Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nano Lett ; 23(24): 11802-11808, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38085099

RESUMEN

We present a dual-resonance nanostructure made of a titanium dioxide (TiO2) subwavelength grating to enhance the color downconversion efficiency of CdxZn1-xSeyS1-y colloidal quantum dots (QDs) emitting at ∼530 nm when excited with a blue light at ∼460 nm. A large mode volume can be created within the QD layer by the hybridization of the grating resonances and waveguide modes, resulting in large absorption and emission enhancements. Particularly, we achieved polarized light emission with a maximum photoluminescence enhancement of ∼140 times at a specific angular direction and a total enhancement of ∼34 times within a 0.55 numerical aperture (NA) of the collecting objective. The enhancement encompasses absorption, Purcell and outcoupling enhancements. We achieved a total absorption of 35% for green QDs with a remarkably thin color conversion layer of ∼400 nm. This work provides a guideline for designing large-volume cavities for absorption/fluorescence enhancement in microLED display, detector, or photovoltaic applications.

2.
Appl Opt ; 61(5): B164-B170, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35201137

RESUMEN

Huygens' metasurfaces are transparent arrays of nanostructures that enable phase-front manipulation. This is achieved by simultaneous excitation of electric dipole (ED) and magnetic dipole (MD) resonances with equal amplitudes and phases in the constituent meta-atoms. In usual designs, the size changes of the meta-atoms, necessary to map the phase front, can detune the overlapping of ED and MD resonances, decreasing the transmission and limiting the operating bandwidth. In this report, we demonstrate that ED and MD resonances can be almost perfectly tuned together over a large wavelength range, keeping their spectral overlap, in a silicon metasurface by using anisotropic meta-atoms. In particular, we show near-unity transmission (>95% in simulations) and 2π phase control in a wavelength range from 760 to 815 nm using cuboidal nanoantennas. Using this concept, we also experimentally demonstrate clear reconstruction from holograms of a single metasurface spanning the near infrared and the whole visible spectral range.

3.
Nano Lett ; 21(22): 9754-9760, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34780696

RESUMEN

Colloidal quantum dots (CQDs) are a promising gain material for solution-processed, wavelength-tunable lasers, with potential application in displays, communications, and biomedical devices. In this work, we combine a CQD film with an array of nanoantennas, made of titanium dioxide cylinders, to achieve lasing via bound states in the continuum (BICs). Here, the BICs are symmetry-protected cavity modes with giant quality factors, arising from slab waveguide modes in the planar CQD film, coupled to the periodic nanoantenna array. We engineer the thickness of the CQD film and size of the nanoantennas to achieve a BIC with good spatial and spectral overlap with the CQDs, based on a second-order transverse-electric (TE)-polarized waveguide mode. We obtain room-temperature lasing with a low threshold of approximately 11 kW/cm2 (peak intensity) under 5-ns-pulsed optical excitation. This work sheds light on the optical modes in solution-processed, distributed-feedback lasers and highlights BICs as effective, versatile, surface-emitting lasing modes.

4.
Nano Lett ; 21(11): 4853-4860, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34041907

RESUMEN

Dielectric nanostructures have demonstrated optical antenna effects due to Mie resonances. Previous work has exhibited enhancements in absorption, emission rates and directionality with practical limitations. In this paper, we present a Si mix antenna array to achieve a trifecta enhancement of ∼1200-fold with a Purcell factor of ∼47. The antenna design incorporates ∼10 nm gaps, within which fluorescent molecules strongly absorb the pump laser energy through a resonant mode. In the emission process, the antenna array increases the radiative decay rates of the fluorescence molecules via a Purcell effect and provides directional emission through a separate mode. This work could lead to novel CMOS-compatible platforms to enhance fluorescence for biological and chemical applications.


Asunto(s)
Nanoestructuras , Silicio , Fluorescencia , Rayos Láser , Luz
5.
Nano Lett ; 20(12): 8745-8751, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33206536

RESUMEN

Resonant metasurfaces are an attractive platform for enhancing the nonlinear optical processes, such as second harmonic generation (SHG), since they can generate large local electromagnetic fields while relaxing the phase-matching requirements. Here, we demonstrate visible range, continuous wave (CW) SHG by combining the attractive material properties of gallium phosphide with high quality-factor photonic modes enabled by bound states in the continuum. We obtain efficiencies around 5e-5% W-1 when the system is pumped at 1200 nm wavelength with CW intensities of 1 kW/cm2. Moreover, we measure external efficiencies of 0.1% W-1 with pump intensities of only 10 MW/cm2 for pulsed irradiation. This efficiency is higher than the values previously reported for dielectric metasurfaces, but achieved here with pump intensities that are two orders of magnitude lower. These results take metasurface-based SHG a step closer to practical applications.

6.
Nano Lett ; 20(8): 5655-5661, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32603127

RESUMEN

A highly efficient nanocavity formed by optically coupled nanostructures is achieved by optimization of the collective Mie resonances in a one-dimensional array of semiconductor nanoparticles. Analysis of quasi-normal multipole modes enables us to reveal the close relation between the collective Mie resonances and Van Hove singularities. On the basis of these concepts, we experimentally demonstrate a directional GaAs nanolaser at cryogenic temperatures with well-defined, in-plane emission, which, moreover, can be controlled by selective excitation. The lasing threshold is shown to be significantly reduced by optimizing the interparticle gap such that the optimal near-field confinement is achieved at a resonant wavelength corresponding to the highest gain of GaAs. We show that the lasing performance of this nanolaser is orders of magnitude better than a nanowire-based laser of the same dimensions. The present work provides design guidelines for high performance in-plane emission nanolasers, which may find applications in future photonic integrated circuits.

7.
Nano Lett ; 20(8): 6005-6011, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32584048

RESUMEN

Solid-state room-temperature lasing with tunability in a wide range of wavelengths is desirable for many applications. To achieve this, besides an efficient gain material with a tunable emission wavelength, a high quality-factor optical cavity is essential. Here, we combine a film of colloidal CdSe/CdZnS core-shell nanoplatelets with square arrays of nanocylinders made of titanium dioxide to achieve optically pumped lasing at visible wavelengths and room temperature. The all-dielectric arrays support bound states in the continuum (BICs), which result from lattice-mediated Mie resonances and boast infinite quality factors in theory. In particular, we demonstrate lasing from a BIC that originates from out-of-plane magnetic dipoles oscillating in phase. By adjusting the diameter of the cylinders, we tune the lasing wavelength across the gain bandwidth of the nanoplatelets. The spectral tunability of both the cavity resonance and nanoplatelet gain, together with efficient light confinement in BICs, promises low-threshold lasing with wide selectivity in wavelengths.

8.
Nano Lett ; 18(3): 2124-2132, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29485885

RESUMEN

The numerical aperture (NA) of a lens determines its ability to focus light and its resolving capability. Having a large NA is a very desirable quality for applications requiring small light-matter interaction volumes or large angular collections. Traditionally, a large NA lens based on light refraction requires precision bulk optics that ends up being expensive and is thus also a specialty item. In contrast, metasurfaces allow the lens designer to circumvent those issues producing high-NA lenses in an ultraflat fashion. However, so far, these have been limited to numerical apertures on the same order of magnitude as traditional optical components, with experimentally reported NA values of <0.9. Here we demonstrate, both numerically and experimentally, a new approach that results in a diffraction-limited flat lens with a near-unity numerical aperture (NA > 0.99) and subwavelength thickness (∼λ/3), operating with unpolarized light at 715 nm. To demonstrate its imaging capability, the designed lens is applied in a confocal configuration to map color centers in subdiffractive diamond nanocrystals. This work, based on diffractive elements that can efficiently bend light at angles as large as 82°, represents a step beyond traditional optical elements and existing flat optics, circumventing the efficiency drop associated with the standard, phase mapping approach.

9.
Nano Lett ; 17(6): 3458-3464, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28463510

RESUMEN

Subwavelength confined waveguiding is experimentally demonstrated with high refractive index dielectric nanoparticles with photon energy propagation at distances beyond 500 µm. These particles have naturally occurring electric and magnetic dipole resonances. When they are placed in a 1D chain, the magnetic resonances of adjacent elements couple to each other, providing a means to transport energy at visible or NIR wavelengths in a confined mode. Chains of nanoparticles made of silicon were fabricated and guided waves were measured with near-field scanning optical microscopy. Propagation loss is quantified at 34 dB/mm for 720 nm and 5.5 dB/mm for 960 nm wavelengths with 150 and 220 nm diameter particles, respectively. Simulations confirm the unique properties of this waveguiding in comparison with photonic crystals. The resonant nature of the waveguide lays a foundation for integrated photonics beyond nanowire waveguides of silicon and silicon nitride. This technology is promising for more compact and deeper photonic integration such as right angle bends, more compact modulators, slow light and interfacing with single photon emitters for photonic integrated circuits, quantum communications, and biosensing.

10.
Nano Lett ; 17(12): 7620-7628, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29115134

RESUMEN

Localized optical resonances in metallic nanostructures have been increasingly used in color printing, demonstrating unprecedented resolution but limited in color gamut. Here, we introduce a new nanostructure design, which broadens the gamut while retaining print resolution. Instead of metals, silicon nanostructures that exhibit localized magnetic and electric dipole resonances were fabricated on a silicon substrate coated with a Si3N4 index matching layer. Index matching allows a suppression of substrate effects, thus enabling Kerker's conditions to be met, that is, sharpened transitions in the reflectance spectra leading to saturated colors. This nanostructure design achieves a color gamut superior to sRGB, and is compatible with CMOS processes. The presented design could enable compact high-resolution color displays and filters, and the use of a Si3N4 antireflection coating can be readily extended to designs with nanostructures fabricated using other high-index materials.

11.
Nano Lett ; 17(10): 6267-6272, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-28898084

RESUMEN

Wavefront manipulation in metasurfaces typically relies on phase mapping with a finite number of elements. In particular, a discretized linear phase profile may be used to obtain a beam bending functionality. However, discretization limits the applicability of this approach for high angle bending due to the drastic efficiency drop when the phase is mapped by a small number of elements. In this work, we discuss a novel concept for energy redistribution in diffraction gratings and its application in the visible spectrum range, which helps overcome the constraints of ultrahigh angle (above 80°) beam bending. Arranging asymmetric dielectric nanoantennas into diffractive gratings, we show that one can efficiently redistribute the power between the grating orders at will. This is achieved by precise engineering of the scattering pattern of the nanoantennas. The concept is numerically and experimentally demonstrated at visible frequencies using several designs of TiO2 (titanium dioxide) nanoantennas for medium (∼55°) and high (∼80°) angle light bending. Results show efficient broadband visible-light operation (blue and green range) of transmissive devices, reaching efficiencies of ∼90% and 50%, respectively, at the optimized wavelength. The presented design concept is general and can be applied for both transmission and reflection operation at any desired wavelength and polarization.

12.
Nano Lett ; 15(7): 4557-63, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26043200

RESUMEN

Lighting applications require directional and polarization control of the emitted light, which is currently achieved by bulky optical components such as lenses, parabolic mirrors, and polarizers. Ideally, this control would be achieved without any external optics, but at the nanoscale, during the generation of light. Semiconductor nanowires are promising candidates for lighting devices due to their efficient light outcoupling and synthesis flexibility. In this work, we demonstrate a precise control of both the directionality and the polarization of the nanowire array emission by changing the nanowire diameter. We change the angular emission pattern from a large-angle doughnut shape to a narrow-angle beaming along the nanowire axis. In addition, we tune the polarization from unpolarized to either p- or s-polarized. Both the far-field emission pattern and its polarization are controlled by the number and type of guided or leaky modes supported by the nanowire, which are determined by the nanowire diameter.

13.
Nano Lett ; 15(3): 2137-42, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25686205

RESUMEN

The study of the resonant behavior of silicon nanostructures provides a new route for achieving efficient control of both electric and magnetic components of light. We demonstrate experimentally and numerically that enhancement of localized electric and magnetic fields can be achieved in a silicon nanodimer. For the first time, we experimentally observe hotspots of the magnetic field at visible wavelengths for light polarized across the nanodimer's primary axis, using near-field scanning optical microscopy.

14.
Nano Lett ; 14(6): 3227-34, 2014 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-24810791

RESUMEN

Understanding light absorption in individual nanostructures is crucial for optimizing the light-matter interaction at the nanoscale. Here, we introduce a technique named time-reversed Fourier microscopy that enables the measurement of the angle-dependent light absorption in dilute arrays of uncoupled semiconductor nanowires. Because of their large separation, the nanowires have a response that can be described in terms of individual nanostructures. The geometry of individual nanowires makes them behave as nanoantennas that show a strong interaction with the incident light. The angle-dependent absorption measurements, which are compared to numerical simulations and Mie scattering calculations, show the transition from guided-mode to Mie-resonance absorption in individual nanowires and the relative efficiency of these two absorption mechanisms in the same nanostructures. Mie theory fails to describe the absorption in finite-length vertical nanowires illuminated at small angles with respect to their axis. At these angles, the incident light is efficiently absorbed after being coupled to guided modes. Our findings are relevant for the design of nanowire-based photodetectors and solar cells with an optimum efficiency.

15.
Nano Lett ; 14(5): 2322-9, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24702521

RESUMEN

We present the experimental observation of spectral lines of distinctly different shapes in the optical extinction cross-section of metallic nanorod antennas under near-normal plane wave illumination. Surface plasmon resonances of odd mode parity present Fano interference in the scattering cross-section, resulting in asymmetric spectral lines. Contrarily, modes with even parity appear as symmetric Lorentzian lines. Finite element simulations are used to verify the experimental results. The emergence of either constructive or destructive mode interference is explained with a semianalytical 1D line current model. This simple model directly explains the mode-parity dependence of the Fano-like interference. Plasmonic nanorods are widely used as half-wave optical dipole antennas. Our findings offer a perspective and theoretical framework for operating these antennas at higher-order modes.

16.
ACS Photonics ; 11(3): 816-865, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38550347

RESUMEN

Metasurfaces have recently risen to prominence in optical research, providing unique functionalities that can be used for imaging, beam forming, holography, polarimetry, and many more, while keeping device dimensions small. Despite the fact that a vast range of basic metasurface designs has already been thoroughly studied in the literature, the number of metasurface-related papers is still growing at a rapid pace, as metasurface research is now spreading to adjacent fields, including computational imaging, augmented and virtual reality, automotive, display, biosensing, nonlinear, quantum and topological optics, optical computing, and more. At the same time, the ability of metasurfaces to perform optical functions in much more compact optical systems has triggered strong and constantly growing interest from various industries that greatly benefit from the availability of miniaturized, highly functional, and efficient optical components that can be integrated in optoelectronic systems at low cost. This creates a truly unique opportunity for the field of metasurfaces to make both a scientific and an industrial impact. The goal of this Roadmap is to mark this "golden age" of metasurface research and define future directions to encourage scientists and engineers to drive research and development in the field of metasurfaces toward both scientific excellence and broad industrial adoption.

17.
Nano Lett ; 12(11): 5481-6, 2012 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-23030698

RESUMEN

We experimentally demonstrate the directional emission of polarized light from single semiconductor nanowires. The directionality of this emission has been directly determined with Fourier microphotoluminescence measurements of vertically oriented InP nanowires. Nanowires behave as efficient optical nanoantennas, with emission characteristics that are not only given by the material but also by their geometry and dimensions. By means of finite element simulations, we show that the radiated power can be enhanced for frequencies and diameters at which leaky modes in the structure are present. These leaky modes can be associated to Mie resonances in the cylindrical structure. The radiated power can be also inhibited at other frequencies or when the coupling of the emission to the resonances is not favored. We anticipate the relevance of these results for the development of nanowire photon sources with optimized efficiency and/or controlled emission by the geometry.

18.
Nanoscale ; 15(6): 2567-2572, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36652196

RESUMEN

Metasurfaces are artificially structured surfaces able to control the properties of light at subwavelength scales. While, initially, they have been proposed as means to control classical optical fields, they are now emerging as nanoscale sources of quantum light, in particular of entangled photons with versatile properties. Geometric resonances in metasurfaces have been recently used to engineer the frequency spectrum of entangled photons, but the emission directivity was so far less studied. Here, we generate photon pairs via spontaneous parametric down conversion from a metasurface supporting a quasi-bound state in the continuum (BIC) leading to remarkable emission directivities. The pair generation rate is enhanced 67 times compared to the case of an unpatterned film of the same thickness and material. At the wavelength of the quasi-BIC resonance, photons are mostly emitted backwards, while their partners, spectrally detuned by only 8 nm, are emitted forwards. This behavior demonstrates fine spectral splitting of entangled photons and their bi-directional emission, never before observed in nanoscale sources. We expect this work to be a starting point for the efficient demultiplexing of photons in nanoscale quantum optics.

19.
Adv Mater ; 35(1): e2207317, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36308036

RESUMEN

Emerging immersive visual communication technologies require light sources with complex functionality for dynamic control of polarization, directivity, wavefront, spectrum, and intensity of light. Currently, this is mostly achieved by free space bulk optic elements, limiting the adoption of these technologies. Flat optics based on artificially structured metasurfaces that operate at the sub-wavelength scale are a viable solution, however, their integration into electrically driven devices remains challenging. Here, a radically new approach to monolithic integration of a dielectric metasurface into a perovskite light-emitting transistor is demonstrated. It is shown that nanogratings directly structured on top of the transistor channel yield an 8-fold increase of electroluminescence intensity and dynamic tunability of polarization. This new light-emitting metatransistor device concept opens unlimited opportunities for light management strategies based on metasurface design and integration.

20.
Adv Mater ; 35(34): e2205367, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36341483

RESUMEN

All-dielectric metasurfaces provide unique solutions for advanced wavefront manipulation of light with complete control of amplitude and phase at sub-wavelength scales. One limitation, however, for most of these devices is the lack of any post-fabrication tunability of their response. To break this limit, a promising approach is employing phase-change materials (PCMs), which provide fast, low energy, and non-volatile means to endow metasurfaces with a switching mechanism. In this regard, great advancements have been done in the mid-infrared and near-infrared spectrum using different chalcogenides. In the visible spectral range, however, very few devices have demonstrated full phase manipulation, high efficiencies, and reversible optical modulation. In this work, a programmable all-dielectric Huygens' metasurface made of antimony sulfide (Sb2 S3 ) PCM is experimentally demonstrated, a low loss and high-index material in the visible spectral range with a large contrast (≈0.5) between its amorphous and crystalline states. ≈2π phase modulation is shown with high associated transmittance and it is used to create programmable beam-steering devices. These novel chalcogenide PCM metasurfaces have the potential to emerge as a platform for next-generation spatial light modulators and to impact application areas such as programmable and adaptive flat optics, light detection and ranging (LiDAR), and many more.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA