Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell Commun Signal ; 22(1): 151, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38408981

RESUMEN

BACKGROUND: Coenzyme Q0 (CoQ0), a novel quinone derivative of Antrodia camphorata, has been utilized as a therapeutic agent (including antioxidant, anti-inflammatory, antiangiogenic, antiatherosclerotic, and anticancer agents); however, its depigmenting efficiency has yet to be studied. METHODS: We resolved the depigmenting efficiency of CoQ0 through autophagy induction in melanoma (B16F10) and melanin-feeding keratinocyte (HaCaT) cells and in vivo Zebrafish model. Then, MPLC/HPLC analysis, MTT assay, Western blotting, immunofluorescence staining, LC3 transfection, melanin formation, GFP-LC3 puncta, AVO formation, tyrosinase activity, and TEM were used. RESULTS: CoQ0-induced autophagy in B16F10 cells was shown by enhanced LC3-II accumulation, ATG7 expression, autophagosome GFP-LC3 puncta, and AVOs formation, and ATG4B downregulation, and Beclin-1/Bcl-2 dysregulation. In α-MSH-stimulated B16F10 cells, CoQ0 induced antimelanogenesis by suppressing CREB-MITF pathway, tyrosinase expression/activity, and melanin formation via autophagy. TEM data disclosed that CoQ0 increased melanosome-engulfing autophagosomes and autolysosomes in α-MSH-stimulated B16F10 cells. CoQ0-inhibited melanogenesis in α-MSH-stimulated B16F10 cells was reversed by pretreatment with the autophagy inhibitor 3-MA or silencing of LC3. Additionally, CoQ0-induced autophagy in HaCaT cells was revealed by enhanced LC3-II accumulation, autophagosome GFP-LC3 puncta and AVO formation, ATG4B downregulation, ATG5/ATG7 expression, and Beclin-1/Bcl-2 dysregulation. In melanin-feeding HaCaT cells, CoQ0 induced melanin degradation by suppressing melanosome gp100 and melanin formation via autophagy. TEM confirmed that CoQ0 increased melanosome-engulfing autophagosomes and autolysosomes in melanin-feeding HaCaT cells. Treatment with 3-MA reversed CoQ0-mediated melanin degradation in melanin-feeding HaCaT cells. In vivo study showed that CoQ0 suppressed endogenous body pigmentation by antimelanogenesis and melanin degradation through autophagy induction in a zebrafish model. CONCLUSIONS: Our results showed that CoQ0 exerted antimelanogenesis and melanin degradation by inducing autophagy. CoQ0 could be used in skin-whitening formulations as a topical cosmetic application.


Asunto(s)
Benzoquinonas , Melaninas , Polyporales , Ubiquinona , Animales , Humanos , Ubiquinona/farmacología , Ubiquinona/metabolismo , Melaninas/metabolismo , Pez Cebra/metabolismo , Monofenol Monooxigenasa/metabolismo , alfa-MSH/metabolismo , Beclina-1/metabolismo , Melanocitos/metabolismo , Queratinocitos/metabolismo , Autofagia , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Línea Celular Tumoral
2.
Environ Toxicol ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39056589

RESUMEN

Naringin, a bioflavonoid compound from grapefruit or citrus, exerts anticancer activities on cervical, thyroid, colon, brain, liver, lung, thyroid, and breast cancers. The present investigation addressed exploring the anticancer effects of naringin on nasopharyngeal carcinoma (NPC) cells. Naringin exhibits a cytotoxic effect on NPC-TW 039 and NPC-TW 076 cells with IC50 372/328 and 394/307 µM for 24 or 48 h, respectively, while causing little toxicity toward normal gingival epithelial (SG) cells (>500/500 µM). We established that naringin triggered G1 arrest is achieved by suppressing cyclin D1, cyclin A, and CDK2, and upregulating p21 protein in NPC cells. Exposure of NPC cells to naringin caused a series of events leading to apoptosis including morphology change (cell shrinkage and membrane blebbing) and chromatin condensation. Annexin V and PI staining indicated that naringin treatment promotes necrosis and late apoptosis in NPC cells. DiOC6 staining showed a decline in the mitochondrial membrane potential by naringin treatment, which was followed with cytochrome c release, Apaf-1/caspase-9/-3 activation, PARP cleavage, and EndoG expression in NPC cells. Naringin upregulated proapoptotic Bax and decreased antiapoptotic Bcl-xL expression, and dysregulated Bax/Bcl-xL ratio in NPC cells. Notably, naringin enhanced death receptor-related t-Bid expression. Furthermore, an increased Ca2+ release by naringin treatment which instigated endoplasmic reticulum stress-associated apoptosis through increased IRE1, ATF-6, GRP78, GADD153, and caspase-12 expression in NPC cells. In addition, naringin triggers ROS production, and inhibition of naringin-induced ROS generation by antioxidant N-acetylcysteine resulted in the prevention of G1 arrest and apoptosis in NPC cells. Naringin-induced ROS-mediated G1 arrest and mitochondrial-, death receptor-, and endoplasmic reticulum stress-mediated apoptosis may be a promising strategy for treating NPC.

3.
Toxicol Appl Pharmacol ; 465: 116453, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36914119

RESUMEN

HNSCC (Head and Heck Squamous Cell Carcinoma) is a reasonably prevalent cancer with a high mortality rate. In this study, we tried to examine the anti-metastasis and apoptosis/autophagy actions of Coenzyme Q0 (CoQ0, 2,3-dimethoxy-5-methyl-1,4-benzoquinone), a derivative of Antrodia camphorata in HNCC TWIST1 overexpressing (FaDu-TWIST1) cells as well as in vivo tumor xenograft mice model. Using fluorescence based cellular assays, western blot and nude mice tumor xenografts, we determined that CoQ0 effectively reduced cell viability and displayed rapid morphological changes in FaDu-TWIST1 cells compared to FaDu cells. Non/sub-cytotoxic concentrations of CoQ0 treatment reduces the cell migration by downregulating TWIST1 and upregulating E-cadherin. Apoptosis produced by CoQ0 was mostly related with caspase-3 activation, PARP cleavage, and VDAC-1 expression. The FaDu-TWIST1 cells treated with CoQ0 exhibits autophagy-mediated LC3-II accumulation and acidic vesicular organelles (AVOs) formation. Pre-treatment with 3-MA and CoQ effectively prevented CoQ0-induced cell death and CoQ0-triggered autophagy in FaDu-TWIST cells as a death mechanism. CoQ0 induces ROS production in FaDu-TWIST1 cells and NAC pre-treatment significantly reduces anti-metastasis, apoptosis, and autophagy. Likewise, ROS-mediated AKT inhibition regulates CoQ0-induced apoptosis/autophagy in FaDu-TWIST1 cells. In vivo studies exhibit, CoQ0 effectively delays and reduces the tumor incidence and burden in FaDu-TWIST1-xenografted nude mice. Current findings display, CoQ0 exhibits a novel anti-cancer mechanism hence, it might be appropriate for anticancer therapy, and a new potent drug for HNSCC.


Asunto(s)
Neoplasias de Cabeza y Cuello , Ubiquinona , Humanos , Animales , Ratones , Ubiquinona/farmacología , Ubiquinona/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Ratones Desnudos , Carcinoma de Células Escamosas de Cabeza y Cuello , Muerte Celular , Apoptosis , Línea Celular Tumoral , Autofagia , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Nucleares , Proteína 1 Relacionada con Twist
4.
Environ Toxicol ; 38(7): 1548-1564, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36947447

RESUMEN

Antrodia camphorata (AC) and Coenzyme Q0 (CoQ0 ), a novel quinone derivative of AC, exhibits antitumor activities. The present study evaluated EMT/metastasis inhibition and autophagy induction aspects of AC and CoQ0 in human glioblastoma (GBM8401) cells. Our findings revealed that AC treatment (0-150 µg/mL) hindered tumor cell proliferation and migration/invasion in GBM8401 cells. Notably, AC treatment inhibited HIF-1α and EMT by upregulating epithelial marker protein E-cadherin while downregulating mesenchymal proteins Twist, Slug, Snail, and ß-catenin. There was an appearance of the autophagy markers LC3-II and p62/SQSTM1, while ATG4B was downregulated by AC treatment. We also found that CoQ0 (0-10 µM) could inhibit migration and invasion in GBM8401 cells. In particular, E-cadherin was elevated and N-cadherin, Vimentin, Twist, Slug, and Snail, were reduced upon CoQ0 treatment. In addition, MMP-2/-9 expression and Wnt/ß-catenin pathways were downregulated. Furthermore, autophagy inhibitors 3-MA or CQ reversed the CoQ0 -elicited suppression of migration/invasion and metastasis-related proteins (Vimentin, Snail, and ß-catenin). Results suggested autophagy-mediated antiEMT and antimetastasis upon CoQ0 treatment. CoQ0 inhibited HIF-1α and metastasis in GBM8401 cells under normoxia and hypoxia. HIF-1α knockdown using siRNA accelerated CoQ0 -inhibited migration. Finally, CoQ0 exhibited a prolonged survival rate in GBM8401-xenografted mice. Treatment with Antrodia camphorata/CoQ0 inhibited HIF-1α and EMT/metastasis in glioblastoma.


Asunto(s)
Glioblastoma , beta Catenina , Humanos , Animales , Ratones , beta Catenina/metabolismo , Ubiquinona/farmacología , Vimentina/metabolismo , Transición Epitelial-Mesenquimal , Glioblastoma/tratamiento farmacológico , Invasividad Neoplásica/patología , Cadherinas/genética , Línea Celular Tumoral , Subunidad alfa del Factor 1 Inducible por Hipoxia , Movimiento Celular
5.
Toxicol Appl Pharmacol ; 451: 116175, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35901927

RESUMEN

Oxidative stress causes cellular injury and damage in the heart primarily through apoptosis resulting in cardiac abnormalities such as heart failure and cardiomyopathy. During oxidative stress, stimulation of adenosine receptor (AR) has been shown to protect against oxidative damage due to their cytoprotective properties. However, the subtype specificity and signal transductions of adenosine A1 receptor (A1R) on cardiac protection during oxidative stress have remained elusive. In this study, we found that stimulation of A1Rs with N6-cyclopentyladenosine (CPA), a specific A1R agonist, attenuated the H2O2-induced intracellular and mitochondrial reactive oxygen species (ROS) production and apoptosis. In addition, A1R stimulation upregulated the synthesis of antioxidant enzymes (catalase and GPx-1), antiapoptotic proteins (Bcl-2 and Bcl-xL), and mitochondria-related markers (UCP2 and UCP3). Blockades of Gßγ subunit of heterotrimeric Gαi protein antagonized A1R-mediated antioxidant and antiapoptotic effects, confirming the potential role of Gßγ subunit-mediated A1R signaling. Additionally, cardioprotective effects of CPA mediated through PI3K/Akt- and ERK1/2-dependent signaling pathways. Thus, we propose that A1R represents a promising therapeutic target for prevention of oxidative injury in the heart.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Adenosina/farmacología , Antioxidantes/metabolismo , Antioxidantes/farmacología , Peróxido de Hidrógeno/toxicidad , Sistema de Señalización de MAP Quinasas , Estrés Oxidativo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Purinérgicos P1/metabolismo , Transducción de Señal
6.
Mol Cell Biochem ; 477(1): 143-152, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34586566

RESUMEN

The heart is a very dynamic pumping organ working perpetually to maintain a constant blood supply to the whole body to transport oxygen and nutrients. Unfortunately, it is also subjected to various stresses based on physiological or pathological conditions, particularly more vulnerable to damages caused by oxidative stress. In this study, we investigate the molecular mechanism and contribution of IGF-IIRα in endoplasmic reticulum stress induction in the heart under doxorubicin-induced cardiotoxicity. Using in vitro H9c2 cells, in vivo transgenic rat cardiac tissues, siRNAs against CHOP, chemical ER chaperone PBA, and western blot experiments, we found that IGF-IIRα overexpression enhanced ER stress markers ATF4, ATF6, IRE1α, and PERK which were further aggravated by DOX treatment. This was accompanied by a significant perturbation in stress-associated MAPKs such as p38 and JNK. Interestingly, PARKIN, a stress responsive cellular protective mediator was significantly downregulated by IGF-IIRα concomitant with decreased expression of ER chaperone GRP78. Furthermore, ER stress-associated pro-apoptotic factor CHOP was increased considerably in a dose-dependent manner followed by elevated c-caspase-12 and c-caspase-3 activities. Conversely, treatment of H9c2 cells with chemical ER chaperone PBA or siRNA against CHOP abolished the IGF-IIRα-induced ER stress responses. Altogether, these findings suggested that IGF-IIRα contributes to ER stress induction and inhibits cellular stress coping proteins while increasing pro-apoptotic factors feeding into a cardio myocyte damage program that eventually paves the way to heart failure.


Asunto(s)
Estrés del Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Miocardio/metabolismo , Receptor IGF Tipo 2/metabolismo , Animales , Línea Celular , Citotoxinas/efectos adversos , Citotoxinas/farmacología , Doxorrubicina/efectos adversos , Doxorrubicina/farmacología , Retículo Endoplásmico/genética , Ratas , Ratas Transgénicas , Receptor IGF Tipo 2/genética
7.
Int J Mol Sci ; 23(22)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36430296

RESUMEN

Patients with type two diabetes mellitus (T2DM) are at increased risk for cardiovascular diseases. Impairments of endothelin-1 (ET-1) signaling and mTOR pathway have been implicated in diabetic cardiomyopathies. However, the molecular interplay between the ET-1 and mTOR pathway under high glucose (HG) conditions in H9c2 cardiomyoblasts has not been investigated. We employed MTT assay, qPCR, western blotting, fluorescence assays, and confocal microscopy to assess the oxidative stress and mitochondrial damage under hyperglycemic conditions in H9c2 cells. Our results showed that HG-induced cellular stress leads to a significant decline in cell survival and an impairment in the activation of ETA-R/ETB-R and the mTOR main components, Raptor and Rictor. These changes induced by HG were accompanied by a reactive oxygen species (ROS) level increase and mitochondrial membrane potential (MMP) loss. In addition, the fragmentation of mitochondria and a decrease in mitochondrial size were observed. However, the inhibition of either ETA-R alone by ambrisentan or ETA-R/ETB-R by bosentan or the partial blockage of the mTOR function by silencing Raptor or Rictor counteracted those adverse effects on the cellular function. Altogether, our findings prove that ET-1 signaling under HG conditions leads to a significant mitochondrial dysfunction involving contributions from the mTOR pathway.


Asunto(s)
Endotelina-1 , Miocitos Cardíacos , Humanos , Endotelina-1/metabolismo , Glucosa/farmacología , Glucosa/metabolismo , Miocitos Cardíacos/metabolismo , Receptor de Endotelina A/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Receptor de Endotelina B
8.
Am J Physiol Cell Physiol ; 317(2): C235-C243, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31116582

RESUMEN

Doxorubicin (DOX) is an anthracycline antibiotic commonly employed for the treatment of various cancers. However, its therapeutic uses are hampered by side effects associated with cumulative doses during the course of treatment. Whereas deregulation of autophagy in the myocardium has been involved in a variety of cardiovascular diseases, the role of autophagy in DOX-induced cardiomyopathy remains debated. Our earlier studies have shown that DOX treatment in a rat animal model leads to increased expression of the novel stress-inducible protein insulin-like growth factor II receptor-α (IGF-IIRα) in cardiac tissues, which exacerbated the cardiac injury by enhancing oxidative stress and p53-mediated mitochondria-dependent cardiac apoptosis. Through this study, we investigated the contribution of IGF-IIRα to dysregulation of autophagy in heart using both in vitro H9c2 cells (DOX treated, 1 µM) and in vivo transgenic rat models (DOX treated, 5 mg/kg ip for 6 wk) overexpressing IGF-IIRα specifically in the heart. We found that IGF-IIRα primarily localized to mitochondria, causing increased mitochondrial oxidative stress that was severely aggravated by DOX treatment. This was accompanied by a significant perturbation in mitochondrial membrane potential and increased leakage of cytochrome c, causing increased cleaved caspase-3 activity. There were significant alterations in phosphorylated AMP-activated protein kinase (p-AMPK), phosphorylated Unc-51 like kinase-1 (p-ULK1), PARKIN, PTEN-induced kinase 1 (PINK1), microtubule-associated protein 1 light chain 3 (LC3), and p62 proteins, which were more severely disrupted under the combined effect of IGF-IIRα overexpression plus DOX. Finally, LysoTracker Red staining showed that IGF-IIRα overexpression causes lysosomal impairment, which was rescued by rapamycin treatment. Taken together, we found that IGF-IIRα leads to mitochondrial oxidative stress, decreased antioxidant levels, disrupted mitochondrial membrane potential, and perturbed mitochondrial autophagy contributing to DOX-induced cardiomyopathy.


Asunto(s)
Antibióticos Antineoplásicos/toxicidad , Doxorrubicina/toxicidad , Cardiopatías/inducido químicamente , Mitocondrias Cardíacas/efectos de los fármacos , Mitofagia/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Receptor IGF Tipo 2/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Cardiotoxicidad , Línea Celular , Cardiopatías/genética , Cardiopatías/metabolismo , Cardiopatías/patología , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Lisosomas/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas Sprague-Dawley , Ratas Transgénicas , Receptor IGF Tipo 2/genética , Transducción de Señal/efectos de los fármacos
9.
J Cell Biochem ; 120(10): 16956-16966, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31104312

RESUMEN

Cardiotoxicity by doxorubicin hampers its therapeutic potential as an anticancer drug, but mechanisms leading to cardiotoxicity remain contentious. Through this study, the functional contribution of insulin-like growth factor receptor type II α (IGF-IIRα) which is a novel stress-inducible protein was explored in doxorubicin-induced cardiac stress. Employing both in vitro H9c2 cells and in vivo transgenic rat models (SD-TG [IGF-IIRα]) overexpressing IGF-IIRα specifically in heart, we found that IGF-IIRα leads to cardiac structural abnormalities and functional perturbations that were severely aggravated by doxorubicin-induced cardiac stress. Overexpression of IGF-IIRα leads to cumulative elevation of stress associated cardiac hypertrophy and apoptosis factors. There was a significant reduction of survival associated proteins p-Akt and estrogen receptor ß/α, and abnormal elevation of cardiac hypertrophy markers such as atrial natriuretic peptide, cardiac troponin-I, and apoptosis-inducing agents such as p53, Bax, and cytochrome C, respectively. IGF-IIRα also altered the expressions of AT1R, ERK1/2, and p38 proteins. Besides, IGF-IIRα also increased the reactive oxygen species production in H9c2 cells which were markedly aggravated by doxorubicin treatment. Together, we showed that IGF-IIRα is a novel stress-induced protein that perturbed cardiac homeostasis and cumulatively exacerbated the doxorubicin-induced cardiac injury that perturbed heart functions and ensuing cardiomyopathy.


Asunto(s)
Antibióticos Antineoplásicos/toxicidad , Cardiomegalia/inducido químicamente , Cardiomiopatías/inducido químicamente , Doxorrubicina/toxicidad , Cardiopatías Congénitas/inducido químicamente , Receptor IGF Tipo 2/biosíntesis , Animales , Apoptosis/efectos de los fármacos , Cardiotoxicidad/patología , Línea Celular , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/metabolismo , Corazón/anatomía & histología , Miocitos Cardíacos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Transgénicas , Especies Reactivas de Oxígeno/metabolismo , Receptor IGF Tipo 2/genética , Transducción de Señal/efectos de los fármacos
10.
Int J Mol Sci ; 20(17)2019 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-31480672

RESUMEN

Cardiovascular diseases have a high prevalence worldwide and constitute the leading causes of mortality. Recently, malfunctioning of ß-catenin signaling has been addressed in hypertensive heart condition. Ang-II is an important mediator of cardiovascular remodeling processes which not only regulates blood pressure but also leads to pathological cardiac changes. However, the contribution of Ang-II/ß-catenin axis in hypertrophied hearts is ill-defined. Employing in vitro H9c2 cells and in vivo spontaneously hypertensive rats (SHR) cardiac tissue samples, western blot analysis, luciferase assays, nuclear-cytosolic protein extracts, and immunoprecipitation assays, we found that under hypertensive condition ß-catenin gets abnormally induced that co-activated LEF1 and lead to cardiac hypertrophy changes by up-regulating the IGF-IIR signaling pathway. We identified putative LEF1 consensus binding site on IGF-IIR promoter that could be regulated by ß-catenin/LEF1 which in turn modulate the expression of cardiac hypertrophy agents. This study suggested that suppression of ß-catenin expression under hypertensive condition could be exploited as a clinical strategy for cardiac pathological remodeling processes.


Asunto(s)
Cardiomegalia/inducido químicamente , Cardiomegalia/metabolismo , Receptor IGF Tipo 2/metabolismo , Transducción de Señal , beta Catenina/metabolismo , Angiotensina II , Animales , Biomarcadores/metabolismo , Cardiomegalia/patología , Núcleo Celular/metabolismo , Factor de Transcripción GATA4/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Miocitos Cardíacos/metabolismo , Factores de Transcripción NFATC/metabolismo , Regiones Promotoras Genéticas/genética , Proteína Quinasa C-alfa/metabolismo , Ratas Endogámicas SHR
11.
J Cell Physiol ; 233(4): 3660-3671, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29030976

RESUMEN

Cardiomyocyte death is an important pathogenic feature of ischemia and heart failure. Through this study, we showed the synergistic role of HIF-1α and FoxO3a in cardiomyocyte apoptosis subjected to hypoxia plus elevated glucose levels. Using gene specific small interfering RNAs (siRNA), semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR), Western blot, immunofluorescence, nuclear and cytosolic localization and TUNEL assay techniques, we determined that combined function of HIF-1α and FoxO3a under high glucose plus hypoxia condition lead to enhanced expression of BNIP3 inducing cardiomyocyte death. Our results highlighted the importance of the synergistic role of HIF-1α and FoxO3a in cardiomyocyte death which may add insight into therapeutic approaches to pathophysiology associated with ischemic diabetic cardiomyopathies.


Asunto(s)
Apoptosis/fisiología , Proteína Forkhead Box O3/metabolismo , Hiperglucemia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Isquemia/metabolismo , Animales , Hipoxia de la Célula/fisiología , Células Cultivadas , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Miocitos Cardíacos/metabolismo , ARN Interferente Pequeño/metabolismo , Ratas , Transducción de Señal/fisiología
12.
Environ Toxicol ; 33(7): 789-797, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29708300

RESUMEN

Cardiomyocyte apoptosis is the major risk factor for the development of heart failure (HF). The purpose of this study was to evaluate the effects of Gamma-aminobutyric acid (GABA) tea on hypertension-induced cardiac apoptotic pathways in spontaneously hypertensive rats (SHR). In order to reveal the mechanisms, 36 male SHR at eight weeks of age, 200 g were divided into six groups. One group was fed water as a control group. Other rats were administered one of the following treatments: GABA tea at dose 150 and 300 mg/kg/day as low GABA tea (LGT) and high GABA tea (HGT) groups, respectively, pure GABA at dose 150 and 300 mg/kg/day as LG and HG groups, respectively, green tea (GT) as control of LGT and HGT groups. After 12 weeks, cardiac tissues were analyzed by histological analysis, western blotting, and TUNEL assays. GABA tea, GT, and pure GABA decreased hypertension-induced cardiac abnormalities, including abnormal myocardial architecture. In addition, GABA tea, GT, and pure GABA dramatically increased anti-apoptotic protein, Bcl2. Furthermore, GABA tea, GT, and pure GABA also decreased activated-caspase 9 and activated-caspase 3. Additionally, the survival associated protein IGF-I and PI3K/Akt were enhanced in cardiac tissues upon treatment. Our results showed an optimistic anti-apoptotic and pro-survival effects of GABA tea treatment against hypertensive rat hearts.


Asunto(s)
Apoptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Té/química , Ácido gamma-Aminobutírico/farmacología , Animales , Caspasa 3/metabolismo , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Hipertensión/tratamiento farmacológico , Hipertensión/metabolismo , Hipertensión/patología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Endogámicas SHR , Receptores de Somatomedina/metabolismo , Té/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Ácido gamma-Aminobutírico/uso terapéutico
13.
J Environ Manage ; 227: 146-154, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30176434

RESUMEN

Current agriculture faces multiple challenges due to rapid increases in food demand and environmental concerns. Recently, biochar application in agricultural soils has attracted a good deal of attention. According to literature findings, biochar has proven to play various beneficial roles with respect to the enhancement of crop yield as a fertilizer and soil quality as a soil conditioner. It can further be used to remediate soil pollution as an adsorbent, while supporting the mitigation of greenhouse gases (GHGs) through the expansion of the soil carbon pool. The efficacy of biochar application on agricultural environments is found to be controlled by various factors such as pyrolysis temperature, feed stock, soil type, and biotic interactions. The combined effects of these factors may thus exert a decisive control on the overall outcome. Furthermore, the biochar application can also be proven to be detrimental in some scenarios. This review evaluates both the potential benefits and limitations of biochar application in agriculture soils.


Asunto(s)
Agricultura , Carbón Orgánico , Suelo , Fertilizantes
14.
Environ Monit Assess ; 190(11): 631, 2018 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-30284054

RESUMEN

In this study, we examined 49 representative plant species of the Achanakmar-Amarkantak Biosphere Reserve (AABR) forest of Central India for emission of a number of biogenic volatile organic compounds (BVOCs). The BVOCs emissions from seven plant species are reported here for the first time. The emission rates of different plant species were ranged from negligible to 80.6 ± 0.82 (µgg-1 h-1). Forty-seven plant species were found to emit isoprene and monoterpenes (23 high emitters, 12 moderate emitters, and 12 low emitters). Dalbergia sissoo showed the maximum total average volatile organic compound (TAVOC) emission rates (80.6 µgg-1 h-1). The percentage composition of monoterpenes was also varied across different plant species. Alpha-pinene (α-pinene) was found as the most dominant monoterpene with about 41.40% of the total monoterpene emission. The highest emission range of α-pinene (7.8 µg g-1 h-1) was observed in Murraya koenigii. Carene was emitted only from two species (i.e., Mangifera indica and Terminalia tomentosa). When the emission rates of present study were compared to previous studies, there were considerable differences even for the same species. The study also reports the emission of BVOCs from Shorea robusta for the first time which is the most dominant plant species of the AABR (covering 60% of the total forest area).


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Plantas/química , Compuestos Orgánicos Volátiles/análisis , Monoterpenos Bicíclicos , Butadienos , Bosques , Hemiterpenos , India , Monoterpenos , Pentanos
15.
Environ Res ; 146: 235-44, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26775004

RESUMEN

To learn more about the emission characteristics of odorants released from sewer manholes and stormwater catch basins (SCBs) in an urban environment, we measured the emission concentrations of major odorants including 22 target compounds designated as offensive odorants by the Korean Ministry of Environment (KMOE). All of our measurements were made from urban sewer manholes and SCBs in a highly commercialized location in Seoul, Korea. The results of our study were analyzed to identify the major odorants from such sources and to assess their contribution to odor intensity. The malodor strengths at both types of underground sources were considerably higher in the afternoon than in the morning. The assessment of odor intensity (OI) and odor activity value (OAV) confirmed the dominance of key odorants like H2S, CH3SH, and ammonia along with various volatile fatty acids (VFAs) and phenol. The concentration of these major odorants (H2S, CH3SH, and NH3) exceeded the maximum permissible limit given as the odor prevention law in Korea. As such, significantly high levels of odorants released from these underground sources were greatly distinguished from those seen at above ground locations.


Asunto(s)
Contaminantes Atmosféricos/análisis , Drenaje de Agua , Sustancias Peligrosas/análisis , Odorantes/análisis , Compuestos Orgánicos Volátiles/análisis , Ciudades , República de Corea , Eliminación de Residuos Líquidos
16.
Ecotoxicol Environ Saf ; 114: 350-6, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25064375

RESUMEN

The emission rates of N,N-dimethylformamide (DMF), formamide (FAd), and certain hazardous volatile organic compounds (VOCs) were measured from seventeen mattress textile samples with four different raw material types: polyurethane (PU: n=3), polyester/polyethylene (PE: n=7), ethylene vinyl acetate (EV: n=3), and polyvinyl chloride (PC: n=4). To simulate the emissions in a heated room during winter season, measurements were made under temperature-controlled conditions, i.e., 50°C by using a mini-chamber system made of a midget impinger. Comparison of the data indicates that the patterns were greatly distinguished between DMF and FAd. PU products yielded the highest mean emission rates of DMF (2940 µg m(-2)h(-1): n=3) followed by PE (325 µg m(-2)h(-1): n=7), although its emission was not seen from other materials (EV and PC). In contrast, the pattern of FAd emission was moderately reversed from that of DMF: EV>PC>PE>PU. The results of our analysis confirm that most materials used for mattress production have the strong potential to emit either DMF or FAd in relatively large quantities while in use in children׳s care facilities, especially in winter months. Moreover, it was also observed that an increase in temperature (25°C to 50°C) had a significant impact on the emission rate of FAd and other hazardous VOCs. In addition to the aforementioned amides, the study revealed significant emissions of a number of hazardous VOCs, such as aromatic and carbonyl compounds.


Asunto(s)
Dimetilformamida/análisis , Formamidas/análisis , Sustancias Peligrosas/análisis , Textiles/análisis , Compuestos Orgánicos Volátiles/análisis , Diseño Interior y Mobiliario , Temperatura
17.
Environ Technol ; 35(13-16): 1971-8, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24956791

RESUMEN

The relative performance of different sorbent materials employed in the cryofocusing (e.g. in cold trap (CT) unit) stage was investigated at sub-ambient temperature by the thermal desorption (TD)-gas chromatography (GC)-pulsed flame photometric detector. To this end, the TD-based calibration of five reduced sulphur compounds (RSC: H2S, CH3SH, CS2, DMS and DMDS) and SO2 was carried out via the Peltier cooling system with five types of sorbent combinations such as two single-bed (Tenax TA and Silica gel) plus three multibed types (a combination of either two from the following three sorbents: Tenax TA, Silica gel and Carbopack B). Relative performance of each of all five CT options, if evaluated in terms of response factors for each compound, demonstrated that each CT composition acts as an important criterion to distinguish detection properties between light and heavy sulphur species. Although the relative response of H2S and CH3 SH was systematically distinguishable between the CT types, that of SO2 was the most complicated to interpret. According to this study, the two CT types consisting of Carbopack B and Silica gel (CS-0.4 and CS-0.6) were the optimum choices for sulphur gas analysis in terms of basic QA parameters (sensitivity, reproducibility and linearity).


Asunto(s)
Contaminantes Atmosféricos/aislamiento & purificación , Polímeros/química , Gel de Sílice/química , Dióxido de Azufre/aislamiento & purificación , Adsorción , Frío
18.
J Phys Condens Matter ; 36(16)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38190735

RESUMEN

In the present work, we have performed the phonon dispersion calculations of body-centered cubic vanadium (V) and niobium (Nb) with the supercell approach using different supercell size. Using DFT method, the calculated phonon spectra of V and Nb are found to be in a good agreement with the available experimental data. Our calculated results show a 'dip'-like feature in the longitudinal acoustic phonon mode along the Γ-H high symmetric path for both transition metals in the case of supercell size4×4×4. However, in supercell size2×2×2and3×3×3, the 'dip'-like feature is not clearly visible. In addition to this, thermodynamical properties are also computed, which compare well with the experimental data. Apart from this, the phonon lifetime due to electron-phonon interactions (τephph) and phonon-phonon interactions (PPIs) (τphph) are calculated. The effect of PPIs is studied by computing the average phonon lifetime for all acoustic branches. The value ofτephphof V (Nb) is found to be 23.16 (24.70)×10-15s at 100 K, which gets decreased to 1.51 (1.85)×10-15s at 1000 K. Theτphphof V (Nb) is found to be 8.59 (18.09)×10-12and 0.83 (1.76)×10-12s at 100 and 1000 K, respectively. Nextly, the lattice thermal conductivity is computed using linearized phonon Boltzmann equation. The present work suggests that studying the variation of phonon dispersion with supercell size is crucial for understanding the phonon properties of solids accurately.

19.
Biochem Pharmacol ; 229: 116552, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39307319

RESUMEN

Mitochondrial dysfunction is associated with hyperglycemic conditions and insulin resistance leading to cellular damage and apoptosis of cardiomyocytes in diabetic cardiomyopathy. The dysregulation of glucagon-like peptide-1 (GLP-1) receptor and mammalian target of rapamycin (mTOR) is linked to cardiomyopathies and myocardial dysfunctions mediated by hyperglycemia. However, the involvements of mTOR for GLP-1 receptor-mediated cardioprotection against high glucose (HG)-induced mitochondrial disturbances are not clearly identified. The present study demonstrated that HG-induced cellular stress and mitochondrial damage resulted in impaired ATP production and oxidative defense markers such as catalase and SOD2, along with a reduction in survival markers such as Bcl-2 and p-Akt, while an increased expression of pro-apoptotic marker Bax was observed in H9c2 cardiomyoblasts. In addition, the autophagic marker LC3-II was considerably reduced, together with the disruption of autophagy regulators (p-mTOR and p-AMPKα) under the hyperglycemic state. Furthermore, there was a dysregulated expression of several indicators related to mitochondrial homeostasis, including MFN2, p-DRP1, FIS1, MCU, UCP3, and Parkin. Remarkably, treatment with either exendin-4 (GLP-1 receptor agonist) or rapamycin (mTOR inhibitor) significantly inhibited HG-induced mitochondrial damage while co-treatment of exendin-4 and rapamycin completely reversed all mitochondrial abnormalities. Antagonism of GLP-1 receptors using exendin-(9-39) abolished these cardioprotective effects of exendin-4 and rapamycin under HG conditions. In addition, exendin-4 attenuated HG-induced phosphorylation of mTOR, and this inhibitory effect was antagonized by exendin-(9-39), indicating the regulation of mTOR by GLP-1 receptor. Therefore, improvement of mitochondrial dysfunction by stimulating the GLP-1 receptor/AMPK/Akt pathway and inhibiting mTOR signaling could ameliorate cardiac abnormalities caused by hyperglycemic conditions.

20.
Chemosphere ; 360: 142364, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38768790

RESUMEN

In this work, the practical utility of constructed wetlands (CWs) is described as a promising treatment option for micropollutants (MPs) in wastewater with the aid of their eco-friendly, low-energy, economically feasible, and ecologically sustainable nature. This paper offers a comprehensive review on CW technology with respect to the key strategies for MP removal such as phytoremediation, substrate adsorption, and microbial degradation. It explores the important factors controlling the performance of CWs (e.g., in terms of configurations, substrates, plant-microbe interactions, temperature, pH, oxygen levels, hydraulic loading rate, and retention time) along with the discussions on the pivotal role of microbial populations in CWs and plant-microbe cooperative remediation dynamics, particularly in relation to diverse organic MP patterns in CWs. As such, this review aims to provide valuable insights into the key strategies for optimizing MP treatment and for enhancing the efficacy of CW systems. In addition, the process-based models of constructed wetlands along with the numerical simulations based on the artificial neural network (ANN) method are also described in association with the data exploratory techniques. This work is thus expected to help open up new possibilities for the application of plant-microbe cooperative remediation approaches against diverse patterns of organic MPs present in CWs.


Asunto(s)
Biodegradación Ambiental , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Humedales , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Eliminación de Residuos Líquidos/métodos , Adsorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA