Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Mol Cell ; 61(1): 84-97, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26687681

RESUMEN

Autophagy, a cellular self-eating mechanism, is important for maintaining cell survival and tissue homeostasis in various stressed conditions. Although the molecular mechanism of autophagy induction has been well studied, how cells terminate autophagy process remains elusive. Here, we show that ULK1, a serine/threonine kinase critical for autophagy initiation, is a substrate of the Cul3-KLHL20 ubiquitin ligase. Upon autophagy induction, ULK1 autophosphorylation facilitates its recruitment to KLHL20 for ubiquitination and proteolysis. This autophagy-stimulated, KLHL20-dependent ULK1 degradation restrains the amplitude and duration of autophagy. Additionally, KLHL20 governs the degradation of ATG13, VPS34, Beclin-1, and ATG14 in prolonged starvation through a direct or indirect mechanism. Impairment of KLHL20-mediated regulation of autophagy dynamics potentiates starvation-induced cell death and aggravates diabetes-associated muscle atrophy. Our study identifies a key role of KLHL20 in autophagy termination by controlling autophagy-dependent turnover of ULK1 and VPS34 complex subunits and reveals the pathophysiological functions of this autophagy termination mechanism.


Asunto(s)
Autofagia , Proteínas Portadoras/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Proteínas Cullin/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia , Proteínas Relacionadas con la Autofagia , Beclina-1 , Proteínas Portadoras/genética , Fosfatidilinositol 3-Quinasas Clase III/genética , Proteínas Cullin/genética , Complicaciones de la Diabetes/enzimología , Complicaciones de la Diabetes/genética , Complicaciones de la Diabetes/patología , Retroalimentación Fisiológica , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/enzimología , Músculo Esquelético/patología , Atrofia Muscular/enzimología , Atrofia Muscular/genética , Atrofia Muscular/patología , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas , Proteolisis , Interferencia de ARN , Transducción de Señal , Factores de Tiempo , Transfección , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Proteínas de Transporte Vesicular/metabolismo
2.
Elife ; 122023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37831064

RESUMEN

Highly potent animal stem cells either self renew or launch complex differentiation programs, using mechanisms that are only partly understood. Drosophila female germline stem cells (GSCs) perpetuate without change over evolutionary time and generate cystoblast daughters that develop into nurse cells and oocytes. Cystoblasts initiate differentiation by generating a transient syncytial state, the germline cyst, and by increasing pericentromeric H3K9me3 modification, actions likely to suppress transposable element activity. Relatively open GSC chromatin is further restricted by Polycomb repression of testis or somatic cell-expressed genes briefly active in early female germ cells. Subsequently, Neijre/CBP and Myc help upregulate growth and reprogram GSC metabolism by altering mitochondrial transmembrane transport, gluconeogenesis, and other processes. In all these respects GSC differentiation resembles development of the totipotent zygote. We propose that the totipotent stem cell state was shaped by the need to resist transposon activity over evolutionary timescales.


Most animals are made up of two cell types: germline stem cells, which give rise to reproductive cells (egg and sperm) and pass their DNA to the next generation, and somatic cells, which make up the rest of the body. Transposable elements ­ fragments of DNA that can copy themselves and integrate into different parts of the genome ­ can greatly disrupt the integrity of the germ cell genome. Systems involving small RNAs and DNA methylation, which respectively modify the sequence and structure of the genome, can protect germ cells from the activity of transposable elements. While these systems have been studied extensively in late germ cells, less is known about how they work in germ cells generated early on in development. To investigate, Pang et al. studied the germline stem cells that give rise to eggs in female fruit flies. Techniques that measure DNA modifications showed that these germline stem cells and the cells they give rise to early on are better protected against transposable elements. This is likely due to the unusual cell cycle of early germ cells, which display a very short initial growth phase and special DNA replication timing during the synthesis phase. Until now, the purpose of these long-known cell cycle differences between early and late germ cells was not understood. Experiments also showed known transposable element defences are upregulated before the cell division that produces reproductive cells. DNA becomes more densely packed and germ cells connect with one another, forming germline 'cysts' that allow them to share small RNAs that can suppress transposable elements. Pang et al. propose that these changes compensate for the loss of enhanced repression that occurs in the earlier stem cell stage. Very similar changes also take place in the cells generated from fertilized eggs and in mammalian reproductive cells. Further experiments investigated how these changes impact the transition from stem cell to egg cell, revealing that germline stem cells express a wide diversity of genes, including most genes whose transcripts will be stored in the mature egg later on. Another type of cell produced by germline stem cells known as nurse cells, which synthesize most of the contents of the egg, dramatically upregulate genes supporting growth. Meanwhile, 25% of genes initially expressed in germline stem cells are switched off during the transition, partly due to a mechanism called Polycomb-mediated repression. The findings advance fundamental knowledge of how germline stem cells become egg cells, and could lead to important findings in developmental biology. Furthermore, understanding that for practical applications germline stem cells do not need to retain transposable element controls designed for evolutionary time scales means that removing them may make it easier to obtain and manipulate new stem cell lines and to develop new medical therapies.


Asunto(s)
Proteínas de Drosophila , Células Madre Oogoniales , Animales , Masculino , Drosophila/genética , Cromatina/metabolismo , Células Madre Oogoniales/metabolismo , Proteínas de Drosophila/metabolismo , Células Madre/metabolismo , Diferenciación Celular/genética , Células Germinativas/metabolismo , Expresión Génica , Biología , Drosophila melanogaster/metabolismo
3.
Elife ; 92020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32773039

RESUMEN

Polycomb silencing represses gene expression and provides a molecular memory of chromatin state that is essential for animal development. We show that Drosophila female germline stem cells (GSCs) provide a powerful system for studying Polycomb silencing. GSCs have a non-canonical distribution of PRC2 activity and lack silenced chromatin like embryonic progenitors. As GSC daughters differentiate into nurse cells and oocytes, nurse cells, like embryonic somatic cells, silence genes in traditional Polycomb domains and in generally inactive chromatin. Developmentally controlled expression of two Polycomb repressive complex 2 (PRC2)-interacting proteins, Pcl and Scm, initiate silencing during differentiation. In GSCs, abundant Pcl inhibits PRC2-dependent silencing globally, while in nurse cells Pcl declines and newly induced Scm concentrates PRC2 activity on traditional Polycomb domains. Our results suggest that PRC2-dependent silencing is developmentally regulated by accessory proteins that either increase the concentration of PRC2 at target sites or inhibit the rate that PRC2 samples chromatin.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Silenciador del Gen/fisiología , Células Germinativas/crecimiento & desarrollo , N-Metiltransferasa de Histona-Lisina/genética , Complejo Represivo Polycomb 1/genética , Proteínas del Grupo Polycomb/genética , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Femenino , N-Metiltransferasa de Histona-Lisina/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Proteínas del Grupo Polycomb/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA