Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093981

RESUMEN

DNA methyltransferase inhibitor decitabine plus anti-PD-1 (DP) combination therapy was effective in relapsed/refractory classic Hodgkin lymphoma (cHL). However, a subset of patients experienced primary resistance or relapse/progression after DP therapy. In this study, we evaluated the efficacy and safety of a triplet regimen consisting of the histone deacetylase inhibitor chidamide, decitabine and anti-PD-1 camrelizumab (CDP) in 52 patients with relapsed/refractory cHL who had previously received DP therapy (NCT04233294). CDP treatment was well-tolerate and resulted in an objective response rate of 94% (95% CI, 84-99%), with 50% (95% CI, 36-64%) of patients achieving complete response (CR). Notably, all patients who were recalcitrant to previous DP treatment exhibited therapeutic responses following CDP therapy, although their CR rate was lower compared to patients responsive to prior DP. Overall, the median progression-free survival following CDP therapy was 29.4 months. Through single-cell RNA sequencing of pre-treatment and on-treatment cHL tumor biopsies, we observed the heterogeneity of rare malignant Hodgkin Reed/Sternberg (HRS)-like cells. The classical CD30+ HRS-like cells interacted with the abundant immunosuppressive IL21+CD4+ T helper cells, forming a positive feedback loop that supported their survival. In contrast, the CD30- HRS-like cell population showed potential resistance to anti-PD-1 immunotherapy. CDP treatment promoted the activation of diverse tumor-reactive CD8+ T cells and suppressed the proliferation of IL21+CD4+ T cells by inhibiting STAT1/3 signaling, thereby alleviating their immunosuppressive effects. These findings provide insights into the cHL microenvironment that contributes to anti-PD-1 resistance and highlight the therapeutic effectiveness of dual epi-immunotherapy in overcoming immunotherapy resistance.

2.
BMC Biol ; 22(1): 179, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39183278

RESUMEN

BACKGROUND: Cell wall integrity (CWI) is crucial for fungal growth, pathogenesis, and adaptation to extracellular environments. Calcofluor white (CFW) is a cell wall perturbant that inhibits fungal growth, yet little is known about how phytopathogenic fungi respond to the CFW-induced stress. RESULTS: In this study, we unveiled a significant discovery that CFW triggered the translocation of the transcription factor CgCrzA from the cytoplasm to the nucleus in Colletotrichum gloeosporioides. This translocation was regulated by an interacting protein, CgMkk1, a mitogen-activated protein kinase involved in the CWI pathway. Further analysis revealed that CgMkk1 facilitated nuclear translocation by phosphorylating CgCrzA at the Ser280 residue. Using chromatin immunoprecipitation sequencing, we identified two downstream targets of CgCrzA, namely CgCHS5 and CgCHS6, which are critical for growth, cell wall integrity, and pathogenicity as chitin synthase genes. CONCLUSIONS: These findings provide a novel insight into the regulatory mechanism of CgMkk1-CgCrzA-CgChs5/6, which enables response of the cell wall inhibitor CFW and facilitates infectious growth for C. gloeosporioides.


Asunto(s)
Colletotrichum , Proteínas Fúngicas , Factores de Transcripción , Virulencia/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Colletotrichum/genética , Colletotrichum/patogenicidad , Pared Celular/metabolismo , Regulación Fúngica de la Expresión Génica , Fosforilación
3.
J Virol ; 97(5): e0031323, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37097169

RESUMEN

Human cytomegalovirus (HCMV) is a leading cause of congenital birth defects. Though the underlying mechanisms remain poorly characterized, mouse models of congenital CMV infection have demonstrated that the neuronal migration process is damaged. In this study, we evaluated the effects of HCMV infection on connexin 43 (Cx43), a crucial adhesion molecule mediating neuronal migration. We show in multiple cellular models that HCMV infection downregulated Cx43 posttranslationally. Further analysis identified the immediate early protein IE1 as the viral protein responsible for the reduction of Cx43. IE1 was found to bind the Cx43 C terminus and promote Cx43 degradation through the ubiquitin-proteasome pathway. Deletion of the Cx43-binding site in IE1 rendered it incapable of inducing Cx43 degradation. We validated the IE1-induced loss of Cx43 in vivo by introducing IE1 into the fetal mouse brain. Noteworthily, ectopic IE1 expression induced cortical atrophy and neuronal migration defects. Several lines of evidence suggest that these damages result from decreased Cx43, and restoration of Cx43 levels partially rescued IE1-induced interruption of neuronal migration. Taken together, the results of our investigation reveal a novel mechanism of HCMV-induced neural maldevelopment and identify a potential intervention target. IMPORTANCE Congenital CMV (cCMV) infection causes neurological sequelae in newborns. Recent studies of cCMV pathogenesis in animal models reveal ventriculomegaly and cortical atrophy associated with impaired neural progenitor cell (NPC) proliferation and migration. In this study, we investigated the mechanisms underlying these NPC abnormalities. We show that Cx43, a critical adhesion molecule mediating NPC migration, is downregulated by HCMV infection in vitro and HCMV-IE1 in vivo. We provide evidence that IE1 interacts with the C terminus of Cx43 to promote its ubiquitination and consequent degradation through the proteasome. Moreover, we demonstrate that introducing IE1 into mouse fetal brains led to neuronal migration defects, which was associated with Cx43 reduction. Deletion of the Cx43-binding region in IE1 or ectopic expression of Cx43 rescued the IE1-induced migration defects in vivo. Our study provides insight into how cCMV infection impairs neuronal migration and reveals a target for therapeutic interventions.


Asunto(s)
Conexina 43 , Infecciones por Citomegalovirus , Citomegalovirus , Proteínas Inmediatas-Precoces , Animales , Humanos , Recién Nacido , Ratones , Conexina 43/genética , Conexina 43/metabolismo , Citomegalovirus/fisiología , Infecciones por Citomegalovirus/metabolismo , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo
4.
Plant Physiol ; 193(2): 1491-1507, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37315209

RESUMEN

Cold and drought stresses severely limit crop production and can occur simultaneously. Although some transcription factors and hormones have been characterized in plants subjected each stress, the role of metabolites, especially volatiles, in response to cold and drought stress exposure is rarely studied due to lack of suitable models. Here, we established a model for studying the role of volatiles in tea (Camellia sinensis) plants experiencing cold and drought stresses simultaneously. Using this model, we showed that volatiles induced by cold stress promote drought tolerance in tea plants by mediating reactive oxygen species and stomatal conductance. Needle trap microextraction combined with GC-MS identified the volatiles involved in the crosstalk and showed that cold-induced (Z)-3-hexenol improved the drought tolerance of tea plants. In addition, silencing C. sinensis alcohol dehydrogenase 2 (CsADH2) led to reduced (Z)-3-hexenol production and significantly reduced drought tolerance in response to simultaneous cold and drought stress. Transcriptome and metabolite analyses, together with plant hormone comparison and abscisic acid (ABA) biosynthesis pathway inhibition experiments, further confirmed the roles of ABA in (Z)-3-hexenol-induced drought tolerance of tea plants. (Z)-3-Hexenol application and gene silencing results supported the hypothesis that (Z)-3-hexenol plays a role in the integration of cold and drought tolerance by stimulating the dual-function glucosyltransferase UGT85A53, thereby altering ABA homeostasis in tea plants. Overall, we present a model for studying the roles of metabolites in plants under multiple stresses and reveal the roles of volatiles in integrating cold and drought stresses in plants.


Asunto(s)
Camellia sinensis , Respuesta al Choque por Frío , Ácido Abscísico/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Sequías , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Té/metabolismo , Regulación de la Expresión Génica de las Plantas
5.
Pharmacol Res ; 204: 107208, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729587

RESUMEN

Cancer cell line is commonly used for discovery and development of anti-cancer drugs. It is generally considered that drug response remains constant for a certain cell line due to the identity of genetics thus protein patterns. Here, we demonstrated that cancer cells continued dividing even after reaching confluence, in that the proteomics was changed continuously and dramatically with strong relevance to cell division, cell adhesion and cell metabolism, indicating time-dependent intrinsically reprogramming of cells during expansion. Of note, the inhibition effect of most anti-cancer drugs was strikingly attenuated in culture cells along with cell expansion, with the strongest change at the third day when cells were still expanding. Profiling of an FDA-approved drug library revealed that attenuation of response with cell expansion is common for most drugs, an exception was TAK165 that was a selective inhibitor of mitochondrial respiratory chain complex I. Finally, we screened a panel of natural products and identified four pentacyclic triterpenes as selective inhibitors of cancer cells under prolonged growth. Taken together, our findings underscore that caution should be taken in evaluation of anti-cancer drugs using culture cells, and provide agents selectively targeting overgrowth cancer cells.


Asunto(s)
Antineoplásicos , Proliferación Celular , Proteómica , Humanos , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Factores de Tiempo , Productos Biológicos/farmacología , Triterpenos Pentacíclicos/farmacología
6.
Artículo en Inglés | MEDLINE | ID: mdl-38517402

RESUMEN

BACKGROUND: Bone metastasis in advanced cancer is challenging because of pain, functional issues, and reduced life expectancy. Treatment planning is complex, with consideration of factors such as location, symptoms, and prognosis. Prognostic models help guide treatment choices, with Skeletal Oncology Research Group machine-learning algorithms (SORG-MLAs) showing promise in predicting survival for initial spinal metastases and extremity metastases treated with surgery or radiotherapy. Improved therapies extend patient lifespans, increasing the risk of subsequent skeletal-related events (SREs). Patients experiencing subsequent SREs often suffer from disease progression, indicating a deteriorating condition. For these patients, a thorough evaluation, including accurate survival prediction, is essential to determine the most appropriate treatment and avoid aggressive surgical treatment for patients with a poor survival likelihood. Patients experiencing subsequent SREs often suffer from disease progression, indicating a deteriorating condition. However, some variables in the SORG prediction model, such as tumor histology, visceral metastasis, and previous systemic therapies, might remain consistent between initial and subsequent SREs. Given the prognostic difference between patients with and without a subsequent SRE, the efficacy of established prognostic models-originally designed for individuals with an initial SRE-in addressing a subsequent SRE remains uncertain. Therefore, it is crucial to verify the model's utility for subsequent SREs. QUESTION/PURPOSE: We aimed to evaluate the reliability of the SORG-MLAs for survival prediction in patients undergoing surgery or radiotherapy for a subsequent SRE for whom both the initial and subsequent SREs occurred in the spine or extremities. METHODS: We retrospectively included 738 patients who were 20 years or older who received surgery or radiotherapy for initial and subsequent SREs at a tertiary referral center and local hospital in Taiwan between 2010 and 2019. We excluded 74 patients whose initial SRE was in the spine and in whom the subsequent SRE occurred in the extremities and 37 patients whose initial SRE was in the extremities and the subsequent SRE was in the spine. The rationale was that different SORG-MLAs were exclusively designed for patients who had an initial spine metastasis and those who had an initial extremity metastasis, irrespective of whether they experienced metastatic events in other areas (for example, a patient experiencing an extremity SRE before his or her spinal SRE would also be regarded as a candidate for an initial spinal SRE). Because these patients were already validated in previous studies, we excluded them in case we overestimated our result. Five patients with malignant primary bone tumors and 38 patients in whom the metastasis's origin could not be identified were excluded, leaving 584 patients for analysis. The 584 included patients were categorized into two subgroups based on the location of initial and subsequent SREs: the spine group (68% [399]) and extremity group (32% [185]). No patients were lost to follow-up. Patient data at the time they presented with a subsequent SRE were collected, and survival predictions at this timepoint were calculated using the SORG-MLAs. Multiple imputation with the Missforest technique was conducted five times to impute the missing proportions of each predictor. The effectiveness of SORG-MLAs was gauged through several statistical measures, including discrimination (measured by the area under the receiver operating characteristic curve [AUC]), calibration, overall performance (Brier score), and decision curve analysis. Discrimination refers to the model's ability to differentiate between those with the event and those without the event. An AUC ranges from 0.5 to 1.0, with 0.5 indicating the worst discrimination and 1.0 indicating perfect discrimination. An AUC of 0.7 is considered clinically acceptable discrimination. Calibration is the comparison between the frequency of observed events and the predicted probabilities. In an ideal calibration, the observed and predicted survival rates should be congruent. The logarithm of observed-to-expected survival ratio [log(O:E)] offers insight into the model's overall calibration by considering the total number of observed (O) and expected (E) events. The Brier score measures the mean squared difference between the predicted probability of possible outcomes for each individual and the observed outcomes, ranging from 0 to 1, with 0 indicating perfect overall performance and 1 indicating the worst performance. Moreover, the prevalence of the outcome should be considered, so a null-model Brier score was also calculated by assigning a probability equal to the prevalence of the outcome (in this case, the actual survival rate) to each patient. The benefit of the prediction model is determined by comparing its Brier score with that of the null model. If a prediction model's Brier score is lower than the null model's Brier score, the prediction model is deemed as having good performance. A decision curve analysis was performed for models to evaluate the "net benefit," which weighs the true positive rate over the false positive rate against the "threshold probabilities," the ratio of risk over benefit after an intervention was derived based on a comprehensive clinical evaluation and a well-discussed shared-decision process. A good predictive model should yield a higher net benefit than default strategies (treating all patients and treating no patients) across a range of threshold probabilities. RESULTS: For the spine group, the algorithms displayed acceptable AUC results (median AUCs of 0.69 to 0.72) for 42-day, 90-day, and 1-year survival predictions after treatment for a subsequent SRE. In contrast, the extremity group showed median AUCs ranging from 0.65 to 0.73 for the corresponding survival periods. All Brier scores were lower than those of their null model, indicating the SORG-MLAs' good overall performances for both cohorts. The SORG-MLAs yielded a net benefit for both cohorts; however, they overestimated 1-year survival probabilities in patients with a subsequent SRE in the spine, with a median log(O:E) of -0.60 (95% confidence interval -0.77 to -0.42). CONCLUSION: The SORG-MLAs maintain satisfactory discriminatory capacity and offer considerable net benefits through decision curve analysis, indicating their continued viability as prediction tools in this clinical context. However, the algorithms overestimate 1-year survival rates for patients with a subsequent SRE of the spine, warranting consideration of specific patient groups. Clinicians and surgeons should exercise caution when using the SORG-MLAs for survival prediction in these patients and remain aware of potential mispredictions when tailoring treatment plans, with a preference for less invasive treatments. Ultimately, this study emphasizes the importance of enhancing prognostic algorithms and developing innovative tools for patients with subsequent SREs as the life expectancy in patients with bone metastases continues to improve and healthcare providers will encounter these patients more often in daily practice. LEVEL OF EVIDENCE: Level III, prognostic study.

7.
Plant J ; 109(6): 1489-1506, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34931743

RESUMEN

Cold and drought stress are the most critical stresses encountered by crops and occur simultaneously under field conditions. However, it is unclear whether volatiles contribute to both cold and drought tolerance, and if so, by what mechanisms they act. Here, we show that airborne eugenol can be taken up by the tea (Camellia sinensis) plant and metabolized into glycosides, thus enhancing cold and drought tolerance of tea plants. A uridine diphosphate (UDP)-glucosyltransferase, UGT71A59, was discovered, whose expression is strongly induced by multiple abiotic stresses. UGT71A59 specifically catalyzes glucosylation of eugenol glucoside in vitro and in vivo. Suppression of UGT71A59 expression in tea reduced the accumulation of eugenol glucoside, lowered reactive oxygen species (ROS) scavenging capacity, and ultimately impaired cold and drought stress tolerance. Exposure to airborne eugenol triggered a marked increase in UGT71A59 expression, eugenol glucoside accumulation, and cold tolerance by modulating ROS accumulation and CBF1 expression. It also promoted drought tolerance by altering abscisic acid homeostasis and stomatal closure. CBF1 and CBF3 play positive roles in eugenol-induced cold tolerance and CBF2 may be a negative regulator of eugenol-induced cold tolerance in tea plants. These results provide evidence that eugenol functions as a signal in cold and drought tolerance regulation and shed new light on the biological functions of volatiles in the response to multiple abiotic stresses in plants.


Asunto(s)
Camellia sinensis , Camellia sinensis/metabolismo , Frío , Sequías , Eugenol/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico , Té/metabolismo
8.
Plant Biotechnol J ; 20(11): 2089-2106, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35810348

RESUMEN

The tea plant is an economically important woody beverage crop. The unique taste of tea is evoked by certain metabolites, especially catechin esters, whereas their precise formation mechanism in different cell types remains unclear. Here, a fast protoplast isolation method was established and the transcriptional profiles of 16 977 single cells from 1st and 3rd leaves were investigated. We first identified 79 marker genes based on six isolated tissues and constructed a transcriptome atlas, mapped developmental trajectories and further delineated the distribution of different cell types during leaf differentiation and genes associated with cell fate transformation. Interestingly, eight differently expressed genes were found to co-exist at four branch points. Genes involved in the biosynthesis of certain metabolites showed cell- and development-specific characteristics. An unexpected catechin ester glycosyltransferase was characterized for the first time in plants by a gene co-expression network in mesophyll cells. Thus, the first single-cell transcriptional landscape in woody crop leave was reported and a novel metabolism pathway of catechin esters in plants was discovered.


Asunto(s)
Catequina , Catequina/genética , Catequina/metabolismo , Transcriptoma/genética , Regulación de la Expresión Génica de las Plantas/genética , Ésteres/metabolismo , Proteínas de Plantas/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Redes y Vías Metabólicas , Té/genética , Té/metabolismo
9.
J Med Virol ; 94(11): 5492-5506, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35879101

RESUMEN

During the long coevolution of human cytomegalovirus (HCMV) and humans, the host has formed a defense system of multiple layers to eradicate the invader, and the virus has developed various strategies to evade host surveillance programs. The intrinsic immunity primarily orchestrated by promyelocytic leukemia (PML) nuclear bodies (PML-NBs) represents the first line of defense against HCMV infection. Here, we demonstrate that microrchidia family CW-type zinc finger 3 (MORC3), a PML-NBs component, is a restriction factor targeting HCMV infection. We show that depletion of MORC3 through knockdown by RNA interference or knockout by CRISPR-Cas9 augmented immediate-early protein 1 (IE1) gene expression and subsequent viral replication, and overexpressing MORC3 inhibited HCMV replication by suppressing IE1 gene expression. To relief the restriction, HCMV induces transient reduction of MORC3 protein level via the ubiquitin-proteasome pathway during the immediate-early to early stage. However, MORC3 transcription is upregulated, and the protein level recovers in the late stages. Further analyses with temporal-controlled MORC3 expression and the major immediate-early promoter (MIEP)-based reporters show that MORC3 suppresses MIEP activity and consequent IE1 expression with the assistance of PML. Taken together, our data reveal that HCMV enforces temporary loss of MORC3 to evade its repression against the initiation of immediate-early gene expression.


Asunto(s)
Infecciones por Citomegalovirus , Proteínas Inmediatas-Precoces , Adenosina Trifosfatasas/metabolismo , Citomegalovirus/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Proteína de la Leucemia Promielocítica/genética , Proteína de la Leucemia Promielocítica/metabolismo , Replicación Viral
10.
Phytopathology ; 112(4): 820-829, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34689611

RESUMEN

Protein phosphatases play important roles in the regulation of various cellular processes in eukaryotes. The ascomycete Colletotrichum gloeosporioides is a causal agent of anthracnose disease on some important crops and trees. In this study, CgPPZ1, a protein phosphate gene and a homolog of yeast PPZ1, was identified in C. gloeosporioides. Targeted gene deletion showed that CgPpz1 was important for vegetative growth and asexual development, conidial germination, and plant infection. Cytological examinations revealed that CgPpz1 was localized to the cytoplasm. The ΔCgppz1 mutant was hypersensitive to osmotic stresses, cell wall stressors, and oxidative stressors. Taken together, our results indicated that CgPpz1 plays an important role in the fungal development and virulence of C. gloeosporioides and the multiple stress responses generated.


Asunto(s)
Colletotrichum , Proteínas Fúngicas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Enfermedades de las Plantas/microbiología , Plantas , Potasio/metabolismo
11.
Opt Express ; 29(8): 12644-12662, 2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33985018

RESUMEN

A novel statistical model connected with turbulence strength is proposed to describe the attenuation and crosstalk in a vortex-based multi-channel free space optical (FSO) communication system. In this model, self-channel fading and interference between different orbital angular momentum (OAM) modes are characterized by the mixture exponential-generalized-gamma (EGG) distribution, and the analytical relations between turbulence strength and the distribution function's parameters are expressed by piecewise functions. The problems of obtaining parameters of this model are converted into optimization problems, and the algorithms based on the trust trigon algorithm are proposed to achieve more optimized parameters. This model is confirmed to have a good fit with the emulated data of OAM attenuation and crosstalk calculated by the square of the scalar product between the fields of two OAM modes. Furthermore, the application of the statistical model to the OAM-multiplexing FSO system with quadrature-phase-shift-keying modulation is presented, in which the theoretical average bit-error rate results match well with Monte Carlo simulation. This model can be used for FSO system design with OAM for continuous weak turbulence condition.

12.
J Neuroinflammation ; 17(1): 11, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31915018

RESUMEN

BACKGROUND: Emerging evidence indicates that inflammasome-induced inflammation plays a crucial role in the pathogenesis of Parkinson's disease (PD). Several proteins including α-synuclein trigger the activation of NLRP3 inflammasome. However, few studies examined whether inflammasomes are activated in the periphery of PD patients and their possible value in the diagnosis or tracking of the progress of PD. The aim of this study was to determine the association between inflammasome-induced inflammation and clinical features in PD. METHODS: There were a total of 67 participants, including 43 patients with PD and 24 controls, in the study. Participants received a complete evaluation of motor and non-motor symptoms, including Hoehn and Yahr (H-Y) staging scale. Blood samples were collected from all participants. The protein and mRNA expression levels of inflammasomes subtypes and components in peripheral blood mononuclear cells (PBMCs) were determined using western blotting and RT-qPCR. We applied Meso Scale Discovery (MSD) immunoassay to measure the plasma levels of IL-1ß and α-synuclein. RESULTS: We observed increased gene expression of NLRP3, ASC, and caspase-1 in PBMCs, and increased protein levels of NLRP3, caspase-1, and IL-1ß in PD patients. Plasma levels of IL-1ß were significantly higher in patients with PD compared with controls and have a positive correlation with H-Y stage and UPDRS part III scores. Furthermore, plasma α-synuclein levels were also increased in PD patients and have a positive correlation with both UPDRS part III scores and plasma IL-1ß levels. CONCLUSIONS: Our data demonstrated that the NLRP3 inflammasome is activated in the PBMCs from PD patients. The related inflammatory cytokine IL-1ß and total α-synuclein in plasma were increased in PD patients than controls, and both of them presented a positive correlation with motor severity in patients with PD. Furthermore, plasma α-synuclein levels have a positive correlation with IL-1ß levels in PD patients. All these findings suggested that the NLRP3 inflammasome activation-related cytokine IL-1ß and α-synuclein could serve as non-invasive biomarkers to monitor the severity and progression of PD in regard to motor function.


Asunto(s)
Progresión de la Enfermedad , Proteína con Dominio Pirina 3 de la Familia NLR/sangre , Enfermedad de Parkinson/sangre , Enfermedad de Parkinson/diagnóstico , Índice de Severidad de la Enfermedad , alfa-Sinucleína/sangre , Biomarcadores/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad
13.
Virol J ; 17(1): 67, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32398028

RESUMEN

BACKGROUND: Tembusu virus (TMUV), a newly emerging pathogenic flavivirus, spreads rapidly between ducks, causing massive economic losses in the Chinese duck industry. Vaccination is the most effective method to prevent TMUV. Therefore, it is urgent to look for an effective vaccine strategy against TMUV. Heterologous prime-boost regimens priming with vaccines and boosting with recombinant adenovirus vaccines have been proven to be successful strategies for protecting against viruses in experimental animal models. METHODS: In this study, heterologous and homologous prime-boost strategies using an attenuated salmonella vaccine and a recombinant adenovirus vaccine expressing prM-E or the E gene of TMUV were evaluated to protect ducks against TMUV infection for the first time, including priming and boosting with the attenuated salmonella vaccine, priming and boosting with the recombinant adenovirus vaccine, and priming with the attenuated salmonella vaccine and boosting with the recombinant adenovirus vaccine. Humoral and cellular immune responses were detected and evaluated. We then challenged the ducks with TMUV at 12 days after boosting to assay for clinical symptoms, mortality, viral loads and histopathological lesions after these different strategies. RESULTS: Compared with the homologous prime-boost strategies, the heterologous prime-boost regimen produced higher levels of neutralizing antibodies and IgG antibodies against TMUV. Additionally, it could induce higher levels of IFN-γ than homologous prime-boost strategies in the later stage. Interestingly, the heterologous prime-boost strategy induced higher levels of IL-4 in the early stage, but the IL-4 levels gradually decreased and were even lower than those induced by the homologous prime-boost strategy in the later stage. Moreover, the heterologous prime-boost strategy could efficiently protect ducks, with low viral titres, no clinical symptoms and histopathological lesions in this experiment after challenge with TMUV, while slight clinical symptoms and histopathological lesions were observed with the homologous prime-boost strategies. CONCLUSIONS: Our results indicated that the heterologous prime-boost strategy induced higher levels of humoral and cellular immune responses and better protection against TMUV infection in ducks than the homologous prime-boost strategies, suggesting that the heterologous prime-boost strategy is an important candidate for the design of a novel vaccine strategy against TMUV.


Asunto(s)
Anticuerpos Antivirales/sangre , Flavivirus/inmunología , Inmunización Secundaria/métodos , Inmunización Secundaria/veterinaria , Vacunas Virales/inmunología , Adenoviridae , Animales , Anticuerpos Neutralizantes/sangre , Citocinas/inmunología , Patos/inmunología , Inmunidad Celular , Inmunidad Humoral , Salmonella , Vacunas de ADN/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología , Carga Viral , Vacunas Virales/administración & dosificación
14.
Environ Sci Technol ; 53(1): 261-269, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30511837

RESUMEN

A common and long-existing operational issue of wastewater denitrification is the unexpected accumulation of nitrite (NO2-) that could suppress the activity of various microorganisms involved in biological wastewater treatment process and nitrous oxide (N2O) that could emit as a potent greenhouse gas. Recently, it has been confirmed that the accumulation of these denitrification intermediates in biological wastewater treatment process is greatly influenced by the electron competition between the four denitrification steps. However, little is known about this in biofilm systems. In this work, we applied a mathematical model that links carbon oxidation and nitrogen reduction processes through a pool of electron carriers, to assess electron competition in denitrifying biofilms. Simulations were performed comprehensively at seven combinations of electron acceptor addition scheme (i.e., simultaneous addition of one, two or three among nitrate (NO3-), NO2-, and N2O) to compare the effect of electron competition on NO3-, NO2- and N2O reduction. Overall, the effects of substrate loading, biofilm thickness and effective diffusion coefficients on electron competition are not always intuitive. Model simulations show that electron competition was intensified due to the substrate load limitation (from 120 to 20 mg COD/L) and increasing biofilm thicknesses (from 0.1 to 1.6 mm) in most cases, where electrons were prioritized to nitrite reductase because of the insufficient electron donor availability in the biofilm. In contrast, increasing effective diffusion coefficients did not pose a significant effect on electron competition and only increased electrons distributed to nitrite reductase when both NO2- and N2O are added.


Asunto(s)
Desnitrificación , Electrones , Biopelículas , Reactores Biológicos , Nitratos , Nitritos , Óxido Nitroso
15.
Pharmacoepidemiol Drug Saf ; 28(11): 1501-1509, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31397051

RESUMEN

PURPOSE: To explore treatment patterns among patients with prostate cancer and bone metastasis and to compare clinical outcomes following use of different hormone therapies including combined androgen blockade (CAB), nonsteroidal antiandrogen (NSAA) monotherapy, and castration monotherapy. METHODS: We conducted a population-based cohort study using data from the Urban Employee Basic Medical Insurance database (2011-2014) in Beijing. We identified 475 patients with newly diagnosed bone metastatic prostate cancer with at least one prescription for hormone therapy and described their treatment patterns over a median follow-up of 20.7 months. Cox proportional hazards model was used to compare time to chemotherapy initiation between patients starting on different hormone therapies. RESULTS: Hormone therapy and/or bisphosphonate therapy with zoledronic acid were the initial treatments in the majority of patients (87.8%); chemotherapy, radiotherapy, and surgery were usually given later in the treatment pathway. CAB was the most common hormone treatment (73.7%). For time to chemotherapy initiation, hazard ratios (95% confidence intervals) were 2.43 (1.08-5.44) for NSAA alone vs CAB and 1.29 (0.78-2.13) for castration alone vs CAB. CONCLUSIONS: Our findings show that while a wide range of therapies are used to treat patients with prostate cancer and bone metastasis in Beijing, hormone therapy and bisphosphonate therapy are the most commonly prescribed, and use of CAB was seen to be advantageous in delaying time to chemotherapy initiation over NSAA monotherapy. Future studies should explore longer-term treatment patterns, including use of newly approved treatments.


Asunto(s)
Antineoplásicos Hormonales/administración & dosificación , Conservadores de la Densidad Ósea/administración & dosificación , Neoplasias Óseas/terapia , Neoplasias de la Próstata/terapia , Anciano , Anciano de 80 o más Años , Beijing , Neoplasias Óseas/secundario , Estudios de Cohortes , Terapia Combinada , Bases de Datos Factuales , Difosfonatos/administración & dosificación , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Neoplasias de la Próstata/patología
16.
BMC Womens Health ; 19(1): 27, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30717736

RESUMEN

BACKGROUND: Heavy menstrual bleeding (HMB) has been shown to have a profound negative impact on women's quality of life and lead to increases in health care costs; however, data on HMB among Chinese population is still rather limited. The present study therefore aimed to determine the current prevalence and risk factors of subjectively experienced HMB in a community sample of Chinese reproductive-age women, and to evaluate its effect on daily life. METHODS: We conducted a questionnaire survey in 2356 women aged 18-50 years living in Beijing, China, from October 2014-July 2015. A multivariate logistic regression model was used to identify risk factors for HMB. RESULTS: Overall, 429 women experienced HMB, giving a prevalence of 18.2%. Risk factors associated with HMB included uterine fibroids (adjusted odds ratio [OR] =2.12, 95% confidence interval [CI] = 1.42-3.16, P < 0.001) and multiple abortions (≥3) (adjusted OR = 3.44, 95% CI = 1.82-6.49, P < 0.001). Moreover, women in the younger age groups (≤24 and 25-29 years) showed higher risks for HMB, and those who drink regularly were more likely to report heavy periods compared with never drinkers (adjusted OR = 2.78, 95% CI = 1.20-6.46, P = 0.017). In general, women experiencing HMB felt more practical discomforts and limited life activities while only 81 (18.9%) of them had sought health care for their heavy bleeding. CONCLUSIONS: HMB was highly prevalent among Chinese women and those reporting heavy periods suffered from greater menstrual interference with daily lives. More information and health education programs are urgently needed to raise awareness of the consequences of HMB, encourage women to seek medical assistance and thus improve their quality of life.


Asunto(s)
Actividades Cotidianas/psicología , Menorragia/epidemiología , Calidad de Vida/psicología , Adulto , Beijing/epidemiología , Femenino , Humanos , Menorragia/psicología , Persona de Mediana Edad , Prevalencia , Factores de Riesgo , Adulto Joven
18.
Biotechnol Bioeng ; 115(4): 978-988, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29240225

RESUMEN

Hydrogenotrophic denitrification is a novel and sustainable process for nitrogen removal, which utilizes hydrogen as electron donor, and carbon dioxide as carbon source. Recent studies have shown that nitrous oxide (N2 O), a highly undesirable intermediate and potent greenhouse gas, can accumulate during this process. In this work, a new mathematical model is developed to describe nitrogen oxides dynamics, especially N2 O, during hydrogenotrophic denitrification for the first time. The model describes electron competition among the four steps of hydrogenotrophic denitrification through decoupling hydrogen oxidation and nitrogen reduction processes using electron carriers, in contrast to the existing models that couple these two processes and also do not consider N2 O accumulation. The developed model satisfactorily describes experimental data on nitrogen oxides dynamics obtained from two independent hydrogenotrophic denitrifying cultures under various hydrogen and nitrogen oxides supplying conditions, suggesting the validity and applicability of the model. The results indicated that N2 O accumulation would not be intensified under hydrogen limiting conditions, due to the higher electron competition capacity of N2 O reduction in comparison to nitrate and nitrite reduction during hydrogenotrophic denitrification. The model is expected to enhance our understanding of the process during hydrogenotrophic denitrification and the ability to predict N2 O accumulation.


Asunto(s)
Desnitrificación , Electrones , Modelos Teóricos , Óxidos de Nitrógeno/metabolismo , Óxido Nitroso/metabolismo , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Hidrógeno/química , Hidrógeno/metabolismo , Simulación de Dinámica Molecular , Nitratos/química , Nitratos/metabolismo , Nitritos/química , Nitritos/metabolismo , Óxidos de Nitrógeno/química , Óxido Nitroso/química , Oxidación-Reducción , Reproducibilidad de los Resultados
19.
J Neuroinflammation ; 14(1): 256, 2017 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-29262843

RESUMEN

BACKGROUND: Emerging evidence indicates that nod-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome-induced inflammation plays a crucial role in the pathogenesis of Parkinson's disease (PD). Thus, inhibition of NLRP3 inflammasome activation may offer a therapeutic benefit in the treatment of PD. Tenuigenin, a major active component of Polygala tenuifolia, has been shown to have potential anti-inflammatory activity, but the underlying mechanisms remain obscure. METHODS: In the present study, the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD was established to explore the effect of tenuigenin on dopaminergic neurons in substantia nigra. We next activated NLRP3 inflammasome in both BV2 microglia cells and adult mice to investigate the mechanisms for the neuroprotective effect of tenuigenin. RESULTS: We demonstrated that treatment with tenuigenin increased striatal dopaminergic levels and improved motor impairment induced by MPTP. Also, tenuigenin significantly ameliorated the degeneration of dopaminergic neurons and inhibited NLRP3 inflammasome activation in substantia nigra of MPTP mouse model. We further found that tenuigenin reduced intracellular reactive oxygen species (ROS) production and suppressed NLRP3 inflammasome activation, subsequent caspase-1 cleavage, and interleukin-1ß secretion in BV2 microglia cells. These data indicate that tenuigenin inhibits the activation of NLRP3 inflammasome via downregulating ROS. Correspondingly, in vivo data showed that tenuigenin attenuates microglia activation induced by lipopolysaccharide (LPS) in substantia nigra via suppressing NLRP3 inflammasome. CONCLUSIONS: Our findings reveal that tenuigenin protects dopaminergic neurons from inflammation partly through inhibition of NLRP3 inflammasome activation in microglia, and suggest the promising clinical use of tenuigenin for PD therapy.


Asunto(s)
Neuronas Dopaminérgicas/efectos de los fármacos , Medicamentos Herbarios Chinos/uso terapéutico , Intoxicación por MPTP/tratamiento farmacológico , Microglía/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Adenosina Trifosfato/farmacología , Animales , Línea Celular Transformada , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/química , Conducta Exploratoria/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/etiología , Interleucina-1beta/metabolismo , Lipopolisacáridos/toxicidad , Intoxicación por MPTP/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Actividad Motora/efectos de los fármacos , Fármacos Neuroprotectores/química , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo
20.
Small ; 13(21)2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28464498

RESUMEN

Photodynamic therapy (PDT) based on photosensitizers (PSs) constructed with nanomaterials has become popular in cancer treatment, especially oral carcinoma cell. This therapy is characterized by improved PS accumulation in tumor regions and generation of reactive oxygen species (ROS) for PDT under specific excitation. In the selection of near-infrared (NIR) window, 808 nm NIR light because it can avoid the absorption of water is particularly suitable for the application in PDT. Hence, multiband emissions under a single 808 nm near-infrared excitation of Nd3+ -sensitized upconversion nanoparticles (808 nm UCNPs) have been applied for the PDT effect. 808 nm UCNPs serve as light converter to emit UV light to excite inorganic PS, graphitic carbon nitride quantum dots (CNQDs), thereby generating ROS. In this study, a nanocomposite consisting UCNPs conjugated with poly-l-lysine (PLL) to improve binding with CNQDs is fabricated. According to the research results, NIR-triggered nanocomposites of 808 nm UCNP-PLL@CNs have been verified by significant improvement in ROS generation. Consequently, 808 nm UCNP-PLL@CNs exhibit high capability for ROS production and efficient PDT in vitro and in vivo. Moreover, the mechanism of PDT treatment by 808 nm UCNP-PLL@CNs is evaluated using the cell apoptosis pathway.


Asunto(s)
Nanocompuestos/química , Fotoquimioterapia/métodos , ADN/química , Humanos , Rayos Infrarrojos , Nanopartículas/química , Fármacos Fotosensibilizantes/química , Espectrometría Raman
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA