Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 296
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Brain ; 146(6): 2364-2376, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36380532

RESUMEN

Genetic leukoencephalopathies (gLEs) are a highly heterogeneous group of rare genetic disorders. The spectrum of gLEs varies among patients of different ages. Distinct from the relatively more abundant studies of gLEs in children, only a few studies that explore the spectrum of adult gLEs have been published, and it should be noted that the majority of these excluded certain gLEs. Thus, to date, no large study has been designed and conducted to characterize the genetic and phenotypic spectra of gLEs in adult patients. We recruited a consecutive series of 309 adult patients clinically suspected of gLEs from Beijing Tiantan Hospital between January 2014 and December 2021. Whole-exome sequencing, mitochondrial DNA sequencing and repeat analysis of NOTCH2NLC, FMR1, DMPK and ZNF9 were performed for patients. We describe the genetic and phenotypic spectra of the set of patients with a genetically confirmed diagnosis and summarize their clinical and radiological characteristics. A total of 201 patients (65%) were genetically diagnosed, while 108 patients (35%) remained undiagnosed. The most frequent diseases were leukoencephalopathies related to NOTCH3 (25%), NOTCH2NLC (19%), ABCD1 (9%), CSF1R (7%) and HTRA1 (5%). Based on a previously proposed pathological classification, the gLEs in our cohort were divided into leukovasculopathies (35%), leuko-axonopathies (31%), myelin disorders (21%), microgliopathies (7%) and astrocytopathies (6%). Patients with NOTCH3 mutations accounted for 70% of the leukovasculopathies, followed by HTRA1 (13%) and COL4A1/2 (9%). The leuko-axonopathies contained the richest variety of associated genes, of which NOTCH2NLC comprised 62%. Among myelin disorders, demyelinating leukoencephalopathies (61%)-mainly adrenoleukodystrophy and Krabbe disease-accounted for the majority, while hypomyelinating leukoencephalopathies (2%) were rare. CSF1R was the only mutated gene detected in microgliopathy patients. Leukoencephalopathy with vanishing white matter disease due to mutations in EIF2B2-5 accounted for half of the astrocytopathies. We characterized the genetic and phenotypic spectra of adult gLEs in a large Chinese cohort. The most frequently mutated genes were NOTCH3, NOTCH2NLC, ABCD1, CSF1R and HTRA1.


Asunto(s)
Leucoencefalopatías , Niño , Humanos , Adulto , Leucoencefalopatías/genética , Leucoencefalopatías/patología , Mutación/genética , Vaina de Mielina/patología , Análisis de Secuencia de ADN , Receptor Notch3/genética , Serina Peptidasa A1 que Requiere Temperaturas Altas/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil
2.
J Phys Chem A ; 127(45): 9399-9408, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37934510

RESUMEN

Chymotrypsin inhibitor 2 (CI-2) is a well-studied, textbook example of a cooperative, two-state, native ↔ denatured folding transition. A recent hybrid ion mobility spectrometry (IMS)/mass spectrometry (MS) thermal denaturation study of CI-2 (the well-studied truncated 64-residue model) in water reported evidence that this two-state transition involves numerous (∼41) unique native and non-native (denatured) solution conformations. The characterization of so many, often low-abundance, states is possible because of the very high dynamic range of IMS-MS measurements of ionic species that are produced upon electrospraying CI-2 solutions from a variable temperature electrospray ionization source. A thermodynamic analysis of these states revealed large changes in enthalpy (ΔH) and entropy (ΔS) at different temperatures, and it was suggested that such variation might arise because of temperature-dependent conformational changes of the protein in response to changes in the conformational entropy and the dielectric permeability of water, which drops from a value of ε ∼ 79 at 24 °C to ∼ 60 at 82 °C. Herein, we examine how adding methanol to water influences the distributions of CI-2 conformers and their ensuing stabilities. The dielectric constant of a 60:40 water:methanol (MeOH) drops from ε ∼ 60 at 24 °C to ∼ 51 at 64 °C. Although the same set of conformers observed in water appears to be present in 60:40 water:MeOH, the abundance of each is substantially altered by the presence of methanol. Relative free energy values (ΔG) and thermodynamic values [ΔH and ΔS and heat capacities (ΔCp)] are derived from a Gibbs-Helmholtz analysis. A comparison of these data from water and water:MeOH systems allows rare insight into how variations in solvation and temperature affect many-state protein equilibria. While these studies confirm that variations in solvent dielectric constant with temperature affect the distributions of conformers that are observed, our findings suggest that other solvent differences may also affect abundances.

3.
Neurol Sci ; 44(5): 1769-1772, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36809423

RESUMEN

The GGC repeat expansions in the NOTCH2NLC gene are associated with multiple neurodegenerative disorders. Herein, we report the clinical phenotype in a family with biallelic GGC expansions in NOTCH2NLC. Autonomic dysfunction was a prominent clinical manifestation in three genetically confirmed patients without dementia, parkinsonism, and cerebellar ataxia for > 12 years. A 7-T brain magnetic resonance imaging in two patients revealed a change in the small cerebral veins. The biallelic GGC repeat expansions may not modify the disease progression in neuronal intranuclear inclusion disease. Autonomic dysfunction-dominant may expand the clinical phenotype of NOTCH2NLC.


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo , Proteínas del Tejido Nervioso , Enfermedades Neurodegenerativas , Expansión de Repetición de Trinucleótido , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Pueblos del Este de Asia , Cuerpos de Inclusión Intranucleares/patología , Enfermedades Neurodegenerativas/genética , Fenotipo , Proteínas del Tejido Nervioso/genética , Péptidos y Proteínas de Señalización Intercelular/genética
4.
Proc Natl Acad Sci U S A ; 117(20): 10958-10969, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32366656

RESUMEN

Necrotizing enterocolitis (NEC) is an inflammatory bowel necrosis of premature infants and an orphan disease with no specific treatment. Most patients with confirmed NEC develop moderate-severe thrombocytopenia requiring one or more platelet transfusions. Here we used our neonatal murine model of NEC-related thrombocytopenia to investigate mechanisms of platelet depletion associated with this disease [K. Namachivayam, K. MohanKumar, L. Garg, B. A. Torres, A. Maheshwari, Pediatr. Res. 81, 817-824 (2017)]. In this model, enteral administration of immunogen trinitrobenzene sulfonate (TNBS) in 10-d-old mouse pups produces an acute necrotizing ileocolitis resembling human NEC within 24 h, and these mice developed thrombocytopenia at 12 to 15 h. We hypothesized that platelet activation and depletion occur during intestinal injury following exposure to bacterial products translocated across the damaged mucosa. Surprisingly, platelet activation began in our model 3 h after TNBS administration, antedating mucosal injury or endotoxinemia. Platelet activation was triggered by thrombin, which, in turn, was activated by tissue factor released from intestinal macrophages. Compared to adults, neonatal platelets showed enhanced sensitivity to thrombin due to higher expression of several downstream signaling mediators and the deficiency of endogenous thrombin antagonists. The expression of tissue factor in intestinal macrophages was also unique to the neonate. Targeted inhibition of thrombin by a nanomedicine-based approach was protective without increasing interstitial hemorrhages in the inflamed bowel or other organs. In support of these data, we detected increased circulating tissue factor and thrombin-antithrombin complexes in patients with NEC. Our findings show that platelet activation is an important pathophysiological event and a potential therapeutic target in NEC.


Asunto(s)
Enterocolitis Necrotizante/metabolismo , Enterocolitis Necrotizante/patología , Enfermedades del Recién Nacido/metabolismo , Trombina/metabolismo , Animales , Animales Recién Nacidos , Plaquetas/metabolismo , Modelos Animales de Enfermedad , Humanos , Recién Nacido , Inflamación/metabolismo , Enfermedades Intestinales/patología , Intestinos/lesiones , Intestinos/patología , Macrófagos/metabolismo , Ratones , Trombocitopenia/metabolismo
5.
Int J Mol Sci ; 24(11)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37298407

RESUMEN

Peptide-based nanoparticles (PBN) for nucleotide complexation and targeting of extrahepatic diseases are gaining recognition as potent pharmaceutical vehicles for fine-tuned control of protein production (up- and/or down-regulation) and for gene delivery. Herein, we review the principles and mechanisms underpinning self-assembled formation of PBN, cellular uptake, endosomal release, and delivery to extrahepatic disease sites after systemic administration. Selected examples of PBN that have demonstrated recent proof of concept in disease models in vivo are summarized to offer the reader a comparative view of the field and the possibilities for clinical application.


Asunto(s)
Nanopartículas , Péptidos , Péptidos/metabolismo , Técnicas de Transferencia de Gen , Endosomas/metabolismo , ARN Interferente Pequeño/genética
6.
Int J Mol Sci ; 24(8)2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37108494

RESUMEN

Myocardial ischemia reperfusion injury (IRI) in acute coronary syndromes is a condition in which ischemic/hypoxic injury to cells subtended by the occluded vessel continues despite successful resolution of the thrombotic obstruction. For decades, most efforts to attenuate IRI have focused on interdicting singular molecular targets or pathways, but none have successfully transitioned to clinical use. In this work, we investigate a nanoparticle-based therapeutic strategy for profound but local thrombin inhibition that may simultaneously mitigate both thrombosis and inflammatory signaling pathways to limit myocardial IRI. Perfluorocarbon nanoparticles (PFC NP) were covalently coupled with an irreversible thrombin inhibitor, PPACK (Phe[D]-Pro-Arg-Chloromethylketone), and delivered intravenously to animals in a single dose prior to ischemia reperfusion injury. Fluorescent microscopy of tissue sections and 19F magnetic resonance images of whole hearts ex vivo demonstrated abundant delivery of PFC NP to the area at risk. Echocardiography at 24 h after reperfusion demonstrated preserved ventricular structure and improved function. Treatment reduced thrombin deposition, suppressed endothelial activation, inhibited inflammasome signaling pathways, and limited microvascular injury and vascular pruning in infarct border zones. Accordingly, thrombin inhibition with an extraordinarily potent but locally acting agent suggested a critical role for thrombin and a promising therapeutic strategy in cardiac IRI.


Asunto(s)
Infarto del Miocardio , Daño por Reperfusión Miocárdica , Trombosis , Animales , Trombina/uso terapéutico , Infarto del Miocardio/tratamiento farmacológico , Trombosis/tratamiento farmacológico , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Inflamación/tratamiento farmacológico
7.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37047059

RESUMEN

For nearly five decades, cisplatin has played an important role as a standard chemotherapeutic agent and been prescribed to 10-20% of all cancer patients. Although nephrotoxicity associated with platinum-based agents is well recognized, treatment of cisplatin-induced acute kidney injury is mainly supportive and no specific mechanism-based prophylactic approach is available to date. Here, we postulated that systemically delivered rapamycin perfluorocarbon nanoparticles (PFC NP) could reach the injured kidneys at sufficient and sustained concentrations to mitigate cisplatin-induced acute kidney injury and preserve renal function. Using fluorescence microscopic imaging and fluorine magnetic resonance imaging/spectroscopy, we illustrated that rapamycin-loaded PFC NP permeated and were retained in injured kidneys. Histologic evaluation and blood urea nitrogen (BUN) confirmed that renal structure and function were preserved 48 h after cisplatin injury. Similarly, weight loss was slowed down. Using western blotting and immunofluorescence staining, mechanistic studies revealed that rapamycin PFC NP significantly enhanced autophagy in the kidney, reduced the expression of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), as well as decreased the expression of the apoptotic protein Bax, all of which contributed to the suppression of apoptosis that was confirmed with TUNEL staining. In summary, the delivery of an approved agent such as rapamycin in a PFC NP format enhances local delivery and offers a novel mechanism-based prophylactic therapy for cisplatin-induced acute kidney injury.


Asunto(s)
Lesión Renal Aguda , Fluorocarburos , Nanopartículas , Humanos , Cisplatino/farmacología , Sirolimus/farmacología , Sirolimus/uso terapéutico , Fluorocarburos/efectos adversos , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Riñón/metabolismo , Apoptosis
8.
J Hepatol ; 76(5): 1138-1150, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35101526

RESUMEN

BACKGROUND & AIMS: Copper (Cu) is an essential trace element whose serum levels have been reported to act as an effective indicator of the efficacy of radiotherapy. However, little is known about the role of Cu in radiotherapy. In this study we aimed to determine this role and investigate the precise mechanism by which Cu or Cu-related proteins regulate the radiosensitivity of hepatocellular carcinoma (HCC). METHODS: The expression and function of Cu and copper metabolism MURR1 domain 10 (COMMD10) were assessed via a Cu detection assay, immunostaining, real-time PCR, western blot, a radiation clonogenic assay and a 5-ethynyl-2'-deoxyuridine assay. Ferroptosis was determined by detecting glutathione, lipid peroxidation, malondialdehyde and ferrous ion (Fe) levels. The in vivo effects of Cu and COMMD10 were examined with Cu/Cu chelator treatment or lentivirus modification of COMMD10 expression in radiated mouse models. RESULTS: We identified a novel role of Cu in promoting the radioresistance of HCC cells. Ionizing radiation (IR) induced a reduction of COMMD10, which increased intracellular Cu and led to radioresistance of HCC. COMMD10 enhanced ferroptosis and radiosensitivity in vitro and in vivo. Mechanistically, low expression of COMMD10 induced by IR inhibited the ubiquitin degradation of HIF1α (by inducing Cu accumulation) and simultaneously impaired its combination with HIF1α, promoting HIF1α nuclear translocation and the transcription of ceruloplasmin (CP) and SLC7A11, which jointly inhibited ferroptosis in HCC cells. In addition, elevated CP promoted HIF1α expression by reducing Fe, forming a positive feedback loop. CONCLUSIONS: COMMD10 inhibits the HIF1α/CP loop to enhance ferroptosis and radiosensitivity by disrupting Cu-Fe homeostasis in HCC. This work provides new targets and treatment strategies for overcoming radioresistance in HCC. LAY SUMMARY: Radiotherapy benefits patients with unresectable or advanced hepatocellular carcinoma (HCC), but its effectiveness is hampered by radioresistance. Herein, we uncovered a novel role for copper in promoting the radioresistance of HCCs. This work has revealed new targets and potential treatment strategies that could be used to sensitize HCC to radiotherapy.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/radioterapia , Línea Celular Tumoral , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Cobre/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Hierro/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/radioterapia , Ratones , Tolerancia a Radiación/genética
9.
Cancer Immunol Immunother ; 71(2): 399-415, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34181042

RESUMEN

Pulmonary surfactant protein A1 (SFTPA1) is a member of the C-type lectin subfamily that plays a critical role in maintaining lung tissue homeostasis and the innate immune response. SFTPA1 disruption can cause several acute or chronic lung diseases, including lung cancer. However, little research has been performed to associate SFTPA1 with immune cell infiltration and the response to immunotherapy in lung cancer. The findings of our study describe the SFTPA1 expression profile in multiple databases and was validated in BALB/c mice, human tumor tissues, and paired normal tissues using an immunohistochemistry assay. High SFTPA1 mRNA expression was associated with a favorable prognosis through a survival analysis in lung adenocarcinoma (LUAD) samples from TCGA. Further GeneOntology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed that SFTPA1 was involved in the toll-like receptor signaling pathway. An immune infiltration analysis clarified that high SFTPA1 expression was associated with an increased number of M1 macrophages, CD8+ T cells, memory activated CD4+ T cells, regulatory T cells, as well as a reduced number of M2 macrophages. Our clinical data suggest that SFTPA1 may serve as a biomarker for predicting a favorable response to immunotherapy for patients with LUAD. Collectively, our study extends the expression profile and potential regulatory pathways of SFTPA1 and may provide a potential biomarker for establishing novel preventive and therapeutic strategies for lung adenocarcinoma.


Asunto(s)
Adenocarcinoma del Pulmón/patología , Inmunoterapia/métodos , Neoplasias Pulmonares/patología , Linfocitos Infiltrantes de Tumor/inmunología , Proteína A Asociada a Surfactante Pulmonar/metabolismo , Linfocitos T Reguladores/inmunología , Microambiente Tumoral , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Linfocitos T CD8-positivos/inmunología , Proliferación Celular , Biología Computacional , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Pronóstico , Proteína A Asociada a Surfactante Pulmonar/genética , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Mol Ther ; 29(5): 1744-1757, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33545360

RESUMEN

Cardiovascular disease is the leading cause of death and disability worldwide. Effective delivery of cell-selective therapies that target atherosclerotic plaques and neointimal growth while sparing the endothelium remains the Achilles heel of percutaneous interventions. The current study utilizes synthetic microRNA switch therapy that self-assembles to form a compacted, nuclease-resistant nanoparticle <200 nM in size when mixed with cationic amphipathic cell-penetrating peptide (p5RHH). These nanoparticles possess intrinsic endosomolytic activity that requires endosomal acidification. When administered in a femoral artery wire injury mouse model in vivo, the mRNA-p5RHH nanoparticles deliver their payload specifically to the regions of endothelial denudation and not to the lungs, liver, kidney, or spleen. Moreover, repeated administration of nanoparticles containing a microRNA switch, consisting of synthetically modified mRNA encoding for the cyclin-dependent kinase inhibitor p27Kip1 that contains one complementary target sequence of the endothelial cell-specific miR-126 at its 5' UTR, drastically reduced neointima formation after wire injury and allowed for vessel reendothelialization. This cell-selective nanotherapy is a valuable tool that has the potential to advance the fight against neointimal hyperplasia and atherosclerosis.


Asunto(s)
Aterosclerosis/prevención & control , Péptidos de Penetración Celular/administración & dosificación , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/antagonistas & inhibidores , Arteria Femoral/lesiones , MicroARNs/administración & dosificación , Animales , Aterosclerosis/etiología , Péptidos de Penetración Celular/farmacología , Reestenosis Coronaria , Modelos Animales de Enfermedad , Ratones , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Nanopartículas , Tamaño de la Partícula , Biología Sintética
11.
Neurol Sci ; 43(8): 4961-4977, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35389136

RESUMEN

BACKGROUND: Vanishing white matter (VWM) is one of the most prevalent leukoencephalopathies and is caused by recessive mutations in gene eIF2B1-5. The onset may vary from an antenatal disorder that is rapidly fatal to an adult-onset disorder with chronic progressive deterioration. METHODS: Based on a comprehensive study of 14 juvenile/adult patients diagnosed in our department as well as a review of 71 previously reported cases of genetically confirmed juvenile/adult-onset VWM since 2001, we attempted to delineate the clinical symptoms, disease evolution, episodic aggravation, associated symptoms, MRI findings and genotypic characteristics of adult VWM. RESULTS: The onset age of neuropsychiatric symptoms was 23.4 ± 10.6 years, and the mean follow-up time was 8.1 ± 4.8 years. Major clinical symptoms included headache, epilepsy, cognitive decline, cerebellar ataxia, and urinary disturbances. Episodic aggravation was found in 42.9% of the patients in our series. Molecular studies revealed fourteen novel missense mutations. Diffuse abnormal signals characterized by T1-weighted hypointensity and T2-weighted hyperintensity were observed in the supratentorial white matter. CONCLUSIONS: The symmetrical leukoencephalopathy must be considered in patients of any age with premature ovarian failure or optic neuropathy. The VWM disease spectrum consists of characteristic imaging findings in combination with extremely wide variability in VWM patients.


Asunto(s)
Leucoencefalopatías , Sustancia Blanca , Adolescente , Adulto , Niño , China , Factor 2B Eucariótico de Iniciación/genética , Femenino , Humanos , Leucoencefalopatías/diagnóstico por imagen , Leucoencefalopatías/genética , Imagen por Resonancia Magnética , Mutación/genética , Embarazo , Sustancia Blanca/diagnóstico por imagen , Adulto Joven
12.
Metab Brain Dis ; 37(5): 1373-1386, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35386035

RESUMEN

PURPOSE: Sevoflurane is a common used inhaled anesthetic that was reported to regulate the progression of multiple cancers. Here, we aimed to investigate the function and regulatory mechanism underlying sevoflurane in glioma cells. METHODS: A172 and U251 cells were treated with different concentrations of sevoflurane. Colony formation, EdU satining and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), flow cytometry, and transwell assays were performed to evaluate cell proliferation, apoptosis, migration and invasion, respectively. Circ_VCAN, microRNA-146b-5p (miR-146b-5p) and nuclear factor I B (NFIB) expression levels were assessed by real-time quantitative PCR (RT-qPCR) or western blot. Bioinformatics analysis and dual-luciferase reporter assay were applied to evaluate the correlation between miR-146b-5p and circ_VCAN or NFIB. A xenograft glioma mice model was established to verify the effect of sevoflurane on tumor growth in vivo. RESULTS: Sevoflurane (Sev) inhibited proliferation, migration, invasion, and elevated apoptosis of A172 and U251 cells. Sevoflurane treatment inhibited the expression of circ_VCAN and NFIB, but elevated the expression of miR-146b-5p in glioma cells. Overexpression of circ_VCAN alleviated the inhibition effects of sevoflurane on the malignant phenotypes of glioma in vitro and in vivo. Besides, miR-146b-5p is a target of circ_VCAN and negatively regulated NFIB expression. Overexpression of miR-146b-5p partly reversed the effects of circ_VCAN in Sev-treated glioma cells. Furthermore, miR-146b-5p deletion enhanced glioma progression in sevoflurane treated glioma cells by targeting NFIB. Moreover, circ_VCAN could upregulate NFIB expression by sponging miR-146b-5p in Sev-treated glioma cells. CONCLUSION: Sevoflurane alleviated proliferation, migration and invasion, but enhanced apoptosis of glioma cells through regulating circ_VCAN/miR-146b-5p/NFIB axis.


Asunto(s)
Neoplasias Encefálicas , Glioma , MicroARNs , Animales , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Proliferación Celular , Glioma/tratamiento farmacológico , Glioma/metabolismo , Humanos , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Factores de Transcripción NFI/genética , Fenotipo , ARN Circular , Sevoflurano/farmacología , Sevoflurano/uso terapéutico
13.
Sheng Li Xue Bao ; 74(6): 927-938, 2022 Dec 25.
Artículo en Zh | MEDLINE | ID: mdl-36594381

RESUMEN

Chronic psychological stress can promote vascular diseases, such as hypertension and atherosclerosis. This study aims to explore the effects and mechanism of chronic psychological stress on aortic medial calcification (AMC). Rat arterial calcification model was established by nicotine gavage in combination with vitamin D3 (VitD3) intramuscular injection, and rat model of chronic psychological stress was induced by humid environment. Aortic calcification in rats was evaluated by using Alizarin red staining, aortic calcium content detection, and alkaline phosphatase (ALP) activity assay. The expression levels of the related proteins, including vascular smooth muscle cells (VSMCs) contractile phenotype marker SM22α, osteoblast-like phenotype marker RUNX2, and endoplasmic reticulum stress (ERS) markers (GRP78 and CHOP), were determined by Western blot. The results showed that chronic psychological stress alone induced AMC in rats, further aggravated AMC induced by nicotine in combination with VitD3, promoted the osteoblast-like phenotype transformation of VSMCs and aortic ERS activation, and significantly increased the plasma cortisol levels. The 11ß-hydroxylase inhibitor metyrapone effectively reduced chronic psychological stress-induced plasma cortisol levels and ameliorated AMC and aortic ERS in chronic psychological stress model rats. Conversely, the glucocorticoid receptor agonist dexamethasone induced AMC, promoted AMC induced by nicotine combined with VitD3, and further activated aortic ERS. The above effects of dexamethasone could be inhibited by ERS inhibitor 4-phenylbutyrate. These results suggest that chronic psychological stress can lead to the occurrence and development of AMC by promoting glucocorticoid synthesis, which may provide new strategies and targets for the prevention and control of AMC.


Asunto(s)
Glucocorticoides , Calcificación Vascular , Ratas , Animales , Glucocorticoides/efectos adversos , Glucocorticoides/metabolismo , Ratas Sprague-Dawley , Nicotina/efectos adversos , Nicotina/metabolismo , Hidrocortisona/efectos adversos , Hidrocortisona/metabolismo , Músculo Liso Vascular , Dexametasona/efectos adversos , Dexametasona/metabolismo , Calcificación Vascular/inducido químicamente , Calcificación Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Células Cultivadas
14.
Nanomedicine ; 38: 102449, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34303838

RESUMEN

Acute kidney injury (AKI) management remains mainly supportive as no specific therapeutic agents directed at singular signaling pathways have succeeded in clinical trials. Here, we report that inhibition of thrombin-driven clotting and inflammatory signaling with use of locally-acting thrombin-targeted perfluorocarbon nanoparticles (PFC NP) protects renal vasculature and broadly modulates diverse inflammatory processes that cause renal ischemia reperfusion injury. Each PFC NP was complexed with ~13,650 copies of the direct thrombin inhibitor, PPACK (proline-phenylalanine-arginine-chloromethyl-ketone). Mice treated after the onset of AKI with PPACK PFC NP exhibited downregulated VCAM-1, ICAM-1, PGD2 prostanoid, M-CSF, IL-6, and mast cell infiltrates. Microvascular architecture, tubular basement membranes, and brush border components were better preserved. Non-reperfusion was reduced as indicated by reduced red blood cell trapping and non-heme iron. Kidney function and tubular necrosis improved at 24 hours versus the untreated control group, suggesting a benefit for dual inhibition of thrombosis and inflammation by PPACK PFC NP.


Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Lesión Renal Aguda/tratamiento farmacológico , Animales , Coagulación Sanguínea , Riñón/metabolismo , Ratones , Ratones Endogámicos C57BL , Daño por Reperfusión/tratamiento farmacológico , Trombina
15.
J Transl Med ; 18(1): 355, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32948197

RESUMEN

BACKGROUND: Spectrin repeat containing nuclear envelope family member 3 (SYNE3) encodes an essential component of the linker of the cytoskeleton and nucleoskeleton (LINC) complex, namely nesprin-3. In a tumor, invasiveness and metastasis rely on the integrity of the LINC complex, while the role of SYNE3/nesprin-3 in cancer is rarely studied. METHODS: Here, we explored the expression pattern, prognostic value, and related mechanisms of SYNE3 through both experimental and bioinformatic methods. We first detected SYNE3 in BALB/c mice, normal human tissues, and the paired tumor tissues, then used bioinformatics databases to verify our results. We further analyzed the prognostic value of SYNE3. Next, we predicted miRNA targeting SYNE3 and built a competing endogenous RNA (ceRNA) network and a transcriptional network by analyzing data from the cancer genome atlas (TCGA) database. Interacting genes of SYNE3 were predicted, and we further performed GO and KEGG enrichment analysis on these genes. Besides, the relationship between SYNE3 and immune infiltration was also investigated. RESULTS: SYNE3 exhibited various expressions in different tissues, mainly located on nuclear and in cytoplasm sometimes. SYNE3 expression level had prognostic value in tumors, possibly by stabilizing nucleus, promoting tumor cells apoptosis, and altering tumor microenvironment. Additionally, we constructed a RP11-2B6.2-miR-149-5p-/RP11-67L2.2-miR-330-3p-SYNE3 ceRNA network and a SATB1-miR-149-5p-SYNE3 transcriptional network in lung adenocarcinoma to support the tumor-suppressing role of SYNE3. CONCLUSIONS: Our study explored novel anti-tumor functions and mechanisms of SYNE3, which might be useful for future cancer therapy.


Asunto(s)
Neoplasias Pulmonares , MicroARNs , Animales , Biología Computacional , Humanos , Neoplasias Pulmonares/genética , Ratones , Ratones Endogámicos BALB C , Proteínas de Microfilamentos , Pronóstico , Microambiente Tumoral
16.
Acta Pharmacol Sin ; 41(1): 10-21, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31213669

RESUMEN

Neuroinflammation is one of the critical events in neurodegenerative diseases, whereas microglia play an important role in the pathogenesis of neuroinflammation. In this study, we investigated the effects of a natural sesquiterpene lactone, 6-O-angeloylplenolin (6-OAP), isolated from the traditional Chinese medicine Centipeda minima (L.) A.Br., on neuroinflammation and the underlying mechanisms. We showed that treatment with lipopolysaccharide (LPS) caused activation of BV2 and primary microglial cells and development of neuroinflammation in vitro, evidenced by increased production of inflammatory cytokines TNF-α and IL-1ß, the phosphorylation and nuclear translocation of NF-κB, and the transcriptional upregulation of COX-2 and iNOS, leading to increased production of proinflammatory factors NO and PGE2. Moreover, LPS treatment induced oxidative stress through increasing the expression levels of NOX2 and NOX4. Pretreatment with 6-OAP (0.5-4 µM) dose-dependently attenuated LPS-induced NF-κB activation and oxidative stress, thus suppressed neuroinflammation in the cells. In a mouse model of LPS-induced neuroinflammation, 6-OAP (5-20 mg·kg-1·d-1, ip, for 7 days before LPS injection) dose-dependently inhibited the production of inflammatory cytokines, the activation of the NF-κB signaling pathway, and the expression of inflammatory enzymes in brain tissues. 6-OAP pretreatment significantly ameliorated the activation of microglia and astrocytes in the brains. 6-OAP at a high dose caused a much stronger antineuroinflammatory effect than dexamethansone (DEX). Furthermore, we demonstrated that 6-OAP pretreatment could inhibit LPS-induced neurite and synaptic loss in vitro and in vivo. In conclusion, our results demonstrate that 6-OAP exerts antineuroinflammatory effects and can be considered a novel drug candidate for the treatment of neuroinflammatory diseases.


Asunto(s)
Inflamación/tratamiento farmacológico , Lactonas/farmacología , Lipopolisacáridos/antagonistas & inhibidores , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Sesquiterpenos/farmacología , Animales , Asteraceae/química , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Relación Dosis-Respuesta a Droga , Inflamación/inducido químicamente , Inflamación/metabolismo , Lactonas/química , Lactonas/aislamiento & purificación , Lipopolisacáridos/farmacología , Masculino , Medicina Tradicional China , Ratones , Ratones Endogámicos C57BL , Conformación Molecular , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/metabolismo , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/aislamiento & purificación , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/biosíntesis , Oxidación-Reducción , Sesquiterpenos/química , Sesquiterpenos/aislamiento & purificación
17.
BMC Pediatr ; 20(1): 288, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32517812

RESUMEN

BACKGROUND: Secondary hemophagocytic lymphohistiocytosis (HLH) is a rare hyperinflammatory syndrome that requires prompt diagnosis and appropriate treatment. A risk-stratification model that could be used to identify high-risk pediatric patients with HLH who should be considered for second-line therapies, including salvage regimens and allogeneic hematopoietic cell transplantation (HCT), was developed. METHODS: The medical records of 88 pediatric patients (median age 1.4 years, range 0.2-15 years) with non-malignancy associated secondary HLH were retrospectively reviewed. Treatment strategies included dexamethasone, etoposide, and cyclosporine. RESULTS: Survival analysis showed HLH patients with infections other than Epstein-Barr virus (EBV) and unknown causes experienced better 5-year overall survival (OS) than patients with HLH due to autoimmune disease, EBV or immunodeficiency (76% vs. 65, 33.3, 11%, p < 0.001). On multivariate analysis, among all patients, non-response at 8 weeks was the most powerful predictor of poor OS. When treatment response was excluded, hemoglobin < 60 g/L and albumin < 25 g/L at diagnosis were associated with poor OS. In patients with EBV-HLH, hemoglobin < 60 g/L at diagnosis was associated with poor OS. A prognostic risk score was established and weighted based on hazard ratios calculated for three parameters measured at diagnosis: hemoglobin < 60 g/L (2 points), platelets < 30 × 109/L (1 point), albumin < 25 g/L (2 points). Five-year OS of low-risk (score 0-1), intermediate-risk (score 2), and poor-risk (score ≥ 3) patients were 88, 38, and 22%, respectively (p < 0.001). CONCLUSIONS: These findings indicate that clinicians should be aware of predictive factors at diagnosis and consider 8-week treatment response to identify patients with high-risk of disease progression and the need for second-line therapy and allogeneic HCT.


Asunto(s)
COVID-19 , Infecciones por Virus de Epstein-Barr , Linfohistiocitosis Hemofagocítica , Neoplasias , Adolescente , Niño , Preescolar , Herpesvirus Humano 4 , Humanos , Lactante , Linfohistiocitosis Hemofagocítica/diagnóstico , Linfohistiocitosis Hemofagocítica/etiología , Linfohistiocitosis Hemofagocítica/terapia , Pronóstico , Estudios Retrospectivos , SARS-CoV-2 , Síndrome de Respuesta Inflamatoria Sistémica , Resultado del Tratamiento
18.
Ecotoxicol Environ Saf ; 199: 110727, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32446101

RESUMEN

Sulfonamides (SAs) are antibiotics widely used in clinical practice, livestock and poultry production, and the aquaculture industry. The compounds enter the soil environment largely through livestock and poultry manure application to farmland. SAs not only affect plant growth, but also pose a potential threat to human health through SA residues in plant tissues. In particular, sulfamethoxazole (SMZ) has been classified as a Category 3 carcinogen by the World Health Organization, and thus its soil ecological toxicity and possible health risks are of concern. Using A. thaliana as a model plant, stress responses and biological residues of sulfadiazine (SD), sulfametoxydiazine (SMD), and SMZ were investigated in the present study. Root length and aboveground plant biomass were significantly inhibited by the three types of SA, whereas lateral roots exposed to SMD grew vigorously. The contents of chlorophyll a and chlorophyll b and photosystem II maximum photochemical quantum yield declined with increase in drug concentration, which indicated that exposure to SAs affected photosynthesis and inhibited chlorophyll synthesis in A. thaliana. With increase in drug concentration, reactive oxygen species (ROS) accumulation in the leaves increased significantly. Activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) were activated at low SA concentrations, but increased lipid peroxidation occurred with increase in SA concentration. Of the three compounds, SMZ was the most toxic to A. thaliana, followed by SD, and SMD was the least toxic. The results indicated that the risk of SMD entering an organism through the food chain is greater than that for SMZ and SD.


Asunto(s)
Antibacterianos/toxicidad , Arabidopsis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Sulfanilamidas/toxicidad , Antioxidantes/metabolismo , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Clorofila/metabolismo , Clorofila A/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
19.
Br J Cancer ; 121(8): 699-709, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31523056

RESUMEN

BACKGROUND: The Copper Metabolism MURR1 (COMM) domain family has been reported to play important roles in tumorigenesis. As a prototype for the COMMD family, the expression pattern and biological function of COMMD6 in human tumours remain unknown. METHODS: COMMD6 expression in BALB/c mice and human tissues was examined using real-time PCR and immunohistochemistry. Kaplan-Meier analysis was applied to evaluate the prognosis of COMMD6 in tumours. Competing endogenous RNA (ceRNA) and transcriptional regulation network were constructed based on differentially expressed mRNAs, microRNAs and long non-coding RNAs from the cancer genome atlas database. GO and KEGG enrichment analysis were used to explore the bioinformatics implication. RESULTS: COMMD6 expression was widely observed in BALB/c mice and human tissues, which predicted prognosis of cancer patients. Furthermore, we shed light on the underlying tumour promoting role and mechanism of COMMD6 by constructing a TEX41-miR-340-COMMD6 ceRNA network in head and neck squamous cell carcinoma and miR-218-CDX1-COMMD6 transcriptional network in cholangiocarcinoma. In addition, COMMD6 may modulate the ubiquitination and degradation of NF-κB subunits and regulate ribonucleoprotein and spliceosome complex biogenesis in tumours. CONCLUSIONS: This study may help to elucidate the functions and mechanisms of COMMD6 in human tumours, providing a potential biomarker for tumour prevention and therapy.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Neoplasias/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Neoplasias de los Conductos Biliares , Mama/metabolismo , Línea Celular Tumoral , Colangiocarcinoma , Variaciones en el Número de Copia de ADN , Metilación de ADN , Femenino , Tracto Gastrointestinal/metabolismo , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Neoplasias de Cabeza y Cuello , Proteínas de Homeodominio/genética , Humanos , Inmunohistoquímica , Riñón/metabolismo , Hígado/metabolismo , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , MicroARNs/genética , Mutación , FN-kappa B/metabolismo , Neoplasias/metabolismo , Filogenia , Placenta/metabolismo , Embarazo , Pronóstico , ARN Largo no Codificante/genética , ARN Mensajero/metabolismo , Ribonucleoproteínas , Empalmosomas , Carcinoma de Células Escamosas de Cabeza y Cuello , Transcriptoma , Útero/metabolismo
20.
Neurol Sci ; 40(8): 1667-1673, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31030370

RESUMEN

The level of lactate in the blood is associated with obesity, blood pressure, and type 2 diabetes. In addition, lactate is a pro-inflammatory cytokine, which plays an important role in the pathogenesis of cognitive impairment. However, the association between blood lactate, systemic inflammation, and mild cognitive impairment (MCI) has not been investigated. The aim of the study is to explore this association in a Chinese population. This community-based cross-sectional study included 2523 Chinese participants aged 18-88 years. Cognitive function was assessed using the Chinese version of the Mini-Mental State Examination. MCI was defined using education-based cutoffs. The concentration of plasma lactate and serum high-sensitivity C-reactive protein (hs-CRP) was measured using the lactate oxidase method and latex enhanced immunoturbidimetric assay, respectively. Compared with participants without a cognitive impairment, participants with a MCI had an increased concentration of plasma lactate and serum hs-CRP (P < 0.001). As blood lactate increased, the concentration of serum hs-CRP and prevalence of MCI also increased (P < 0.001). Logistic regression analysis showed that plasma lactate (odds ratio (OR) 2.76, 95% confidence interval (CI) 2.21-3.45, P < 0.001) and serum hs-CRP (OR 1.15, 95% CI 1.08-1.24, P < 0.001) were significant risk factors for MCI. The adjusted OR for MCI in participants in the fourth lactate quartile was 3.44 (95% CI 2.02-5.88, P < 0.001) compared with the first quartile. Our results showed that plasma lactate is associated with systemic inflammation and MCI.


Asunto(s)
Disfunción Cognitiva/sangre , Disfunción Cognitiva/inmunología , Inflamación/inmunología , Ácido Láctico/sangre , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Pueblo Asiatico , Proteína C-Reactiva/análisis , Proteína C-Reactiva/metabolismo , Disfunción Cognitiva/epidemiología , Estudios Transversales , Femenino , Humanos , Inflamación/sangre , Inflamación/epidemiología , Masculino , Persona de Mediana Edad , Prevalencia , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA