Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Nanobiotechnology ; 22(1): 165, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600567

RESUMEN

As a common musculoskeletal disorder, frozen shoulder is characterized by thickened joint capsule and limited range of motion, affecting 2-5% of the general population and more than 20% of patients with diabetes mellitus. Pathologically, joint capsule fibrosis resulting from fibroblast activation is the key event. The activated fibroblasts are proliferative and contractive, producing excessive collagen. Albeit high prevalence, effective anti-fibrosis modalities, especially fibroblast-targeting therapies, are still lacking. In this study, microRNA-122 was first identified from sequencing data as a potential therapeutic agent to antagonize fibroblast activation. Then, Agomir-122, an analog of microRNA-122, was loaded into poly(lactic-co-glycolic acid) (PLGA) nanoparticles (Agomir-122@NP), a carrier with excellent biocompatibility for the agent delivery. Moreover, relying on the homologous targeting effect, we coated Agomir-122@NP with the cell membrane derived from activated fibroblasts (Agomir-122@MNP), with an attempt to inhibit the proliferation, contraction, and collagen production of abnormally activated fibroblasts. After confirming the targeting effect of Agomir-122@MNP on activated fibroblasts in vitro, we proved that Agomir-122@MNP effectively curtailed fibroblasts activation, ameliorated joint capsule fibrosis, and restored range of motion in mouse models both prophylactically and therapeutically. Overall, an effective targeted delivery method was developed with promising translational value against frozen shoulder.


Asunto(s)
Bursitis , MicroARNs , Nanopartículas , Ratones , Animales , Humanos , Fibroblastos/metabolismo , Bursitis/tratamiento farmacológico , Bursitis/metabolismo , Membrana Celular , Fibrosis , Colágeno/metabolismo , MicroARNs/metabolismo
2.
Sensors (Basel) ; 22(3)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35161517

RESUMEN

Aiming at the problem of unmanned reconfiguration and docking of ground vehicles under complex working conditions, we designed a piece of docking equipment composed of an active mechanism based on a six-degree-of-freedom platform and a locking mechanism with multi-sensors. Through the proposed control method based on laser and image sensor information fusion calculation, the six-dimensional posture information of the mechanism during the docking process is captured in real time so as to achieve high-precision docking. Finally, the effectiveness of the method and the feasibility of the 6-DOF platform are verified by the established model. The results show that the mechanism can meet the requirements of smooth docking of ground unmanned vehicles.


Asunto(s)
Algoritmos , Recolección de Datos
3.
Langmuir ; 37(24): 7449-7456, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34124916

RESUMEN

Membrane separation has been considered to be the most effective decontamination method for oily waste water. The most significant point of membrane separation is the resistance against membrane fouling. Fabricating hierarchical architectures on the membrane surface is an available approach to improving its anti-fouling property. In this study, ZnO nanoneedles were successfully anchored onto surface-sulfonated poly(ether-ether-ketone) (PEEK) felt via UV/ozone cleaning and hydrothermal synthesis. The modified felt (PEEK-f-Z) showed much better anti-fouling properties and far higher rejection height (33 cm) than the unmodified felt (17 cm) with a separation efficiency up to 99.99%. The enhanced separation properties could be attributed to the stronger water locking capability of the hierarchical architectures on the surface. Furthermore, benefiting from the great chemical stability of PEEK substrates and ZnO nanoneedles, the as-prepared membrane exhibited admirable solvent resistance, mechanical strength, and thermal stability. As a result, PEEK-f-Z could even separate immiscible organic liquids with different polarities and collect hot water from the oil/water mixture, promising to be used under severe conditions.


Asunto(s)
Incrustaciones Biológicas , Óxido de Zinc , Benzofenonas , Incrustaciones Biológicas/prevención & control , Cetonas , Polietilenglicoles , Polímeros , Agua
4.
Small ; 15(27): e1900590, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31066226

RESUMEN

An artificial organic vapor sensor based on a finite number of 1D nanowires arrays can provide a strategy to allow classification and identification of different analytes with high efficiency, but fabricating a 1D nanowires array is challenging. Here, a coaxial Ag/polymer nanowires array is prepared as an organic vapor sensor with specific recognition, using a strategy combining superwettability-based nanofabrication and polymeric swelling-induced resistance change. Such organic vapor sensor containing commercial polymers can successfully classify and identify various organic vapors with good separation efficiency. An Ag/polymer nanowires array with synthetic polyethersulfone polymers is also fabricated, through molecular structure modification of the polymers, to distinguish the similar organic vapors of methanol and ethanol. Theoretical simulation results demonstrate introduction of specific molecular interaction between the designed polymers and organic vapors can improve the specific recognition performance of the sensors.

5.
Biotechnol Lett ; 40(3): 493-500, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29204769

RESUMEN

OBJECTIVES: To explore the effects of Lin28A on progression of osteocarcinoma (OS) cells. RESULTS: Lin28A mRNA and protein expressions were significantly increased in OS tissues compared with that in normal adjacent tissues. Expressions of Lin28A and long noncoding RNA MALAT1 were positively correlated. Patients with higher Lin28A expression had shorter overall survival. Moreover, Lin28A knockdown inhibited OS cells proliferation, migration, invasion and promoted cell apoptosis; Lin28A was found to harbor binding sites on MALAT1 sequences and associated with MALAT1, and increased MALAT1 stability and expression. Notably, the inhibition of Lin28A knockdown was attenuated or even reversed by MALAT1 overexpression. CONCLUSIONS: RNA binding protein Lin28A could facilitate OS cells progression by associating with the long noncoding RNA MALAT1.


Asunto(s)
Neoplasias Óseas/metabolismo , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo , Apoptosis/genética , Neoplasias Óseas/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Técnicas de Silenciamiento del Gen , Humanos , Invasividad Neoplásica/genética , ARN Largo no Codificante/genética , Proteínas de Unión al ARN/genética , Células Tumorales Cultivadas
6.
J Mech Behav Biomed Mater ; 150: 106240, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37992582

RESUMEN

Hemostatic materials are of great significance for rapid control of bleeding, especially in military trauma and traffic accidents. Chitosan (CS) hemostatic sponges have been widely concerned and studied due to their excellent biocompatibility. However, the hemostatic performance of pure chitosan sponges is poor due to the shortcoming of strong rigidity. In this study, CS and hydroxypropylmethylcellulose (HPMC) were combined to develop a safe and effective hemostatic composite sponges (CS/HPMC) for hemorrhage control by a simple mixed-lyophilization strategy. The CS/HPMC exhibited excellent flexibility (the flexibility was 74% higher than that of pure CS sponges). Due to the high porosity and procoagulant chemical structure of the CS/HPMC, it exhibited rapid hemostatic ability in vitro (BCI was shortened by 50% than that of pure CS sponges). The good biocompatibility of the obtained CS/HPMC was confirmed via cytotoxicity, hemocompatibility and skin irritation tests. The CS/HPMC can induced the erythrocyte and platelets adhesion, resulting in significant coagulation acceleration. The CS/HPMC had excellent performance in vivo assessments with shortest clotting time (40 s) and minimal blood loss (166 mg). All above results proved that the CS/HPMC had great potential to be a safe and rapid hemostatic material.


Asunto(s)
Quitosano , Hemostáticos , Humanos , Hemostáticos/farmacología , Hemostáticos/química , Quitosano/farmacología , Quitosano/química , Derivados de la Hipromelosa/farmacología , Hemostasis , Coagulación Sanguínea , Hemorragia
7.
J Hazard Mater ; 465: 133049, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38043428

RESUMEN

Covalent organic frameworks (COF) have desirable properties such as high porosity, low mass density, excellent heat resistance and regulatable structure, making them an ideal candidate for membrane material. Traditional methods for preparing covalent organic framework composite membranes, such as interfacial polymerization, vacuum filtration, and covalent organic framework abrasive coating. Stand-alone COF membranes produced by the above methods usually suffer from problems such as poor mechanical properties. Here, we fabricated high performance COF composite membranes by modified casting-precipitation-evaporation method. The designed composite membranes consisted of the ionic COF (iCOF) selective layer and the support layer are applied in dye/salt separation. The high permeability (∼ 68 L h-1 m-2 bar-1), high dyes rejection (97% for Rose Bengal), and low salts rejection (∼ 2.86% for NaCl) are achieved by the iCOF functional layer. The as-prepared composite membranes have a hydrophilic and highly smooth surface, making them have good anti-fouling performance. In addition, the rigid pore structure of iCOF selective layer endows the composite membranes with excellent stability, the composite membranes maintain original structure under high pressure (6 bar) and ultrasonic treatment (16 kHz for 60 min). This work may open up a novel path to fabricate iCOF composite membranes, which exhibit great potential in dye/salt separation.

8.
Polymers (Basel) ; 16(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38611153

RESUMEN

Carbon fiber fabric-reinforced poly(ether ether ketone) (CFF-PEEK) composites exhibit exceptional mechanical properties, and their flexibility and conformability make them a promising alternative to traditional prepregs. However, the formation of the CFF-PEEK composite is trapped in the high viscosity of PEEK, the smooth surface, and tightly interwoven bundles of CFF. It is more difficult for the resin to flow through the fibers of complex textile structures. Here, a simple film stacking method using the hot-pressing process of plain-woven CFF-PEEK thermoplastic composites is discussed. The uniform distribution of PEEK resin between each layer of CFF reduces the flow distance during the molding process, preventing defects in the composite material effectively. Four process parameters, including molding temperature (370, 385, 400, and 415 °C), molding pressure (1, 2, 4, 8, and 10 MPa), molding time (10, 20, 30, 40, 60, and 90 min), and pre-compaction process, are considered. Interlaminar shear strength (ILSS), tensile strength, and flexural strength of CFF/PEEK composites are evaluated to optimize the process parameters. Moreover, ultrasonic scanning microscopy and scanning electron microscopy are employed to observe the formation quality and microscopic failure modes of CFF/PEEK composites, respectively. The ultimate process parameters are a molding temperature of 410 °C, molding pressure of 10 MPa, molding time of 60 min, and the need for the pre-compaction process. Under the best process parameters, the ILSS is 62.5 MPa, the flexural strength is 754.4 MPa, and the tensile strength is 796.1 MPa. This work provides valuable insight for studying the process parameters of fiber fabric-reinforced thermoplastic polymer composites and revealing their impact on mechanical properties.

9.
Int Orthop ; 37(10): 2061-3, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23748461

RESUMEN

PURPOSE: The purpose of this study was to investigate the possible association between single nucleotide polymorphisms (SNPs) rs1800629 (TNF-α -308) and rs361525 (TNF-α -238) of the tumour necrosis factor (TNF)-α gene and susceptibility to osteoarthritis (OA) in the Han Chinese population. METHODS: The TNF-α -308 and -238 genotypes were determined by TaqMan assay in 200 OA cases and 305 controls. Odds ratios (ORs) for OA and 95% confidence intervals (CIs) from unconditional logistic regression models were used to evaluate relative risks. RESULTS: The frequencies of the allele 'A' of rs1800629 were 16% and 8.85% in OA cases and in controls, respectively, and thus the -308A allele had a 1.9612-fold (95% CI = 1.3323-2.8869, P < 0.001) increased risk for OA as compared to the -308G allele. However, no significant differences were found in the genotype and allele frequencies for rs361525 between OA and HC groups. CONCLUSIONS: In the Han Chinese population, the allele 'A' of TNF-α -308 may increase the risk for OA, whereas TNF-α -238 polymorphisms do not play a role in OA patients.


Asunto(s)
Pueblo Asiatico/genética , Predisposición Genética a la Enfermedad/genética , Osteoartritis/genética , Polimorfismo de Nucleótido Simple/genética , Factor de Necrosis Tumoral alfa/genética , Anciano , Estudios de Casos y Controles , China , Femenino , Frecuencia de los Genes/genética , Genotipo , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad
10.
Arthrosc Tech ; 12(5): e635-e638, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37323780

RESUMEN

The anterior horn tear of the lateral meniscus, often accompanied with local parameniscal cysts, is usually managed by cysts debridement and meniscus repair with the outside-in technique (OIT). However, a big gap between the meniscus and anterior capsule would be produced after cysts debridement and be difficult to be closed by the OIT. Or, the OIT would result in knee pain because of the overly tight knots. Therefore, we devised an anchor repair technique. Following the cysts resection, the anterior horn of the lateral meniscus (AHLM) is fixed at the anterolateral edge of the tibial plateau with 1 suture anchor, and then followed by suturing the AHLM with the surrounding synovium to promote healing. We recommend this technique as an alternative method for repairing an AHLM tear accompanied with local parameniscal cysts.

11.
Carbohydr Polym ; 320: 121235, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659820

RESUMEN

Injectable biocompatible hydrogels with multiple functions, including self-healing, adhesion, antibacterial activity, and suitable mechanical properties, are highly desirable for enhancing wound healing. In this study, a new class of multi-functional injectable self-healing cellulose-based hydrogels was synthesised using dynamic covalent acylhydrazone linkages for wound dressing. The carboxymethyl cellulose-graft-adipic dihydrazide (CMC-ADH)/4-Formylbenzoic acid-terminated poly(ethylene glycol) (PEG-FBA) (CMC-ADH/PEG-FBA) hydrogels have adjustable gelation time and excellent self-healing ability. In addition, drug release and in vitro antibacterial activities against Gram-positive and Gram-negative bacteria confirmed the sustained drug-release capacity of the hydrogels. Moreover, haemostasis and wound-healing effects were investigated using an in vivo haemorrhaging liver mouse model and a full-thickness skin defect model, and the results indicated that they not only promoted the wound-healing process but also presented excellent haemostatic effects. The CMC-ADH/PEG-FBA gels also exhibited good adhesion to irregular wounds and significantly enhanced angiogenic ability in vivo. This excellent wound-healing performance occurs because hydrogels can quickly stop bleeding, provide a moist and closed environment for the wound to prevent bacterial invasion, release ciprofloxacin (CIP), reduce inflammatory reactions, and promote wound tissue regeneration. In summary, the synthesised multi-functional gels are ideal candidates for treating haemorrhages and irregular wounds.

12.
J Colloid Interface Sci ; 645: 493-501, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37159991

RESUMEN

Improving the performance of proton exchange membranes (PEMs) through the synthesis of sulfonated polymers with elaborate molecular structures has received extensive approval. However, the tedious synthetic process and consequently high costs restrain their possible substitution for Nafion, a classic PEM material. Herein, a series of semi-crystalline sulfonated poly(ether ketone)s with fluorene-based units were prepared via direct copolymerization of commercially available monomers and followed post-sulfonation, namely SPEK-FD-x, where × represents the molar ratio of the fluorene-containing monomer to the employed bisphenol monomers. The entire synthetic pathway was facile without involving hardly accessible materials. Subsequently, various properties of SPEK-FD-x membranes were investigated and further compared with Nafion 117. Due to the formation of the well-defined hydrophilic-hydrophobic microphase separation morphology and the reinforcement of the PEK crystalline regions, the SPEK-FD-x membranes exhibited outstanding proton conductivity, resistance for methanol permeation, as well as dimensional, thermal, oxidative, and mechanical stability. Among them, the overall behavior of the SPEK-FD-25 membrane was comparable to or even greater than that of Nafion 117, most importantly, it also performed decently in both H2/air fuel cells and direct methanol fuel cells. Therefore, with the straightforward synthesis and superior performance, the SPEK-FD-x membranes may serve as a promising alternative to Nafion.

13.
Dalton Trans ; 52(18): 6029-6040, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37042629

RESUMEN

To develop the next-generation metal agents for efficiently inhibiting tumor growth, we synthesized a series of new Zn(II) complexes (C1-C5) derived from 2-pyridinecarboxaldehyde thiosemicarbazone and investigated their structure-activity relationships. C5 bearing two methyl groups at the N-4 position of the ligand exerted the strongest inhibition effect among all the Zn(II) complexes. Importantly, C5 exerted an effective inhibitory effect on tumor growth and produced few side effects in vivo. We further confirmed the antitumor mechanisms of C5, including arresting the cell cycle at the S phase, inducing apoptosis, inducing lethal autophagy, and suppressing angiogenesis.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Neoplasias , Tiosemicarbazonas , Humanos , Tiosemicarbazonas/farmacología , Zinc/farmacología , Complejos de Coordinación/farmacología , Complejos de Coordinación/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral
14.
Adv Sci (Weinh) ; 10(25): e2302654, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37381631

RESUMEN

Special separation membranes are widely employed for separation and purification purposes under challenging operating conditions due to their low energy consumption, excellent solvent, and corrosion resistance. However, the development of membranes is limited by corrosion-resistant polymer substrates and precise interfacial separation layers. Herein, polyaniline (PANI) is employed to achieve insitu anchoring of multiple interfaces, resulting in the fabrication of polyaniline@graphene oxide/polyether ether ketone (PANI@GO/PEEK) membranes. Insitu growth of PANI achieves the adequate bonding of the PEEK substrate and GO separation interface, which solves the problem of solution processing of PEEK and the instability of GO layers. By bottom-up confined polymerization of aniline, it could control the pore size of the separation layer, correct defects, and anchor among polymer, nano-separation layer, and nano-sheet. The mechanism of membrane construction within the confined domain and micro-nano structure modulation is further explored. The membranes demonstrate exceptional stability realizing over 90% rejection in 2 m HCl, NaOH, and high temperatures. Additionally, -membranes exhibit remarkable durability after 240 days immersion and 100 h long-term operation, which display the methanol flux of 50.2 L m-2 h-1 and 92% rejection of AF (585 g mol-1 ). This method substantially contributes to special separation membranes by offering a novel strategy.

15.
J Colloid Interface Sci ; 610: 905-912, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34865743

RESUMEN

Membrane fouling during the use of separation membrane has always been the main reason for the degradation of membrane performance. The traditional solution is complicated and inefficient, so we proposed multi-step integration method to prepare antifouling zwitterionic poly(aryl ether sulfone) (PAES-Z-x) ultrafiltration (UF) membrane with higher efficiency. We designed and synthesized a bisphenol precursor containing tertiary amine groups, which could provide reactive sites for grafting zwitterionic group. Afterwards, the zwitterionic modified UF membrane was prepared by graft copolymerization and non-solvent-induced phase separation (NIPS). The morphology, hydrophilicity, water flux and rejection of the PAES-Z-x membrane could be optimized by tuning zwitterion content. The hydration layer formed by zwitterions effectively reduced the adsorption of proteins and endowed the membrane good antifouling properties. The resulting membrane showed the pure water flux increased (up to 311 L m-2h-1 bar-1), high bovine serum albumin (BSA) rejection (97%) and good water flux recovery ratio (FRR) (82.8%). Zwitterionic antifouling PAES UF membrane prepared by a simple and effective method provided a new direction for improving PAES UF membrane's antifouling performance.


Asunto(s)
Incrustaciones Biológicas , Incrustaciones Biológicas/prevención & control , Membranas Artificiales , Albúmina Sérica Bovina , Sulfonas , Ultrafiltración
16.
Adv Sci (Weinh) ; 9(1): e2103706, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34766471

RESUMEN

Confined polymerization is an effective method for precise synthesis, which can further control the micro-nano structure inside the composite material. Polyaniline (PANI)-based composites are usually prepared by blending and original growth methods. However, due to the strong rigidity and hydrogen bonding of PANI, the content of PANI composites is low and easy to agglomerate. Here, based on confined polymerization, it is reported that polyaniline /polyether ether ketone (PANI/PEEK) film with high PANI content is synthesized in situ by a one-step method. The micro-nano structure of the two polymers in the confined space is further explored and it is found that PANI grows in the free volume of the PEEK chain, making the arrangement of the PEEK chain more orderly. Under the best experimental conditions, the prepared 16 µm-PANI/PEEK film has a dielectric constant of 205.4 (dielectric loss 0.401), the 75 µm-PANI/PEEK film has a conductivity of 3.01×10-4 S m-1 . The prepared PANI/PEEK composite film can be further used as electronic packaging materials, conductive materials, and other fields, which has potential application prospects in anti-static, electromagnetic shielding materials, corrosion resistance, and other fields.

17.
RSC Adv ; 12(34): 21736-21741, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-36043096

RESUMEN

Lignin, one of the main components of lignocellulose, can be used as an alternative to chemical polyols in the production of polyurethane because of its abundant phenolic and alcohol hydroxyls. Traditionally, lignin is directly applied in the preparation of polyurethane; however, modified lignin has been proved to be superior, especially that obtained by the oxypropylation reaction. Therefore, lignopolyol obtained by mild and efficient oxypropylation was utilized in the production of rigid polyurethane foam in this study. Specifically, the effects of the content of lignopolyol on the chemical structure, morphological structure, mechanical properties and thermal stability of the lignin-based rigid polyurethane foam were investigated. It was found that the compressive strength of the rigid polyurethane foam was significantly improved with the addition of lignopolyol compared with that of the pure polyurethane foam, which was attributed to the fact that oxypropylation made lignin into highly branched and functionalized polyols by transforming all phenolic hydroxyls into aliphatic hydroxyls. Moreover, when the molal weight of lignopolyol accounted for 40% of the added polyols, the generated foam showed optimal uniformity and regularity, and the compressive strength reached 0.18 MPa, meeting the requirements of industrial application, below which, the amount of undesired reactions is bound to increase. As a consequence, the added amount of lignopolyol was increased as much as possible on the basis of guaranteeing the desired properties, which was more conducive to realizing the green degradation and economic synthesis of rigid polyurethane foam.

18.
ACS Appl Mater Interfaces ; 14(48): 54127-54140, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36413754

RESUMEN

Conductive hydrogels have attracted extensive interest owing to its potential in soft robotics, electronic skin, and human monitoring. However, insufficient mechanical properties, lower adhesivity, and unsatisfactory conductivity seriously hinder potential applications in this emerging field. Herein, a highly elastic conductive hydrogel with a combination of favorable mechanical properties, self-adhesiveness, and excellent electrical performance was achieved by the synergistic effect of aminated lignin (AL), polydopamine (PDA), polyacrylamide (PAM) chains, and biomass carbon aerogel (C-SPF). In detail, AL was applied to induce slow oxidative polymerization of DA for preparing the sticky hydrogel containing PDA. Then, C-SPF carbon aerogel was used as a matrix to construct a dual-network structured composite hydrogel by combining with the hydrogels derived from PDA, AL, and PAM. The as-prepared conductive hydrogel displayed excellent mechanical performance, strong adhesive strength, and repeatable adhesivity. The prepared hydrogel-based pressure sensor possessed fast response (0.6 s loading and 0.8 s unloading stress time), high response (maximum RCR = 1.8 × 104), wide working pressure range (from 0 to 240.0 kPa), and excellent durability (stable 500 compression cycles with 30% deformation). In addition, the prepared sensor also displayed ultrahigh sensitivity (170 kPa-1), which was near 4 orders of magnitude higher than the conventional lignin-modified PAM hydrogels. The multiple interactions between hydrogel components and the mechanical properties of hydrogel were also verified by molecular dynamics investigation. Moreover, the excellent cytocompatibility and antibacterial activity of this composite hydrogel ensured high potential in various applications such as human/machine interaction, artificial intelligence, personal healthcare, and wearable devices.


Asunto(s)
Adhesivos , Lignina , Humanos , Dopamina , Carbono , Cementos de Resina , Inteligencia Artificial
19.
Carbohydr Polym ; 293: 119673, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35798414

RESUMEN

In this study, the anti-freezing conductive hydrogel electrolytes with outstanding mechanical properties were synthesized by a facile and feasible method. The mechanical and anti-freezing properties of the synthesized polyacrylamide/lithium lhloride/water soluble cellulose acetate (PAM/LiCl/WSCA) hydrogels are significantly enhanced with the addition of WSCA and LiCl. The tensile strength and toughness of the gels were gradually increased to 341 KPa and 1.2 MJ/m3, respectively. The hydrogel electrolyte can remain soft and flexible at -80 °C, displaying certain elasticity and electrical conductivity. In addition, the super-capacitor assembled with PAM/LiCl/WSCA hydrogel as electrolyte showed excellent stability in capacitance retention after 500 times of folding cycles and 10,000 times of charge and discharge tests. The capacitor still maintains 64.64 % of its capacity at -40 °C. This facile strategy to fabricate anti-freezing conductive hydrogel electrolyte provides a new idea and way to the application of hydrogels as electrolytes in extreme cold environments.


Asunto(s)
Electrólitos , Hidrogeles , Celulosa , Capacidad Eléctrica , Conductividad Eléctrica
20.
Int Orthop ; 35(6): 941-8, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20803292

RESUMEN

Bone morphogenetic proteins (BMPs) play important roles at multiple stages of chondrogenesis. This study was undertaken to investigate the potential role of bone morphogenetic protein-7 (BMP-7) in the differentiation of chondrocytes using tissue engineering techniques. The impact of BMP-7 on human amniotic epithelial cells (hAECs) was tested. The hAECs were treated either with recombinant human BMP-7 cDNA or with transforming growth factor beta 1 (TGF-ß1) as a positive control for three weeks in vitro. Cartilaginous differentiation and proliferation were assayed by quantitative RT-PCR, histology, and in situ hybridization. Our results were such that hAECs treated with either BMP-7 or TGF-ß1 expressed cartilage markers (aggrecan, Sox9, CEP-68, and type II and X collagens) within three weeks. Compared with a control vector, BMP-7 induced a decrease in type I collagen expression, while the transcription of the cartilage-specific type II collagen remained stable. In induction experiments, BMP-7 transgenic hAECs exhibited the largest amount of matrix synthesis. In conclusion, these data indicate that BMP-7 plays an important role in inducing the production of cartilage by hAECs in vitro. Cartilage differentiation and matrix maturation can be promoted by BMPs in a cartilage engineering paradigm. These properties make BMPs promising tools in the engineering of cartilaginous joint bio-prostheses and as candidate biological agents or genes for cartilage stabilisation.


Asunto(s)
Amnios/citología , Proteína Morfogenética Ósea 7/farmacología , Condrocitos/efectos de los fármacos , Condrogénesis/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Cartílago Hialino/efectos de los fármacos , Antígenos de Superficie/metabolismo , Biomarcadores/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Condrocitos/metabolismo , Condrocitos/ultraestructura , Condrogénesis/fisiología , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Expresión Génica/efectos de los fármacos , Humanos , Cartílago Hialino/crecimiento & desarrollo , Proteínas Recombinantes , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Ingeniería de Tejidos , Factor de Crecimiento Transformador beta1/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA