated IPL areas into two clusters: the caudal one, contains areas involved in multisensory integration and visual-motor functions, and rostral cluster, encompasses areas active during motor planning and action-related functions. The results of the present study provide novel insights into clarifying the homologies between human and macaque IPL areas. The ensuing 3D map of the macaque IPL, and the receptor fingerprints are made publicly available to the neuroscientific community via the Human Brain Project and BALSA repositories for future cyto- and/or receptor architectonically driven analyses of functional imaging studies in non-human primates.


Asunto(s)
Red Nerviosa/citología , Red Nerviosa/fisiología , Lóbulo Parietal/citología , Lóbulo Parietal/fisiología , Receptores de Neurotransmisores/fisiología , Animales , Autorradiografía/métodos , Macaca fascicularis , Macaca mulatta , Masculino , Análisis Multivariante , Red Nerviosa/química , Lóbulo Parietal/química , Receptores de Neurotransmisores/análisis
12.
Neuroimage ; 226: 117574, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33221453

RESUMEN

In the present study we reevaluated the parcellation scheme of the macaque frontal agranular cortex by implementing quantitative cytoarchitectonic and multireceptor analyses, with the purpose to integrate and reconcile the discrepancies between previously published maps of this region. We applied an observer-independent and statistically testable approach to determine the position of cytoarchitectonic borders. Analysis of the regional and laminar distribution patterns of 13 different transmitter receptors confirmed the position of cytoarchitectonically identified borders. Receptor densities were extracted from each area and visualized as its "receptor fingerprint". Hierarchical and principal components analyses were conducted to detect clusters of areas according to the degree of (dis)similarity of their fingerprints. Finally, functional connectivity pattern of each identified area was analyzed with areas of prefrontal, cingulate, somatosensory and lateral parietal cortex and the results were depicted as "connectivity fingerprints" and seed-to-vertex connectivity maps. We identified 16 cyto- and receptor architectonically distinct areas, including novel subdivisions of the primary motor area 4 (i.e. 4a, 4p, 4m) and of premotor areas F4 (i.e. F4s, F4d, F4v), F5 (i.e. F5s, F5d, F5v) and F7 (i.e. F7d, F7i, F7s). Multivariate analyses of receptor fingerprints revealed three clusters, which first segregated the subdivisions of area 4 with F4d and F4s from the remaining premotor areas, then separated ventrolateral from dorsolateral and medial premotor areas. The functional connectivity analysis revealed that medial and dorsolateral premotor and motor areas show stronger functional connectivity with areas involved in visual processing, whereas 4p and ventrolateral premotor areas presented a stronger functional connectivity with areas involved in somatomotor responses. For the first time, we provide a 3D atlas integrating cyto- and multi-receptor architectonic features of the macaque motor and premotor cortex. This atlas constitutes a valuable resource for the analysis of functional experiments carried out with non-human primates, for modeling approaches with realistic synaptic dynamics, as well as to provide insights into how brain functions have developed by changes in the underlying microstructure and encoding strategies during evolution.


Asunto(s)
Atlas como Asunto , Corteza Motora/citología , Corteza Motora/diagnóstico por imagen , Corteza Motora/metabolismo , Receptores de Neurotransmisores/metabolismo , Animales , Lóbulo Frontal/citología , Lóbulo Frontal/diagnóstico por imagen , Lóbulo Frontal/metabolismo , Neuroimagen Funcional , Imagenología Tridimensional , Macaca fascicularis , Macaca mulatta , Imagen por Resonancia Magnética , Vías Nerviosas , Receptores Adrenérgicos alfa/metabolismo , Receptores Colinérgicos/metabolismo , Receptores de GABA/metabolismo , Receptores de Glutamato/metabolismo , Receptores de Serotonina/metabolismo
13.
Cereb Cortex ; 29(6): 2552-2574, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29850806

RESUMEN

The human pregenual anterior cingulate cortex (pACC) encompasses 7 distinct cyto- and receptorarchitectonic areas. We lack a detailed understanding of the functions in which they are involved, and stereotaxic maps are not available. We present an integrated structural/functional map of pACC based on probabilistic cytoarchitectonic mapping and meta-analytic connectivity modeling and quantitative functional decoding. Due to the restricted spatial resolution of functional imaging data relative to the microstructural parcellation, areas p24a of the callosal sulcus and p24b on the surface of the cingulate gyrus were merged into a "gyral component" (p24ab) of area p24, and areas pv24c, pd24cv, and pd24cd, located within the cingulate sulcus were merged into a "sulcal component" (p24c) for meta-analytic analysis. Area p24ab was specifically associated with interoception, p24c with the inhibition of action, and p32, which was also activated by emotion induction tasks pertaining negatively valenced stimuli, with the ability to experience empathy. Thus, area p32 could be classified as cingulate association cortex playing a crucial role in the cognitive regulation of emotion. By this spectrum of functions, pACC is a structurally and functionally heterogeneous region, clearly differing from other parts of the anterior and middle cingulate cortex.


Asunto(s)
Mapeo Encefálico/métodos , Giro del Cíngulo/anatomía & histología , Giro del Cíngulo/fisiología , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Masculino , Persona de Mediana Edad
14.
Neuroimage ; 197: 716-741, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28811255

RESUMEN

Cortical layers have classically been identified by their distinctive and prevailing cell types and sizes, as well as the packing densities of cell bodies or myelinated fibers. The densities of multiple receptors for classical neurotransmitters also vary across the depth of the cortical ribbon, and thus determine the neurochemical properties of cyto- and myeloarchitectonic layers. However, a systematic comparison of the correlations between these histologically definable layers and the laminar distribution of transmitter receptors is currently lacking. We here analyze the densities of 17 different receptors of various transmitter systems in the layers of eight cytoarchitectonically identified, functionally (motor, sensory, multimodal) and hierarchically (primary and secondary sensory, association) distinct areas of the human cerebral cortex. Maxima of receptor densities are found in different layers when comparing different cortical regions, i.e. laminar receptor densities demonstrate differences in receptorarchitecture between isocortical areas, notably between motor and primary sensory cortices, specifically the primary visual and somatosensory cortices, as well as between allocortical and isocortical areas. Moreover, considerable differences are found between cytoarchitectonical and receptor architectonical laminar patterns. Whereas the borders of cyto- and myeloarchitectonic layers are well comparable, the laminar profiles of receptor densities rarely coincide with the histologically defined borders of layers. Instead, highest densities of most receptors are found where the synaptic density is maximal, i.e. in the supragranular layers, particularly in layers II-III. The entorhinal cortex as an example of the allocortex shows a peculiar laminar organization, which largely deviates from that of all the other cortical areas analyzed here.


Asunto(s)
Corteza Cerebral/anatomía & histología , Corteza Cerebral/metabolismo , Receptores de Neurotransmisores/metabolismo , Sinapsis/ultraestructura , Anciano , Femenino , Humanos , Masculino
15.
Cereb Cortex ; 27(3): 1779-1794, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-26874183

RESUMEN

While hippocampal connectivity is essential to normal memory function, our knowledge of human hippocampal circuitry is largely inferred from animal studies. Using polarized light microscopy at 1.3 µm resolution, we have directly visualized the 3D course of key medial temporal pathways in 3 ex vivo human hemispheres and 2 ex vivo vervet monkey hemispheres. The multiple components of the perforant path system were clearly identified: Superficial sheets of fibers emanating from the entorhinal cortex project to the presubiculum and parasubiculum, intermixed transverse and longitudinal angular bundle fibers perforate the subiculum and then project to the cornu ammonis (CA) fields and dentate molecular layer, and a significant alvear component runs from the angular bundle to the CA fields. From the hilus, mossy fibers localize to regions of high kainate receptor density, and the endfolial pathway, mostly investigated in humans, merges with the Schaffer collaterals. This work defines human hippocampal pathways underlying mnemonic function at an unprecedented resolution.


Asunto(s)
Hipocampo/anatomía & histología , Adulto , Anciano , Animales , Autorradiografía , Chlorocebus aethiops , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Microscopía de Polarización/métodos , Persona de Mediana Edad , Vía Perforante/anatomía & histología
16.
Eur Arch Psychiatry Clin Neurosci ; 266(3): 261-7, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26260901

RESUMEN

The neurotrophic hypothesis has become the favorite model to explain the antidepressant properties of electroconvulsive therapy (ECT). It is based on the assumption that a restoration of previously defective neural networks drives therapeutic effects. Recent data in rather young patients suggest that neurotrophic effects of ECT might be detectable by diffusion tensor imaging. We here aimed to investigate whether the therapeutic response to ECT necessarily goes along with mesoscopic effects in gray matter (GM) or white matter (WM) in our patients in advanced age. Patients (n = 21, 15 males and 7 females) suffering from major depressive disorder were treated with ECT. Before the start of treatment and after the completion of the index series, they underwent magnetic resonance imaging, including a diffusion-weighed sequence. We used voxel-based morphometry to assess GM changes and tract-based spatial statistics and an SPM-based whole-brain analysis to detect WM changes in the course of treatment. Patients significantly improved clinically during the course of ECT. This was, however, not accompanied by GM or WM changes. This result challenges the notion that mesoscopic brain structure changes are an obligatory prerequisite for the antidepressant effects of ECT.


Asunto(s)
Encéfalo/patología , Trastorno Depresivo Mayor/terapia , Terapia Electroconvulsiva , Adulto , Anciano , Encéfalo/diagnóstico por imagen , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/patología , Imagen de Difusión por Resonancia Magnética , Femenino , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Humanos , Masculino , Persona de Mediana Edad , Resultado del Tratamiento , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
18.
Neuroimage ; 115: 177-90, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25937490

RESUMEN

Human subgenual anterior cingulate cortex (sACC) is involved in affective experiences and fear processing. Functional neuroimaging studies view it as a homogeneous cortical entity. However, sACC comprises several distinct cyto- and receptorarchitectonical areas: 25, s24, s32, and the ventral portion of area 33. Thus, we hypothesized that the areas may also be connectionally and functionally distinct. We performed structural post mortem and functional in vivo analyses. We computed probabilistic maps of each area based on cytoarchitectonical analysis of ten post mortem brains. Maps, publicly available via the JuBrain atlas and the Anatomy Toolbox, were used to define seed regions of task-dependent functional connectivity profiles and quantitative functional decoding. sACC areas presented distinct co-activation patterns within widespread networks encompassing cortical and subcortical regions. They shared common functional domains related to emotion, perception and cognition. A more specific analysis of these domains revealed an association of s24 with sadness, and of s32 with fear processing. Both areas were activated during taste evaluation, and co-activated with the amygdala, a key node of the affective network. s32 co-activated with areas of the executive control network, and was associated with tasks probing cognition in which stimuli did not have an emotional component. Area 33 was activated by painful stimuli, and co-activated with areas of the sensorimotor network. These results support the concept of a connectional and functional specificity of the cyto- and receptorarchitectonically defined areas within the sACC, which can no longer be seen as a structurally and functionally homogeneous brain region.


Asunto(s)
Corteza Cerebral/anatomía & histología , Vías Nerviosas/anatomía & histología , Adulto , Vías Aferentes/anatomía & histología , Vías Aferentes/fisiología , Anciano , Anciano de 80 o más Años , Amígdala del Cerebelo/anatomía & histología , Atlas como Asunto , Mapeo Encefálico , Cadáver , Cognición/fisiología , Emociones/fisiología , Femenino , Giro del Cíngulo/anatomía & histología , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Dolor/fisiopatología , Corteza Sensoriomotora/anatomía & histología , Corteza Sensoriomotora/fisiología , Caracteres Sexuales
19.
Neuroimage ; 106: 55-71, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25462801

RESUMEN

The posterior medial cortex (PMC) is particularly poorly understood. Its neural activity changes have been related to highly disparate mental processes. We therefore investigated PMC properties with a data-driven exploratory approach. First, we subdivided the PMC by whole-brain coactivation profiles. Second, functional connectivity of the ensuing PMC regions was compared by task-constrained meta-analytic coactivation mapping (MACM) and task-unconstrained resting-state correlations (RSFC). Third, PMC regions were functionally described by forward/reverse functional inference. A precuneal cluster was mostly connected to the intraparietal sulcus, frontal eye fields, and right temporo-parietal junction; associated with attention and motor tasks. A ventral posterior cingulate cortex (PCC) cluster was mostly connected to the ventromedial prefrontal cortex and middle left inferior parietal cortex (IPC); associated with facial appraisal and language tasks. A dorsal PCC cluster was mostly connected to the dorsomedial prefrontal cortex, anterior/posterior IPC, posterior midcingulate cortex, and left dorsolateral prefrontal cortex; associated with delay discounting. A cluster in the retrosplenial cortex was mostly connected to the anterior thalamus and hippocampus. Furthermore, all PMC clusters were congruently coupled with the default mode network according to task-unconstrained but not task-constrained connectivity. We thus identified distinct regions in the PMC and characterized their neural networks and functional implications.


Asunto(s)
Corteza Cerebral/anatomía & histología , Corteza Cerebral/fisiología , Conectoma/métodos , Modelos Anatómicos , Modelos Neurológicos , Red Nerviosa/fisiología , Simulación por Computador , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Técnica de Sustracción
20.
J Neurosci ; 33(31): 12698-704, 2013 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-23904606

RESUMEN

Magnetic resonance spectroscopy (MRS) of glutamatergic or GABAergic measures in anterior cingulate cortex (ACC) was found altered in psychiatric disorders and predictive of interindividual variations of functional responses in healthy populations. Several ACC subregions have been parcellated into receptor-architectonically different portions with heterogeneous fingerprints for excitatory and inhibitory receptors. Similarly, these subregions overlap with functionally distinct regions showing opposed signal changes toward stimulation or resting conditions. We therefore investigated whether receptor-architectonical and functional segregation of the cingulate cortex in humans was also reflected in its local concentrations of glutamate (Glu), glutamine (Gln), and GABA. To accomplish a multiregion estimation of all three metabolites in one robust and reliable session, we used an optimized 7T-stimulated echo-acquisition mode method with variable-rate selective excitation pulses. Our results demonstrated that, ensuring high data retest reliability, four cingulate subregions discerning e.g., pregenual ACC (pgACC) from anterior mid-cingulate cortex showed different metabolite concentrations and ratios reflective of regionally specific inhibition/excitation balance. These findings could be controlled for potential influences of local gray matter variations or MRS voxel-placement deviations. Pregenual ACC was found to have significantly higher GABA and Glu concentrations than other regions. This pattern was not paralleled by Gln concentrations, which for both absolute and relative values showed a rostrocaudal gradient with highest values in pgACC. Increased excitatory Glu and inhibitory GABA in pgACC were shown to follow a regional segregation agreeing with recently shown receptor-architectonic GABAB receptor distribution in ACC, whereas Gln distribution followed a pattern of AMPA receptors.


Asunto(s)
Mapeo Encefálico , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Giro del Cíngulo/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Adulto , Humanos , Imagenología Tridimensional , Modelos Lineales , Espectroscopía de Resonancia Magnética , Masculino , Receptores AMPA/metabolismo , Receptores de GABA-B/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA