Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Cell ; 84(9): 1667-1683.e10, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38599210

RESUMEN

The nucleus is composed of functionally distinct membraneless compartments that undergo phase separation (PS). However, whether different subnuclear compartments are connected remains elusive. We identified a type of nuclear body with PS features composed of BAZ2A that associates with active chromatin. BAZ2A bodies depend on RNA transcription and BAZ2A non-disordered RNA-binding TAM domain. Although BAZ2A and H3K27me3 occupancies anticorrelate in the linear genome, in the nuclear space, BAZ2A bodies contact H3K27me3 bodies. BAZ2A-body disruption promotes BAZ2A invasion into H3K27me3 domains, causing H3K27me3-body loss and gene upregulation. Weak BAZ2A-RNA interactions, such as with nascent transcripts, promote BAZ2A bodies, whereas the strong binder long non-coding RNA (lncRNA) Malat1 impairs them while mediating BAZ2A association to chromatin at nuclear speckles. In addition to unraveling a direct connection between nuclear active and repressive compartments through PS mechanisms, the results also showed that the strength of RNA-protein interactions regulates this process, contributing to nuclear organization and the regulation of chromatin and gene expression.


Asunto(s)
Cromatina , Histonas , ARN Largo no Codificante , Cromatina/metabolismo , Cromatina/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Humanos , Histonas/metabolismo , Histonas/genética , Núcleo Celular/metabolismo , Núcleo Celular/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Células HeLa , Transcripción Genética , ARN/metabolismo , ARN/genética , Animales , Regulación de la Expresión Génica
2.
Nature ; 626(8001): 1073-1083, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38355792

RESUMEN

Human cellular models of neurodegeneration require reproducibility and longevity, which is necessary for simulating age-dependent diseases. Such systems are particularly needed for TDP-43 proteinopathies1, which involve human-specific mechanisms2-5 that cannot be directly studied in animal models. Here, to explore the emergence and consequences of TDP-43 pathologies, we generated induced pluripotent stem cell-derived, colony morphology neural stem cells (iCoMoNSCs) via manual selection of neural precursors6. Single-cell transcriptomics and comparison to independent neural stem cells7 showed that iCoMoNSCs are uniquely homogenous and self-renewing. Differentiated iCoMoNSCs formed a self-organized multicellular system consisting of synaptically connected and electrophysiologically active neurons, which matured into long-lived functional networks (which we designate iNets). Neuronal and glial maturation in iNets was similar to that of cortical organoids8. Overexpression of wild-type TDP-43 in a minority of neurons within iNets led to progressive fragmentation and aggregation of the protein, resulting in a partial loss of function and neurotoxicity. Single-cell transcriptomics revealed a novel set of misregulated RNA targets in TDP-43-overexpressing neurons and in patients with TDP-43 proteinopathies exhibiting a loss of nuclear TDP-43. The strongest misregulated target encoded the synaptic protein NPTX2, the levels of which are controlled by TDP-43 binding on its 3' untranslated region. When NPTX2 was overexpressed in iNets, it exhibited neurotoxicity, whereas correcting NPTX2 misregulation partially rescued neurons from TDP-43-induced neurodegeneration. Notably, NPTX2 was consistently misaccumulated in neurons from patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration with TDP-43 pathology. Our work directly links TDP-43 misregulation and NPTX2 accumulation, thereby revealing a TDP-43-dependent pathway of neurotoxicity.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína C-Reactiva , Proteínas de Unión al ADN , Degeneración Lobar Frontotemporal , Red Nerviosa , Proteínas del Tejido Nervioso , Neuronas , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Proteína C-Reactiva/metabolismo , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/metabolismo , Degeneración Lobar Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/patología , Red Nerviosa/metabolismo , Red Nerviosa/patología , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Neuroglía/citología , Neuronas/citología , Neuronas/metabolismo , Reproducibilidad de los Resultados
3.
EMBO Rep ; 25(3): 1453-1468, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38332149

RESUMEN

Pluripotency is established in E4.5 preimplantation epiblast. Embryonic stem cells (ESCs) represent the immortalization of pluripotency, however, their gene expression signature only partially resembles that of developmental ground-state. Induced PRAMEL7 expression, a protein highly expressed in the ICM but lowly expressed in ESCs, reprograms developmentally advanced ESC+serum into ground-state pluripotency by inducing a gene expression signature close to developmental ground-state. However, how PRAMEL7 reprograms gene expression remains elusive. Here we show that PRAMEL7 associates with Cullin2 (CUL2) and this interaction is required to establish ground-state gene expression. PRAMEL7 recruits CUL2 to chromatin and targets regulators of repressive chromatin, including the NuRD complex, for proteasomal degradation. PRAMEL7 antagonizes NuRD-mediated repression of genes implicated in pluripotency by decreasing NuRD stability and promoter association in a CUL2-dependent manner. Our data link proteasome degradation pathways to ground-state gene expression, offering insights to generate in vitro models to reproduce the in vivo ground-state pluripotency.


Asunto(s)
Células Madre Pluripotentes , Células Madre Pluripotentes/metabolismo , Células Madre Embrionarias/metabolismo , Transcriptoma , Cromatina/metabolismo , Diferenciación Celular/genética
4.
BMC Complement Altern Med ; 18(1): 22, 2018 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-29357859

RESUMEN

BACKGROUND: Numerous health benefits have been attributed to the Ginkgo biloba leaf extract (GBLE), one of the most extensively used phytopharmaceutical drugs worldwide. Recently, concerns of the safety of the extract have been raised after a report from US National Toxicology Program (NTP) claimed high doses of GBLE increased liver and thyroid cancer incidence in mice and rats. A safety study has been designed to assess, in a population of elderly residents in nursing homes, clinical and genomic risks associated to GBLE treatment. METHODS: GiBiEx is a multicentre randomized clinical trial, placebo controlled, double blinded, which compared subjects randomized to twice-daily doses of either 120-mg of IDN 5933 (also known as Ginkgoselect®Plus) or to placebo for a 6-months period. IDN 5933 is extracted from dried leaves and contains 24.3% flavone glycosides and 6.1% of terpene lactones (2.9% bilobalide, 1.38% ginkgolide A, 0.66% ginkgolide B, 1.12% ginkgolide C) as determined by HPLC. The study was completed by 47 subjects, 20 in the placebo group and 27 in the treatment group. Clinical (adverse clinical effect and liver injury) and genomic (micronucleus frequency, comet assay, c-myc, p53, and ctnnb1 expression profile in lymphocytes) endpoints were assessed at the start and at the end of the study. RESULTS: No adverse clinical effects or increase of liver injury markers were reported in the treatment group. The frequency of micronuclei [Mean Ratio (MR) = 1.01, 95% Confidence Intervals (95% CI) 0.86-1.18), and DNA breaks (comet assay) (MR = 0.91; 95% CI 0.58-1.43), did not differ in the two study groups. No significant difference was found in the expression profile of the three genes investigated. CONCLUSIONS: None of the markers investigated revealed a higher risk in the treatment group, supporting the safety of IDN 5933 at doses prescribed and for duration of six months. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03004508 , December 20, 2016. Trial retrospectively registered.


Asunto(s)
Daño del ADN/efectos de los fármacos , Ginkgo biloba/química , Extractos Vegetales , Hojas de la Planta/química , Anciano , Anciano de 80 o más Años , Femenino , Genoma/efectos de los fármacos , Humanos , Hígado/efectos de los fármacos , Pruebas de Función Hepática , Masculino , Pruebas de Micronúcleos , Extractos Vegetales/administración & dosificación , Extractos Vegetales/efectos adversos , Extractos Vegetales/farmacología
5.
Nat Commun ; 13(1): 1483, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35304483

RESUMEN

Eukaryotic chromosomes are folded into hierarchical domains, forming functional compartments. Nuclear periphery and nucleolus are two nuclear landmarks contributing to repressive chromosome architecture. However, while the role of nuclear lamina (NL) in genome organization has been well documented, the function of the nucleolus remains under-investigated due to the lack of methods for the identification of nucleolar associated domains (NADs). Here we have established DamID- and HiC-based methodologies to generate accurate genome-wide maps of NADs in embryonic stem cells (ESCs) and neural progenitor cells (NPCs), revealing layers of genome compartmentalization with distinct, repressive chromatin states based on the interaction with the nucleolus, NL, or both. NADs show higher H3K9me2 and lower H3K27me3 content than regions exclusively interacting with NL. Upon ESC differentiation into NPCs, chromosomes around the nucleolus acquire a more compact, rigid architecture with neural genes moving away from nucleoli and becoming unlocked for later activation. Further, histone modifications and the interaction strength within A and B compartments of NADs and LADs in ESCs set the choice to associate with NL or nucleoli upon dissociation from their respective compartments during differentiation. The methodologies here developed will make possible to include the nucleolar contribution in nuclear space and genome function in diverse biological systems.


Asunto(s)
Nucléolo Celular , Cromatina , Nucléolo Celular/genética , Núcleo Celular/genética , Cromatina/genética , Mapeo Cromosómico , Lámina Nuclear
6.
Nucleus ; 13(1): 277-299, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36447428

RESUMEN

Nucleus, chromatin, and chromosome organization studies heavily rely on fluorescence microscopy imaging to elucidate the distribution and abundance of structural and regulatory components. Three-dimensional (3D) image stacks are a source of quantitative data on signal intensity level and distribution and on the type and shape of distribution patterns in space. Their analysis can lead to novel insights that are otherwise missed in qualitative-only analyses. Quantitative image analysis requires specific software and workflows for image rendering, processing, segmentation, setting measurement points and reference frames and exporting target data before further numerical processing and plotting. These tasks often call for the development of customized computational scripts and require an expertise that is not broadly available to the community of experimental biologists. Yet, the increasing accessibility of high- and super-resolution imaging methods fuels the demand for user-friendly image analysis workflows. Here, we provide a compendium of strategies developed by participants of a training school from the COST action INDEPTH to analyze the spatial distribution of nuclear and chromosomal signals from 3D image stacks, acquired by diffraction-limited confocal microscopy and super-resolution microscopy methods (SIM and STED). While the examples make use of one specific commercial software package, the workflows can easily be adapted to concurrent commercial and open-source software. The aim is to encourage biologists lacking custom-script-based expertise to venture into quantitative image analysis and to better exploit the discovery potential of their images.Abbreviations: 3D FISH: three-dimensional fluorescence in situ hybridization; 3D: three-dimensional; ASY1: ASYNAPTIC 1; CC: chromocenters; CO: Crossover; DAPI: 4',6-diamidino-2-phenylindole; DMC1: DNA MEIOTIC RECOMBINASE 1; DSB: Double-Strand Break; FISH: fluorescence in situ hybridization; GFP: GREEN FLUORESCENT PROTEIN; HEI10: HUMAN ENHANCER OF INVASION 10; NCO: Non-Crossover; NE: Nuclear Envelope; Oligo-FISH: oligonucleotide fluorescence in situ hybridization; RNPII: RNA Polymerase II; SC: Synaptonemal Complex; SIM: structured illumination microscopy; ZMM (ZIP: MSH4: MSH5 and MER3 proteins); ZYP1: ZIPPER-LIKE PROTEIN 1.


Asunto(s)
Núcleo Celular , Cromatina , Humanos , Flujo de Trabajo , Hibridación Fluorescente in Situ , Microscopía Fluorescente , Proteínas Fluorescentes Verdes
7.
Int J Radiat Biol ; 95(3): 368-377, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30513241

RESUMEN

PURPOSE: We characterized the response to the extremely low frequency magnetic field (ELF-MF) in an in vitro model of familial Amyotrophic Lateral Sclerosis (fALS), carrying two mutant variants of the superoxide dismutase 1 (SOD1) gene. MATERIALS AND METHODS: SH-SY5Y human neuroblastoma cells, stably over-expressing the wild type, the G93A or the H46R mutant SOD1 cDNA, were exposed to either the ELF-MF (50 Hz, 1 mT) or the sham control field, up to 72 h. Analysis of (i) viability, proliferation and apoptosis, (ii) reactive oxygen species generation, and (iii) assessment of the iron metabolism, were carried out in all clones in response to the MF exposure. RESULTS: We report that 50-Hz MF exposure induces: (i) no change in proliferation and viability; (ii) no modulation of the intracellular superoxide and H2O2 levels; (iii) a significant deregulation in the expression of iron-related genes IRP1, MFRN1 and TfR1, this evidence being exclusive for the SOD1G93A clone and associated with a slight (p = .0512) difference in the total iron content. CONCLUSIONS: 50-Hz MF affects iron homeostasis in the in vitro SOD1G93A ALS model.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Regulación de la Expresión Génica , Hierro/metabolismo , Campos Magnéticos , Mutación , Superóxido Dismutasa-1/genética , Esclerosis Amiotrófica Lateral/patología , Línea Celular Tumoral , Supervivencia Celular , Humanos , Espacio Intracelular/metabolismo
8.
Mol Neurobiol ; 55(7): 5698-5714, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29039021

RESUMEN

The exposure to extremely low-frequency magnetic fields (ELF-MFs) has been associated to increased risk of neurodegenerative diseases, although the underlying molecular mechanisms are still undefined. Since epigenetic modulation has been recently encountered among the key events leading to neuronal degeneration, we here aimed at assessing if the control of gene expression mediated by miRNAs, namely miRs-34, has any roles in driving neuronal cell response to 50-Hz (1 mT) magnetic field in vitro. We demonstrate that ELF-MFs drive an early reduction of the expression level of miR-34b and miR-34c in SH-SY5Y human neuroblastoma cells, as well as in mouse primary cortical neurons, by affecting the transcription of the common pri-miR-34. This modulation is not p53 dependent, but attributable to the hyper-methylation of the CpG island mapping within the miR-34b/c promoter. Incubation with N-acetyl-l-cysteine or glutathione ethyl-ester fails to restore miR-34b/c expression, suggesting that miRs-34 are not responsive to ELF-MF-induced oxidative stress. By contrast, we show that miRs-34 control reactive oxygen species production and affect mitochondrial oxidative stress triggered by ELF-MFs, likely by modulating mitochondria-related miR-34 targets identified by in silico analysis. We finally demonstrate that ELF-MFs alter the expression of the α-synuclein, which is specifically stimulated upon ELF-MFs exposure via both direct miR-34 targeting and oxidative stress. Altogether, our data highlight the potential of the ELF-MFs to tune redox homeostasis and epigenetic control of gene expression in vitro and shed light on the possible mechanism(s) producing detrimental effects and predisposing neurons to degeneration.


Asunto(s)
Epigénesis Genética , Campos Magnéticos , MicroARNs/genética , Neuronas/metabolismo , Animales , Secuencia de Bases , Línea Celular Tumoral , Corteza Cerebral/citología , Metilación de ADN/genética , Humanos , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Mitocondrias/metabolismo , Modelos Biológicos , Oxidación-Reducción , Estrés Oxidativo/genética , Regiones Promotoras Genéticas/genética , Transcripción Genética , Proteína p53 Supresora de Tumor/metabolismo , alfa-Sinucleína/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA