Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(40): e2406305121, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39316051

RESUMEN

The many independent transitions from hermaphroditism to separate sexes (dioecy) in flowering plants and some animal clades must often have involved the emergence of a heterogametic sex-determining locus, the basis of XY and ZW sex determination (i.e., male and female heterogamety). Current estimates indicate that XY sex determination is much more frequent than ZW, but the reasons for this asymmetry are unclear. One proposition is that separate sexes evolve through the invasion of sterility mutations at closely linked loci, in which case XY sex determination evolves if the initial male sterility mutation is fully recessive. Alternatively, dioecy may evolve via the gradual divergence of male and female phenotypes, but the genetic basis of such divergence and its connection to XY and ZW systems remain poorly understood. Using mathematical modeling, we show how dioecy with XY or ZW sex determination can emerge from the joint evolution of resource allocation to male and female function with its genetic architecture. Our model reveals that whether XY or ZW sex determination evolves depends on the trade-off between allocation to male and female function, and on the mating system of the ancestral hermaphrodites, with selection for female specialization or inbreeding avoidance both favoring XY sex determination. Together, our results cast light on an important but poorly understood path from hermaphroditism to dioecy, and provide an adaptive hypothesis for the preponderance of XY systems. Beyond sex and sex determination, our model shows how ecology can influence the way selection shapes the genetic architecture of polymorphic traits.


Asunto(s)
Procesos de Determinación del Sexo , Procesos de Determinación del Sexo/genética , Animales , Organismos Hermafroditas/genética , Organismos Hermafroditas/fisiología , Evolución Biológica , Cromosomas Sexuales/genética , Femenino , Modelos Genéticos
2.
PLoS Genet ; 18(7): e1010226, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35793353

RESUMEN

Polyploidization may precipitate dramatic changes to the genome, including chromosome rearrangements, gene loss, and changes in gene expression. In dioecious plants, the sex-determining mechanism may also be disrupted by polyploidization, with the potential evolution of hermaphroditism. However, while dioecy appears to have persisted through a ploidy transition in some species, it is unknown whether the newly formed polyploid maintained its sex-determining system uninterrupted, or whether dioecy re-evolved after a period of hermaphroditism. Here, we develop a bioinformatic pipeline using RNA-sequencing data from natural populations to demonstrate that the allopolyploid plant Mercurialis canariensis directly inherited its sex-determining region from one of its diploid progenitor species, M. annua, and likely remained dioecious through the transition. The sex-determining region of M. canariensis is smaller than that of its diploid progenitor, suggesting that the non-recombining region of M. annua expanded subsequent to the polyploid origin of M. canariensis. Homeologous pairs show partial sexual subfunctionalization. We discuss the possibility that gene duplicates created by polyploidization might contribute to resolving sexual antagonism.


Asunto(s)
Trastornos del Desarrollo Sexual , Euphorbiaceae , Cromosomas , Diploidia , Trastornos del Desarrollo Sexual/genética , Euphorbiaceae/genética , Poliploidía
3.
New Phytol ; 242(6): 2832-2844, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581189

RESUMEN

Nicotiana attenuata styles preferentially select pollen from among accessions with corresponding expression patterns of NaS-like-RNases (SLRs), and the postpollination ethylene burst (PPEB) is an accurate predictor of seed siring success. However, the ecological consequences of mate selection, its effect on the progeny, and the role of SLRs in the control of ethylene signaling remain unknown. We explored the link between the magnitude of the ethylene burst and expression of the SLRs in a set of recombinant inbred lines (RILs), dissected the genetic underpinnings of mate selection through genome-wide association study (GWAS), and examined its outcome for phenotypes in the next generation. We found that high levels of PPEB are associated with the absence of SLR2 in most of the tested RILs. We identified candidate genes potentially involved in the control of mate selection and showed that pollination of maternal genotypes with their favored pollen donors produces offspring with longer roots. When the maternal genotypes are only able to select against nonfavored pollen donors, the selection for such positive traits is abolished. We conclude that plants' ability of mate choice contributes to measurable changes in progeny phenotypes and is thus likely a target of selection.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Fenotipo , Polen , Ribonucleasas , Polen/genética , Polen/fisiología , Ribonucleasas/genética , Ribonucleasas/metabolismo , Nicotiana/genética , Nicotiana/fisiología , Etilenos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polinización , Estudio de Asociación del Genoma Completo , Cigoto/metabolismo , Genotipo , Endogamia
4.
Am J Bot ; : e16429, 2024 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-39482567

RESUMEN

PREMISE: Angiosperms range in sexual system from hermaphroditism through gynodioecy and androdioecy to dioecy. Trioecy, where females and males coexist with hermaphrodites, is rare. Recently, trioecy was documented in hexaploid populations of the wind-pollinated herb Mercurialis annua in Spain. METHODS: We surveyed the frequency of males, hermaphrodites, and females in M. annua across its distribution in the Iberian Peninsula, tracked sex-ratio variation in several populations over consecutive generations, and assessed evidence for pollen limitation. In a common garden, we estimated male, female, and hermaphroditic fitness. We used controlled crosses to infer the genetic basis of male sterility. Finally, we compared predictions of a deterministic model with the distribution of observed sex ratios in the field based on our fitness estimates and the inferred genetics of sex determination. RESULTS: Trioecy is widespread in Spanish and Portuguese populations of M. annua. Males are determined by a dominant (Y-linked) allele, and female expression results from the interaction between cytoplasmic male sterility and multiple nuclear male sterility restorers partially linked to the male determiner. Male pollen production is approximately 12 times that of hermaphrodites, while female seed production is less than 1.12 times the observed hermaphroditic levels. The distribution of sex ratios in natural populations conforms with predictions of our deterministic simulations. CONCLUSIONS: Our study documents and accounts for a clear case of trioecy in which sex is determined by both maternally and biparentally inherited genes.

5.
Proc Biol Sci ; 290(2011): 20232137, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38018108

RESUMEN

In dioecious populations, males and females may evolve different trait values to increase fitness through their respective sexual functions. Because hermaphrodites express both sexual functions, resolving sexual conflict is potentially more difficult for them. Here, we show that hermaphrodite plants can partially resolve sexual conflict by expressing different trait values in different male and female modules (e.g. different flowers, inflorescences, branches etc.). We analysed the flowering phenology, sex allocation and selection gradients on floral traits of flowers of the andromonoecious plant Pulsatilla alpina, which produces both bisexual and male flowers. Our results indicate that strong protogyny prevents early bisexual flowers from profiting from high siring opportunities early in the reproductive season at a time when male flowers could achieve high siring success. The production of unisexual male flowers thus resolves this sexual conflict because it allows the flowers to express their male function without waiting until after the female function has been performed. Our study illustrates the resolution of sexual conflict arising from phenological constraints via modular divergence in sex allocation. We discuss the extent to which modular variation in sex allocation in the context of other sexual systems may be similarly explained.


Asunto(s)
Flores , Reproducción , Inflorescencia , Plantas , Fenotipo
6.
New Phytol ; 238(2): 874-887, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36683441

RESUMEN

Genetic divergence between species depends on reproductive isolation (RI) due to traits that reduce interspecific mating (prezygotic isolation) or are due to reduced hybrid fitness (postzygotic isolation). Previous research found that prezygotic barriers tend to be stronger than postzygotic barriers, but most studies are based on the evaluation of F1 hybrid fitness in early life cycle stages. We combined field and experimental data to determine the strength of 17 prezygotic and postzygotic reproductive barriers between two Lysimachia species that often co-occur and share pollinators. We assessed postzygotic barriers up to F2 hybrids and backcrosses. The two species showed near complete RI due to the cumulative effect of multiple barriers, with an uneven and asymmetric contribution to isolation. In allopatry, prezygotic barriers contributed more to reduce gene flow than postzygotic barriers, but their contributions were more similar in sympatry. The strength of postzygotic RI was up to three times lower for F1 progeny than for F2 or backcrossed progenies, and RI was only complete when late F1 stages and either F2 or backcrosses were accounted for. Our results thus suggest that the relative strength of postzygotic RI may be underestimated when its effects on late stages of the life cycle are disregarded.


Asunto(s)
Lysimachia , Aislamiento Reproductivo , Hibridación Genética , Reproducción , Fenotipo , Especiación Genética
7.
Ann Bot ; 129(1): 79-86, 2022 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-34668537

RESUMEN

BACKGROUND AND AIMS: Plant reproductive traits are widely understood to be responsive to the selective pressures exerted by pollinators, but there is also increasing evidence for an important role for antagonists such as herbivores in shaping these traits. Many dioecious species show leaky sex expression, with males and females occasionally producing flowers of the opposite sex. Here, we asked to what extent leakiness in sex expression in Mercurialis annua (Euphorbiaceae) might also be plastically responsive to simulated herbivory. This is important because enhanced leakiness in dioecious populations could lead to a shift in both the mating system and in the conditions for transitions between combined and separate sexes. METHODS: We examined the effect of simulated herbivory on the sexual expression of males and females of M. annua in two experiments in which different levels of simulated herbivory led to enhanced leakiness in both sexes. KEY RESULTS: We showed that leaky sex expression in both males and females of the wind-pollinated dioecious herb M. annua is enhanced in response to simulated herbivory, increasing the probability for and the degree of leakiness in both sexes. We also found that leakiness was greater in larger females but not in larger males. CONCLUSIONS: We discuss hypotheses for a possible functional link between herbivory and leaky sex expression, and consider what simulated herbivory-induced leakiness might imply for the evolutionary ecology of plant reproductive systems, especially the breakdown of dioecy and the evolution of hermaphroditism.


Asunto(s)
Euphorbiaceae , Polinización , Euphorbiaceae/fisiología , Flores , Herbivoria , Polinización/fisiología , Reproducción
8.
Am J Bot ; 109(11): 1717-1729, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36194694

RESUMEN

PREMISE: Floral stalk height is known to affect seed dispersal of wind-dispersed grassland species, but it may also affect the attractiveness of flowers and fruits of animal-pollinated and animal-dispersed plants. Stalk height may thus be responsive to selection via interactions with both mutualist pollinators and seed dispersers, but also antagonist florivores and seed predators. In this study, we aimed to determine the effect of pollinators and seed predators on selection on floral stalk height in the insect-pollinated and wind-dispersed, alpine, andromonoecious herb Pulsatilla alpina, whose flowers also vary in their sex allocation and thus in the resources available to both mutualists and antagonists. METHODS: We measured the resource status of individuals in terms of their size and the height of the vegetation surrounding plants of P. alpina at 11 sites. In one population, we recorded floral stalk height over an entire growing season and investigated its association with floral morphology and floral sex allocation (pistil and stamen number) and used leaf-removal manipulations to assess the effect of herbivory on floral stalk height. Finally, in four populations, we quantified phenotypic selection on floral stalk height in four female components of reproductive success before seed dispersal. RESULTS: Stalk height was positively associated with female allocation of the respective flower, the resource status of the individual, and the height of the surrounding vegetation, and negatively affected by leaf removal. Our results point to disruptive selection on stalk height in terms of both selection differentials and selection gradients for fertilization, seed predation, and seed maturation rates and to positive selection on stalk height in terms of a selection differential for mature seed number. CONCLUSIONS: Stalk height of P. alpina is a costly trait that affects female reproductive success via interactions with both mutualists and antagonists. We discuss the interplay between the resource status and selection imposed on female reproductive success and its likely role in the evolution of sex-allocation strategies, especially andromonoecy.


Asunto(s)
Flores , Viento , Animales , Flores/anatomía & histología , Semillas , Insectos , Frutas , Plantas , Polinización
9.
J Evol Biol ; 34(2): 416-422, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33098734

RESUMEN

In dioecious plants, males and females frequently show 'leaky' sex expression, with individuals occasionally producing flowers of the opposite sex. This leaky sex expression may have enabled the colonization of oceanic islands by dioecious plant species, and it is likely to represent the sort of variation upon which selection acts to bring about evolutionary transitions from dioecy to hermaphroditism. Although leakiness is commonly reported for dioecious species, it is not known whether it has plastic component. The question is interesting because males or females with an ability to enhance their leakiness plastically in the absence of mates would have an advantage of being able to produce progeny by self-fertilization. Here, we demonstrate that leaky sex expression in the wind-pollinated dioecious herb Mercurialis annua is plastically responsive to its mating context. We compared experimental populations of females growing either with or without males. Females growing in the absence of males were leakier in their sex expression than controls growing with males, producing more than twice as many male flowers. Our results thus provide a striking instance of plasticity in the reproductive behaviour of plants that is likely adaptive. We consider how females might sense their mating environment as a function of pollen availability, and we discuss possible constraints on the evolution of plasticity in sex expression when the environmental signals that individuals receive are unreliable.


Asunto(s)
Adaptación Fisiológica , Euphorbiaceae/fisiología , Flores/crecimiento & desarrollo , Polinización
10.
J Evol Biol ; 33(9): 1235-1244, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32557922

RESUMEN

It is commonly observed that plant species' range margins are enriched for increased selfing rates and, in otherwise self-incompatible species, for self-compatibility (SC). This has often been attributed to a response to selection under mate and/or pollinator limitation. However, range expansion can also cause reduced inbreeding depression, and this could facilitate the evolution of selfing in the absence of mate or pollinator limitation. Here, we explore this idea using spatially explicit individual-based simulations of a range expansion, in which inbreeding depression, variation in self-incompatibility (SI), and mate availability evolve. Under a wide range of conditions, the simulated range expansion brought about the evolution of selfing after the loss of SI in range-marginal populations. Under conditions of high recombination between the self-incompatibility locus (S-locus) and viability loci, SC remained marginal in the expanded metapopulation and could not invade the range core, which remained self-incompatible. In contrast, under low recombination and migration rates, SC was frequently able to displace SI in the range core by maintaining its association with a genomic background with purged genetic load. We conclude that the evolution of inbreeding depression during a range expansion promotes the evolution of SC at range margins, especially under high rates of recombination.‬.


Asunto(s)
Evolución Biológica , Depresión Endogámica , Modelos Genéticos , Dispersión de las Plantas , Autofecundación , Infertilidad Vegetal/genética
11.
Ecol Lett ; 22(3): 486-497, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30618173

RESUMEN

Dioecy has often broken down in flowering plants, yielding functional hermaphroditism. We reasoned that evolutionary transitions from dioecy to functional hermaphroditism must overcome an inertia of sexual dimorphism, because modified males or females will express the opposite sexual function for which their phenotypes have been optimised. We tested this prediction by assessing the siring success of monoecious individuals of the plant Mercurialis annua with an acquired male function but that are phenotypically still female-like. We found that pollen dispersed by female-like monoecious individuals was ~ 1/3 poorer at siring outcrossed offspring than pollen from monoecious individuals with an alternative male-like inflorescence. We conclude that whereas dioecy might evolve from functional hermaphroditism by conferring upon individuals certain benefits of sexual specialisation, reversion from a strategy of separate sexes to one of combined sexes must overcome constraints imposed by the advantages of sexual dimorphism. The breakdown of dioecy must therefore often be limited to situations in which outcrossing cannot be maintained and where selection favours a capacity for inbreeding by functional hermaphrodites.


Asunto(s)
Evolución Biológica , Magnoliopsida , Caracteres Sexuales , Femenino , Humanos , Masculino , Fitomejoramiento , Polen , Reproducción
12.
Proc Biol Sci ; 286(1905): 20190532, 2019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31213181

RESUMEN

Bateman's principles posit that male fitness varies more, and relies more on mate acquisition, than female fitness. While Bateman's principles should apply to any organism producing gametes of variable sizes, their application to plants is potentially complicated by the high levels of polyandry suspected for plants, and by variation in the spatial distribution of prospective mates. Here we quantify the intensity of sexual selection by classical Bateman metrics using two common gardens of the wind-pollinated dioecious plant Mercurialis annua. Consistent with Bateman's principles, males displayed significantly positive Bateman gradients (a regression of fitness on mate number), whereas the reproductive success of females was independent of their ability to access mates. A large part of male fitness was explained by their mate number, which in turn was associated with males' abilities to disperse pollen. Our results suggest that sexual selection can act in plant species in much the same way as in many animals, increasing the number of mates through traits that promote pollen dispersal.


Asunto(s)
Fenómenos Fisiológicos de las Plantas , Polinización , Selección Genética , Viento , Caracteres Sexuales , Factores Sexuales
13.
New Phytol ; 224(3): 1229-1240, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31505031

RESUMEN

Tristyly is a genetic floral polymorphism in which three floral morphs are maintained at equal frequencies by negative frequency-dependent selection on alleles at two interacting loci. Because dominant alleles at these loci are maintained at a lower frequency than their recessive counterparts, they are more likely to be lost by founder events and genetic drift. Here we examine the hypothesis that dominant alleles under negative frequency-dependent selection should also be more likely to re-invade populations than recessive alleles, due to Haldane's Sieve, because recessive alleles not expressed in a heterozygote state cannot benefit from positive selection when rare. We used computer simulations of tristylous metapopulations to verify that Haldane's Sieve acting on migrants into occupied demes can indeed reverse the bias in allele frequencies expected for small single tristylous populations, particularly in situations of rapid population growth following colonisation. This effect is manifest both locally and at the metapopulation level. Our study illustrates the potential effect of Haldane's Sieve in the novel context of an iconic plant sexual-system polymorphism under the influence of metapopulation dynamics.


Asunto(s)
Flores/anatomía & histología , Flores/genética , Flujo Genético , Polimorfismo Genético , Alelos , Genes Dominantes , Genética de Población , Genotipo , Factores de Tiempo
14.
New Phytol ; 224(3): 1394-1404, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31230365

RESUMEN

The suppression of recombination during sex-chromosome evolution is thought to be favoured by linkage between the sex-determining locus and sexually antagonistic loci, and leads to the degeneration of the chromosome restricted to the heterogametic sex. Despite substantial evidence for genetic degeneration at the sequence level, the phenotypic effects of the earliest stages of sex-chromosome evolution are poorly known. Here, we compare the morphology, viability and fertility between XY and YY individuals produced by crossing seed-producing males in the dioecious plant Mercurialis annua, which has young sex chromosomes with limited X-Y sequence divergence. We found no significant difference in viability or vegetative morphology between XY and YY males. However, electron microscopy revealed clear differences in pollen anatomy, and YY males were significantly poorer sires in competition with their XY counterparts. Our study suggests either that the X chromosome is required for full male fertility in M. annua, or that male fertility is sensitive to the dosage of relevant Y-linked genes. We discuss the possibility that the maintenance of male-fertility genes on the X chromosome might have been favoured in recent population expansions that selected for the ability of females to produce pollen in the absence of males.


Asunto(s)
Cromosomas de las Plantas/genética , Euphorbiaceae/genética , Infertilidad Vegetal/genética , Polen/fisiología , Cromosomas Sexuales/genética , Euphorbiaceae/ultraestructura , Genotipo , Modelos Lineales , Fenotipo , Polen/anatomía & histología , Polen/ultraestructura
15.
Ann Bot ; 123(7): 1119-1131, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-30289430

RESUMEN

BACKGROUND AND AIMS: Sexual dimorphism in morphology, physiology or life history traits is common in dioecious plants at reproductive maturity, but it is typically inconspicuous or absent in juveniles. Although plants of different sexes probably begin to diverge in gene expression both before their reproduction commences and before dimorphism becomes readily apparent, to our knowledge transcriptome-wide differential gene expression has yet to be demonstrated for any angiosperm species. METHODS: The present study documents differences in gene expression in both above- and below-ground tissues of early pre-reproductive individuals of the wind-pollinated dioecious annual herb, Mercurialis annua, which otherwise shows clear sexual dimorphism only at the adult stage. KEY RESULTS: Whereas males and females differed in their gene expression at the first leaf stage, sex-biased gene expression peaked just prior to, and after, flowering, as might be expected if sexual dimorphism is partly a response to differential costs of reproduction. Sex-biased genes were over-represented among putative sex-linked genes in M. annua but showed no evidence for more rapid evolution than unbiased genes. CONCLUSIONS: Sex-biased gene expression in M. annua occurs as early as the first whorl of leaves is produced, is highly dynamic during plant development and varies substantially between vegetative tissues.


Asunto(s)
Euphorbiaceae , Magnoliopsida , Reproducción , Plantones , Caracteres Sexuales
16.
Ann Bot ; 124(1): 165-178, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31098610

RESUMEN

BACKGROUND AND AIMS: Polyploidy has played a major role in the origin of new plant species, probably because of the expansion of polyploid populations in the species' ecological niche, and because reproductive isolation can be established between a new polyploid population and its diploid progenitor species. It is well established that most polyploid species are polyphyletic, with multiple independent origins, and that polyploid genomes may undergo rapid change after their duplication and hybridization associated with their origin. We considered whether multiple independent origins and rapid genomic change might lead to reproductive isolation between polyploid populations of the same ploidy but with potentially different evolutionary histories. METHODS: We tested our hypothesis by assessing differences in DNA content and morphology, the evolution of reproductive isolation, and the phylogenetic placement of two broadly sympatric hexaploid lineages of the wind-pollinated annual plant Mercurialis annua hitherto regarded as populations of the same species. KEY RESULTS: The two hexaploid lineages of M. annua have slightly divergent DNA content, and distinct inflorescence morphology. They also fall into largely different clades of a chloroplast phylogeny and are reproductively isolated from one another. CONCLUSIONS: The distinct evolutionary histories of the two hexaploid lineages of M. annua have contributed to the remarkable reproductive diversity of the species complex. It seems likely that reproductive interference between them will eventually lead to the displacement of one lineage by the other via pollen swamping. Thus, whereas polyploidization can contribute to speciation, diversification might also be compromised by reproductive interference.


Asunto(s)
Infertilidad , Inflorescencia , Humanos , Hibridación Genética , Filogenia , Poliploidía
17.
Am J Bot ; 106(5): 722-732, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31081926

RESUMEN

PREMISE: Plants with separate sexes often show "inconstant" or "leaky" sex expression, with females or males producing a few flowers of the opposite sex. The frequency and degree of such inconstancy may reflect residual hermaphroditic sex allocation after an evolutionary transition from combined to separate sexes. Sex inconstancy also represents a possible first step in the breakdown of dioecy back to hermaphroditism. In the Mercurialis annua (Euphorbiaceae) species complex, monoecy and androdioecy have evolved from dioecy in polyploid populations. Here, we characterize patterns of sex inconstancy in dioecious M. annua and discuss how sex inconstancy may have contributed to the breakdown of separate sexes in the genus. METHODS: We measured sex inconstancy in three common gardens of M. annua over 2 years using a modification of Lloyd's phenotypic gender in terms of frequency and degree, with the degree calibrating inconstancy against the sex allocation of constant males and constant females, yielding a measure of gender that does not depend on the distribution of gender in the population. RESULTS: Unusually for dioecious plants, the frequency of sex inconstancy in M. annua was greater in females, but its degree was greater for males in the 2 years of study. We suggest that this pattern is consistent with the maintenance of inconstancy in dioecious M. annua by selection for reproductive assurance under mate limitation. CONCLUSIONS: Our study illustrates the utility of decomposing measures of sex inconstancy into its frequency and its degree and throws new light on the origin of variation in sexual systems in Mercurialis.


Asunto(s)
Evolución Biológica , Euphorbiaceae/fisiología , Polinización , Flores/fisiología
18.
Am J Bot ; 110(7): e16195, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37272207
19.
New Phytol ; 215(1): 469-478, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28382619

RESUMEN

Because establishing a new population often depends critically on finding mates, individuals capable of uniparental reproduction may have a colonization advantage. Accordingly, there should be an over-representation of colonizing species in which individuals can reproduce without a mate, particularly in isolated locales such as oceanic islands. Despite the intuitive appeal of this colonization filter hypothesis (known as Baker's law), more than six decades of analyses have yielded mixed findings. We assembled a dataset of island and mainland plant breeding systems, focusing on the presence or absence of self-incompatibility. Because this trait enforces outcrossing and is unlikely to re-evolve on short timescales if it is lost, breeding system is especially likely to reflect the colonization filter. We found significantly more self-compatible species on islands than mainlands across a sample of > 1500 species from three widely distributed flowering plant families (Asteraceae, Brassicaceae and Solanaceae). Overall, 66% of island species were self-compatible, compared with 41% of mainland species. Our results demonstrate that the presence or absence of self-incompatibility has strong explanatory power for plant geographical patterns. Island floras around the world thus reflect the role of a key reproductive trait in filtering potential colonizing species in these three plant families.


Asunto(s)
Asteraceae/fisiología , Brassicaceae/fisiología , Reproducción Asexuada , Solanaceae/fisiología , Islas
20.
Mol Ecol ; 26(5): 1225-1241, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28101895

RESUMEN

Dioecy, the coexistence of separate male and female individuals in a population, is a rare but phylogenetically widespread sexual system in flowering plants. While research has concentrated on why and how dioecy evolves from hermaphroditism, the question of why dioecy is rare, despite repeated transitions to it, has received much less attention. Previous phylogenetic and theoretical studies have suggested that dioecy might be an evolutionary dead end. However, recent research indicates that the phylogenetic support for this hypothesis is attributable to a methodological bias and that there is no evidence for reduced diversification in dioecious angiosperms. The relative rarity of dioecy thus remains a puzzle. Here, we review evidence for the hypothesis that dioecy might be rare not because it is an evolutionary dead end, but rather because it easily reverts to hermaphroditism. We review what is known about transitions between hermaphroditism and dioecy, and conclude that there is an important need to consider more widely the possibility of transitions away from dioecy, both from an empirical and a theoretical point of view, and by combining tools from molecular evolution and insights from ecology.


Asunto(s)
Evolución Biológica , Magnoliopsida/genética , Magnoliopsida/fisiología , Evolución Molecular , Filogenia , Reproducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA