Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Cell ; 32(4): 1081-1101, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32086363

RESUMEN

Nonsense-mediated mRNA decay (NMD), an mRNA quality control process, is thought to function in plant immunity. A subset of fully spliced (FS) transcripts of Arabidopsis (Arabidopsis thaliana) resistance (R) genes are upregulated during bacterial infection. Here, we report that 81.2% and 65.1% of FS natural TIR-NBS-LRR (TNL) and CC-NBS-LRR transcripts, respectively, retain characteristics of NMD regulation, as their transcript levels could be controlled posttranscriptionally. Both bacterial infection and the perception of bacteria by pattern recognition receptors initiated the destruction of core NMD factors UP-FRAMESHIFT1 (UPF1), UPF2, and UPF3 in Arabidopsis within 30 min of inoculation via the independent ubiquitination of UPF1 and UPF3 and their degradation via the 26S proteasome pathway. The induction of UPF1 and UPF3 ubiquitination was delayed in mitogen-activated protein kinase3 (mpk3) and mpk6, but not in salicylic acid-signaling mutants, during the early immune response. Finally, previously uncharacterized TNL-type R transcripts accumulated in upf mutants and conferred disease resistance to infection with a virulent Pseudomonas strain in plants. Our findings demonstrate that NMD is one of the main regulatory processes through which PRRs fine-tune R transcript levels to reduce fitness costs and achieve effective immunity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/inmunología , Degradación de ARNm Mediada por Codón sin Sentido/genética , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Inmunidad de la Planta , Proteolisis , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Autoinmunidad/genética , Regulación de la Expresión Génica de las Plantas , Sistema de Señalización de MAP Quinasas , Mutación/genética , Pseudomonas/patogenicidad , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ubiquitinación
2.
Prep Biochem Biotechnol ; 53(6): 579-590, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36137172

RESUMEN

Multifaceted utility of nanomaterials is indispensable to meet the environmental challenges across the globe. Nanomaterials substantially contribute in delineating the rapidly advancing field of nanotechnology. Recently, primary emphasis has been laid down on augmenting the biological methodologies for the synthesis of nanomaterials. In this aspect, green nanotechnology has revolutionized the entire process of nanosynthesis. Essentially biofabrication of nanoparticles have long-range applications, primarily in the field of medical applications such as drug delivery, cancer diagnostics and genetic engineering processes. Biocompatible and stable nanoparticles synthesized from biological source can be an effective approach against the chemically synthesized owing to their non-expensive and eco-friendly attributes. Biological systems including bacteria, yeasts, fungi and plants have already been exploited in the field of nanotechnology. Use of fungi seems to be a very effective and economical approach for the synthesis of gold nanoparticles. Gold nanoparticles possess anti-oxidation activity, are highly stable and biocompatible in nature. Fungi-mediated nanoparticle biosynthesis is more advantageous as compared to bacterial synthesis. Fungi secrete large amounts of enzymes, whereas the enzyme secretion of yeasts is weak. Here, we have reported the recent advancements and future implications in the field of gold nanoparticle production and applications.


Asunto(s)
Nanopartículas del Metal , Oro , Bacterias , Hongos , Nanotecnología/métodos
3.
Mol Biotechnol ; 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38411790

RESUMEN

Nonsense-mediated mRNA decay (NMD) is an evolutionarily conserved surveillance mechanism in eukaryotes primarily deployed to ensure RNA quality control by eliminating aberrant transcripts and also involved in modulating the expression of several physiological transcripts. NMD, the mRNA surveillance pathway, is a major form of gene regulation in eukaryotes. NMD serves as one of the most significant quality control mechanisms as it primarily scans the newly synthesized transcripts and differentiates the aberrant and non-aberrant transcripts. The synthesis of truncated proteins is restricted, which would otherwise lead to cellular dysfunctions. The up-frameshift factors (UPFs) play a central role in executing the NMD event, largely by recognizing and recruiting multiple protein factors that result in the decay of non-physiological mRNAs. NMD exhibits astounding variability in its ability across eukaryotes in an array of pathological and physiological contexts. The detailed understanding of NMD and the underlying molecular mechanisms remains blurred. This review outlines our current understanding of NMD, in regulating multifaceted cellular events during development and disease. It also attempts to identify unanswered questions that deserve further investigation.

4.
Mol Biotechnol ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264527

RESUMEN

Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism that is conserved across all eukaryotes ensuring the quality of transcripts by targeting messenger RNA (mRNA) harbouring premature stop codons. It regulates the gene expression by targeting aberrant mRNA carrying pre-termination codons (PTCs) and eliminates C-terminal truncated proteins. NMD distinguishes aberrant and non-aberrant transcript by looking after long 3' UTRs and exon-junction complex (EJC) downstream of stop codon that indicate the presence of PTC. Therefore, NMD modulates cellular surveillance and eliminates the truncated proteins but if the PTC escapes the surveillance pathway it can lead to potential negative phenotype resulting in genetic diseases. The alternative splicing also contributes in formation of NMD-sensitive isoforms by introducing PTC. NMD plays a complex role in cancer, it can either aggravate or downregulates the tumour. Some tumours agitate NMD to deteriorate mRNAs encoding tumour suppressor proteins, stress response proteins and neoantigens. In other case, tumours suppress the NMD to encourage the expression of oncoproteins for tumour growth and survival. This mechanism augmented in the development of new therapeutics by PTC read-through mechanism and personalized medicine. Detailed studies on NMD surveillance will possibly lead towards development of strategies for improving human health aligning with United Nations sustainable development goals (SDG 3: Good health and well-being). The potential therapeutic applications of NMD pose a challenge in terms of safe and effective modulation. Understanding the complexities of NMD regulation and its interaction with other cellular processes can lead to the development of new interventions for various diseases.

5.
Pathol Res Pract ; 264: 155677, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39486251

RESUMEN

Nonsense-mediated mRNA decay (NMD) is a quality control mechanism that detects and degrades premature aberrant transcripts and importantly, it also takes part in gene expression regulation by regulating the endogenous transcripts. NMD distinguishes aberrant and non-aberrant transcript by looking after the NMD signatures such as long 3' UTR. NMD modulates cellular surveillance and eliminates the plausible synthesis of truncated proteins as because if the aberrant mRNA escapes the surveillance pathway it can lead to potential negative phenotype resulting in genetic diseases. NMD involves multiple proteins and any alteration or mutation within these proteins results in various pathophysiological consequences. NMD plays a complex role in cancer, it can either aggravate or downregulates the tumour. Some tumours agitate NMD to deteriorate mRNAs encoding tumour suppressor proteins, stress response proteins and neoantigens. In other case, tumours suppress the NMD to encourage the expression of oncoproteins for tumour growth and survival. In this review, we have shed light on the core and associated proteins of NMD, further summarized the mechanism of the NMD pathway and also described the implications of mutations in NMD factors resulting in severe pathological conditions including neurodevelopmental disorder, effects on male sterility and cancer. Understanding the complexities of NMD regulation and its interaction with other cellular processes can lead to the development of new interventions for various diseases. This review summarizes the current understanding of NMD and its role in controlling various cellular processes in both development and disease.

6.
Mol Biotechnol ; 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37930508

RESUMEN

Nonsense-mediated mRNA decay (NMD) is an evolutionarily conserved surveillance mechanism across eukaryotes and also regulates the expression of physiological transcripts, thus involved in gene regulation. It essentially ensures recognition and removal of aberrant transcripts. Therefore, the NMD protects the cellular system by restricting the synthesis of truncated proteins, potentially by eliminating the faulty mRNAs. NMD is an evolutionarily conserved surveillance mechanism across eukaryotes and also regulates the expression of physiological transcripts, thus involved in gene regulation as well. Primarily, the NMD machinery scans and differentiates the aberrant and non-aberrant transcripts. A myriad of cellular dysfunctions arise due to production of truncated proteins, so the NMD core proteins, the up-frameshift factors (UPFs) recognizes the faulty mRNAs and further recruits factors resulting in the mRNA degradation. NMD exhibits astounding variability in its ability in regulating cellular mechanisms including both pathological and physiological events. But, the detailed underlying molecular mechanisms in NMD remains blurred and require extensive investigation to gain insights on cellular homeostasis. The complexity in understanding of NMD pathway arises due to the involvement of numerous proteins, molecular interactions and their functioning in different steps of this process. Moreover methods such as alternative splicing generates numerous isoforms of mRNA, so it makes difficulties in understanding the impact of alternative splicing on the efficiency of NMD functioning. Role of NMD in cancer development is very complex. Studies have shown that in some cases cancer cells use NMD pathway as a tool to exploit the NMD mechanism to maintain tumor microenvironment. A greater level of understanding about the intricate mechanism of how tumor used NMD pathway for their benefits, a strategy can be developed for targeting and inhibiting NMD factors involved in pro-tumor activity. There are very little amount of information available about the NMD pathway, how it discriminate mRNAs that are targeted by NMD from those that are not. This review highlights our current understanding of NMD, specifically the regulatory mechanisms and attempts to outline less explored questions that warrant further investigations. Taken as a whole, a detailed molecular understanding of the NMD mechanism could lead to wide-ranging applications for improving cellular homeostasis and paving out strategies in combating pathological disorders leaping forward toward achieving United Nations sustainable development goals (SDG 3: Good health and well-being).

7.
Biophys Chem ; 263: 106392, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32417597

RESUMEN

An environmental friendly and cost effective method was used for the preparation of silver­iron oxide (α-Fe2O3-Ag) nanocomposite using guava (Psidium guajava) leaf extract, which can be used as an adsorbent for decontamination of chromium (VI) ions from aqueous media. XRD analysis revealed that both Iron oxide and silver nanoparticles are crystalline in nature with face-centered cubic and rhombohedral geometry respectively. The FESEM micrographs of Fe2O3-Ag nanocomposite displayed irregular shaped particles with an average size of 50-90 nm. BET surface area analysis suggests that the prepared Fe2O3-Ag nanocomposites are mesoporous in nature with surface area of 122.72 m2/g. The adsorption of Cr(VI) was pH dependent and maximum adsorption occurred at pH = 4 with maximum adsorption capacity of 71.34 mg/g. Thermodynamic parameters reveals that the Cr(VI) adsorption on Fe2O3-Ag surface is endothermic and spontaneous in nature. The adsorbed Cr(VI) on Fe2O3-Ag surface was recovered and can be reused up to five cycles.


Asunto(s)
Cromo/aislamiento & purificación , Nanocompuestos/química , Extractos Vegetales/química , Hojas de la Planta/química , Psidium/química , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Cromo/química , Compuestos Férricos/química , Tamaño de la Partícula , Porosidad , Plata/química , Propiedades de Superficie , Termodinámica , Agua/química , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA