Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

País de afiliación
Intervalo de año de publicación
1.
J Infect Dis ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38736232

RESUMEN

BACKGROUND: The extent to which infections may have been undetected in an epicenter of the 2022 mpox outbreak is unknown. METHODS: A serosurvey (July and August 2022) assessed the seroprevalence and correlates of mpox infection among a diverse sample of asymptomatic patients with no prior mpox diagnoses and no known histories of smallpox or mpox vaccination. We present seropositivity stratified by participant characteristics collected via survey. RESULTS: Two-thirds of 419 participants were cismen (281 of 419), of whom 59.1% (166 of 281) reported sex with men (MSM). The sample also included 109 ciswomen and 28 transgender/gender nonconforming/nonbinary individuals. Overall seroprevalence was 6.4% (95% confidence interval [CI], 4.1%-8.8%); 3.7% among ciswomen (95% CI, 1.0%-9.1%), 7.0% among cismen with only ciswomen partners (95% CI, 2.0%-11.9%), and 7.8% among MSM (95% CI, 3.7%-11.9%). There was little variation in seroprevalence by race/ethnicity, age group, HIV status, or number of recent sex partners. No participants who reported close contact with mpox cases were seropositive. Among participants without recent mpox-like symptoms, 6.3% were seropositive (95% CI, 3.6%-9.0%). CONCLUSIONS: Approximately 1 in 15 vaccine-naive people in our study had antibodies to mpox during the height of the NYC outbreak, indicating the presence of asymptomatic infections that could contribute to ongoing transmission.

2.
Clin Infect Dis ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38567460

RESUMEN

BACKGROUND: After months of few mpox cases, an increased number of cases were reported in Chicago during May 2023; predominantly among fully vaccinated patients. We investigated the outbreak scope, differences between vaccinated and unvaccinated patients, and hypotheses for monkeypox virus (MPXV) infection after vaccination. METHODS: We interviewed patients and reviewed medical records to assess demographic, behavioral, and clinical characteristics, mpox vaccine status, and vaccine administration routes. We evaluated serum antibody levels after infection and compared patient viral genomes with MPXV sequences in available databases. We discussed potential vaccine compromise with partners who manufactured, handled, and administered vaccine associated with breakthrough infections. RESULTS: During March 18-June 27, 2023, we identified 49 mpox cases; 57% of these mpox patients were fully vaccinated (FV). FV patients received both JYNNEOS doses subcutaneously (57%), intradermally (7%), or via heterologous administration (36%). FV patients had more median sex partners (3, IQR=1-4) versus not fully vaccinated (NFV) patients (1, IQR=1-2). Thirty-six of 37 sequenced specimens belonged to lineage B.1.20 of clade IIb MPXV, which did not demonstrate any amino acid changes relative to B.1, the predominant lineage from May 2022. Vaccinated patients demonstrated expected humoral antibody responses; none were hospitalized. No vaccine storage excursions were identified. Approximately 63% of people at risk for mpox in Chicago were FV during this period. CONCLUSIONS: Our investigation indicated cases were likely due to frequent behaviors associated with mpox transmission, even with relatively high vaccine effectiveness and vaccine coverage. Cases after vaccination might occur in similar populations.

3.
Preprint en Inglés | PREPRINT-MEDRXIV | ID: ppmedrxiv-21249690

RESUMEN

The emergence and rapid worldwide spread of SARS-CoV-2 has accelerated research and development for controlling the pandemic. A multi-coronavirus protein microarray was created containing full-length proteins, overlapping protein fragments of varying lengths and peptide libraries from SARS-CoV-2 and four other human coronaviruses. Sera from confirmed COVID-19 patients as well as unexposed individuals were applied to multi-coronavirus arrays to identify specific antibody reactivity. High level IgG, IgM and IgA reactivity to structural proteins S, M and N, as well as accessory proteins, of SARS-CoV-2 were observed that was specific to COVID-19 patients. Overlapping 100, 50 and 30 amino acid fragments of SARS-CoV-2 proteins identified antigenic regions. Numerous proteins of SARS-CoV, MERS-CoV and the endemic human coronaviruses, HCoV-NL63 and HCoV-OC43 were also more reactive with IgG, IgM and IgA in COVID-19 patient sera than in unexposed control sera, providing further evidence of immunologic cross-reactivity between these viruses. The multi-coronavirus protein microarray is a useful tool for mapping antibody reactivity in COVID-19 patients.

4.
Preprint en Inglés | PREPRINT-MEDRXIV | ID: ppmedrxiv-20195446

RESUMEN

SARS-CoV-2 emerged in late 2019 and has since spread around the world, causing a pandemic of the respiratory disease COVID-19. Detecting antibodies against the virus is an essential tool for tracking infections and developing vaccines. Such tests, primarily utilizing the enzyme-linked immunosorbent assay (ELISA) principle, can be either qualitative (reporting positive/negative results) or quantitative (reporting a value representing the quantity of specific antibodies). Quantitation is vital for determining stability or decline of antibody titers in convalescence, efficacy of different vaccination regimens, and detection of asymptomatic infections. Quantitation typically requires two-step ELISA testing, in which samples are first screened in a qualitative assay and positive samples are subsequently analyzed as a dilution series. To overcome the throughput limitations of this approach, we developed a simpler and faster system that is highly automatable and achieves quantitation in a single-dilution screening format with sensitivity and specificity comparable to those of ELISA.

5.
Preprint en Inglés | PREPRINT-MEDRXIV | ID: ppmedrxiv-21266812

RESUMEN

Previous vaccine efficacy (VE) studies have estimated neutralizing and binding antibody concentrations that correlate with protection from symptomatic infection; how these estimates compare to those generated in response to SARS-CoV-2 infection is unclear. Here, we assessed quantitative neutralizing and binding antibody concentrations using standardized SARS-CoV-2 assays on 3,067 serum specimens collected during July 27, 2020-August 27, 2020 from COVID-19 unvaccinated persons with detectable anti-SARS-CoV-2 antibodies using qualitative antibody assays. Quantitative neutralizing and binding antibody concentrations were strongly positively correlated (r=0.76, p<0.0001) and were noted to be several fold lower in the unvaccinated study population as compared to published data on concentrations noted 28 days post-vaccination. In this convenience sample, [~]88% of neutralizing and [~]63-86% of binding antibody concentrations met or exceeded concentrations associated with 70% COVID-19 VE against symptomatic infection from published VE studies; [~]30% of neutralizing and 1-14% of binding antibody concentrations met or exceeded concentrations associated with 90% COVID-19 VE. These data support observations of infection-induced immunity and current recommendations for vaccination post infection to maximize protection against symptomatic COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA