Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Intervalo de año de publicación
1.
Microb Pathog ; 195: 106895, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39208965

RESUMEN

Deadly outbreaks among poultry, wild birds, and carnivorous mammals by the highly pathogenic H5N1 virus of the clade 2.3.4.4b have been reported in South America. The increasing virus incidence in various mammal species poses a severe zoonotic and pandemic threat. In Uruguay, the clade 2.3.4.4b viruses were first detected in February 2023, affecting wild birds and backyard poultry. Three months after the first reported case in Uruguay, the disease affected a population of 23 coatis (Nasua) in an ecological park. Most animals became infected, likely directly or indirectly from wild birds in the park, and experienced sudden death. Five animals from the colony survived, and four of them developed antibodies. The genomes of the H5N1 strains infecting coatis belonged to the B3.2 genotype of the clade 2.3.4.4b. Genomes from coatis were closely associated with those infecting backyard poultry, but transmission likely occurred through wild birds. Notable, two genomes have a 627K substitution in the RNA polymerase PB2 subunit, a hallmark amino acid linked to mammalian adaptation. Our findings support the ability of the avian influenza virus of the 2.3.4.4b clade to infect and transmit among terrestrial mammals with high pathogenicity and undergo rapid adaptive changes. It also highlights the coatis' ability to develop immunity and naturally clear the infection.


Asunto(s)
Animales Salvajes , Genoma Viral , Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Mutación , Filogenia , Procyonidae , Animales , Procyonidae/virología , Gripe Aviar/virología , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Genoma Viral/genética , Uruguay , Animales Salvajes/virología , Aves/virología , Infecciones por Orthomyxoviridae/virología , Infecciones por Orthomyxoviridae/veterinaria , Aves de Corral/virología , Genotipo , Mamíferos/virología , América del Sur , Brotes de Enfermedades/veterinaria
2.
Virus Genes ; 60(5): 559-562, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39028407

RESUMEN

The Equid alphaherpesvirus type 1 (EHV-1) infection can have devastating economic consequences in the horse industry due to large-scale outbreaks of abortions, perinatal foal mortality, and myeloencephalopathy. The present study analyzed the genome of two isolates obtained from aborted fetuses in Argentina, E/745/99 and E/1297/07. The E745/99 genome shares 98.2% sequence identity with Ab4, a reference EHV-1 strain. The E/1297/07 genome shares 99.8% identity with NY03, a recombinant strain containing part of ORF64 and part of the intergenic region from Equid alphaherpesvirus-4 (EHV-4). The E/1297/07 genome has the same breakpoints as other United States and Japanese recombinants, including NY03. The recombinant regions have varying numbers of tandem repeat sequences and different minor parental sequences (EHV-4), suggesting distinct origins of the recombinant events. These are the first complete genomes of EHV-1 from Argentina and South America available in the Databases.


Asunto(s)
Genoma Viral , Infecciones por Herpesviridae , Herpesvirus Équido 1 , Filogenia , Argentina , Herpesvirus Équido 1/genética , Herpesvirus Équido 1/aislamiento & purificación , Herpesvirus Équido 1/clasificación , Animales , Genoma Viral/genética , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/virología , Caballos/virología , Recombinación Genética , Enfermedades de los Caballos/virología , Sistemas de Lectura Abierta/genética , Secuenciación Completa del Genoma , ADN Viral/genética
3.
Avian Pathol ; 53(5): 430-438, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38742448

RESUMEN

The infectious bursal disease virus (IBDV) is a significant pathogen affecting the poultry industry worldwide. Its epidemiological history has been marked by the emergence of strains with different antigenic, pathogenic, and genetic features, some of which have shown notable spread potential. The A2dB1b genotype, also known as novel variant, has become widespread and gained increased relevance in IBDV epidemiology. This genotype was described in China in the 2010s and rapidly spread in Asia and Africa. The present study describes the circulation of the A2dB1b genotype in Argentina. Applying a next-generation sequencing approach, we obtained the complete coding sequence of 18 Argentine viruses. The high level of genomic homogeneity observed amongst these viruses, their monophyletic clustering in both partial and complete segments A and B derived phylogenies, and their close relatedness to some Chinese strains suggest that a unique transcontinental spread event from China to Argentina occurred recently. The apparent success of the A2dB1b genotype spreading throughout Asia, Africa, and South America may partially be due to specific amino acid characteristics. Novel residues in the hypervariable region of VP2 may help A2dB1b IBDVs evade the protection elicited by the applied commercial vaccines. Our findings underscore the importance of continuous characterization of field samples and evaluation of the control measures currently applied to fight against this specific IBDV genotype.


Asunto(s)
Infecciones por Birnaviridae , Pollos , Genoma Viral , Genotipo , Virus de la Enfermedad Infecciosa de la Bolsa , Filogenia , Enfermedades de las Aves de Corral , Virus de la Enfermedad Infecciosa de la Bolsa/genética , Animales , Argentina/epidemiología , Infecciones por Birnaviridae/veterinaria , Infecciones por Birnaviridae/virología , Infecciones por Birnaviridae/epidemiología , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/epidemiología , Pollos/virología , China/epidemiología , Secuenciación de Nucleótidos de Alto Rendimiento/veterinaria , Genómica , Pueblos del Este de Asia
4.
Arch Virol ; 168(3): 87, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36786897

RESUMEN

A methodological approach based on reverse transcription (RT)-multiplex PCR followed by next-generation sequencing (NGS) was implemented to identify multiple respiratory RNA viruses simultaneously. A convenience sampling from respiratory surveillance and SARS-CoV-2 diagnosis in 2020 and 2021 in Montevideo, Uruguay, was analyzed. The results revealed the cocirculation of SARS-CoV-2 with human rhinovirus (hRV) A, B and C, human respiratory syncytial virus (hRSV) B, influenza A virus, and metapneumovirus B1. SARS-CoV-2 coinfections with hRV or hRSV B and influenza A virus coinfections with hRV C were identified in adults and/or children. This methodology combines the benefits of multiplex genomic amplification with the sensitivity and information provided by NGS. An advantage is that additional viral targets can be incorporated, making it a helpful tool to investigate the cocirculation and coinfections of respiratory viruses in pandemic and post-pandemic contexts.


Asunto(s)
COVID-19 , Coinfección , Virus de la Influenza A , Gripe Humana , Virus ARN , Virus Sincitial Respiratorio Humano , Infecciones del Sistema Respiratorio , Niño , Adulto , Humanos , COVID-19/diagnóstico , COVID-19/epidemiología , Pandemias , ARN , Prueba de COVID-19 , Coinfección/diagnóstico , Coinfección/epidemiología , SARS-CoV-2/genética , Virus ARN/genética , Virus Sincitial Respiratorio Humano/genética , Virus de la Influenza A/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Infecciones del Sistema Respiratorio/diagnóstico , Infecciones del Sistema Respiratorio/epidemiología , Gripe Humana/epidemiología
5.
Mem Inst Oswaldo Cruz ; 117: e220177, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36651456

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in domestic animals have occurred from the beginning of the pandemic to the present time. Therefore, from the perspective of One Health, investigating this topic is of global scientific and public interest. OBJECTIVES: The present study aimed to determine the presence of SARS-CoV-2 in domestic animals whose owners had coronavirus disease 2019 (COVID-19). METHODS: Nasopharyngeal and faecal samples were collected in Uruguay. Using quantitative polymerase chain reaction (qPCR), we analysed the presence of the SARS-CoV-2 genome. Complete genomes were obtained using ARTIC enrichment and Illumina sequencing. Sera samples were used for virus neutralisation assays. FINDINGS: SARS-CoV-2 was detected in an asymptomatic dog and a cat. Viral genomes were identical and belonged to the P.6 Uruguayan SARS-CoV-2 lineage. Only antiserum from the infected cat contained neutralising antibodies against the ancestral SARS-CoV-2 strain and showed cross-reactivity against the Delta but not against the B.A.1 Omicron variant. MAIN CONCLUSIONS: Domestic animals and the human SARS-CoV-2 P.6 variant comparison evidence a close relationship and gene flow between them. Different SARS-CoV-2 lineages infect dogs and cats, and no specific variants are adapted to domestic animals. This first record of SARS-CoV-2 in domestic animals from Uruguay supports regular surveillance of animals close to human hosts.


Asunto(s)
COVID-19 , Enfermedades de los Gatos , Enfermedades de los Perros , Gatos , Animales , Humanos , Perros , SARS-CoV-2/genética , Uruguay , Enfermedades de los Perros/diagnóstico , Enfermedades de los Perros/epidemiología , Animales Domésticos
6.
Mem Inst Oswaldo Cruz ; 116: e210259, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35137904

RESUMEN

BACKGROUND: Panstrongylus rufotuberculatus (Hemiptera-Reduviidae) is a triatomine species with a wide geographic distribution and a broad phenotypic variability. In some countries, this species is found infesting and colonising domiciliary ecotopes representing an epidemiological risk factor as a vector of Trypanosoma cruzi, etiological agent of Chagas disease. In spite of this, little is known about P. rufotuberculatus genetic diversity. METHODS: Cytogenetic studies and DNA sequence analyses of one nuclear (ITS-2) and two mitochondrial DNA sequences (cyt b and coI) were carried out in P. rufotuberculatus individuals collected in Bolivia, Colombia, Ecuador and Mexico. Moreover, a geometric morphometrics study was applied to Bolivian, Colombian, Ecuadorian and French Guiana samples. OBJECTIVES: To explore the genetic and phenetic diversity of P. rufotuberculatus from different countries, combining chromosomal studies, DNA sequence analyses and geometric morphometric comparisons. FINDINGS: We found two chromosomal groups differentiated by the number of X chromosomes and the chromosomal position of the ribosomal DNA clusters. In concordance, two main morphometric profiles were detected, clearly separating the Bolivian sample from the other ones. Phylogenetic DNA analyses showed that both chromosomal groups were closely related to each other and clearly separated from the remaining Panstrongylus species. High nucleotide divergence of cyt b and coI fragments were observed among P. rufotuberculatus samples from Bolivia, Colombia, Ecuador and Mexico (Kimura 2-parameter distances higher than 9%). MAIN CONCLUSIONS: Chromosomal and molecular analyses supported that the two chromosomal groups could represent different closely related species. We propose that Bolivian individuals constitute a new Panstrongylus species, being necessary a detailed morphological study for its formal description. The clear morphometric discrimination based on the wing venation pattern suggests such morphological description might be conclusive.


Asunto(s)
Enfermedad de Chagas , Heterópteros , Panstrongylus , Triatoma , Animales , Humanos , Insectos Vectores/genética , Panstrongylus/genética , Filogenia
7.
Mem Inst Oswaldo Cruz ; 116: e210275, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35019072

RESUMEN

BACKGROUND: Evolutionary changes in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) include indels in non-structural, structural, and accessory open reading frames (ORFs) or genes. OBJECTIVES: We track indels in accessory ORFs to infer evolutionary gene patterns and epidemiological links between outbreaks. METHODS: Genomes from Coronavirus disease 2019 (COVID-19) case-patients were Illumina sequenced using ARTIC_V3. The assembled genomes were analysed to detect substitutions and indels. FINDINGS: We reported the emergence and spread of a unique 4-nucleotide deletion in the accessory ORF6, an interesting gene with immune modulation activity. The deletion in ORF6 removes one repeat unit of a two 4-nucleotide repeat, which shows that directly repeated sequences in the SARS-CoV-2 genome are associated with indels, even outside the context of extended repeat regions. The 4-nucleotide deletion produces a frameshifting change that results in a protein with two inserted amino acids, increasing the coding information of this accessory ORF. Epidemiological and genomic data indicate that the deletion variant has a single common ancestor and was initially detected in a health care outbreak and later in other COVID-19 cases, establishing a transmission cluster in the Uruguayan population. MAIN CONCLUSIONS: Our findings provide evidence for the origin and spread of deletion variants and emphasise indels' importance in epidemiological studies, including differentiating consecutive outbreaks occurring in the same health facility.


Asunto(s)
COVID-19 , Sistemas de Lectura Abierta , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/virología , Genoma Viral , Humanos , SARS-CoV-2/genética , Eliminación de Secuencia , Uruguay/epidemiología
8.
Avian Pathol ; 50(4): 311-320, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33928817

RESUMEN

Chicken anaemia virus (CAV) is a widespread pathogen that causes immunosuppression in chickens. The virus-induced immunosuppression often results in secondary infections and a sub-optimal response to vaccinations, leading to high mortality rates and significant economic losses in the poultry industry. The small circular ssDNA genome (2.3 kb) has three partially overlapping genes: vp1, vp2 and vp3. VP1 capsid protein is highly variable and contains the neutralizing epitopes. Here, we analysed CAV strains from Uruguay using the full-length vp1 gene and performed a global comparative analysis to provide new evidence about the origin, dispersion and genetic variability of the virus. The phylogenetic analysis classified CAV in three or four major clades. Two clades (II and III) grouped most of the strains circulating worldwide including the Uruguayan strains. The phylodynamic analyses indicated that CAV emerged in the early 1900s and diverged to originate clade II and III. This early period of viral emergence was characterised by local diversification promoted by the extremely high substitution rate inferred for the virus (3.8 × 10-4 substitutions/site/year). Later, the virus underwent a global spreading by intra- and inter-continental migrations that correlates with a significant rise in the effective population size. In South America, CAV was introduced in three different migratory events and spread across the continent. Our findings suggest that the current CAV distribution is the consequence of its continuous expansion capability that homogenizes the populations and prevents the detection of clear temporal and geographic patterns of evolution in most strains.RESEARCH HIGHLIGHTS Current strains of chicken anaemia virus emerged in Asia in the early 1900s.Chicken anaemia virus has a high substitution rate.The phylogenetic analysis classified chicken anaemia virus in four major clades.Evolution in South America was characterized by long migration and local spreading.


Asunto(s)
Virus de la Anemia del Pollo , Animales , Virus de la Anemia del Pollo/genética , Pollos , Filogenia , América del Sur/epidemiología
9.
Mol Cell Probes ; 43: 58-63, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30447279

RESUMEN

Infectious bursal disease virus (IBDV) and chicken anemia virus (CAV) cause relevant immunosuppressive diseases in poultry. Clinical diagnosis of these viruses is challenging given the different disease presentations and the frequent occurrence of co-infections with other pathogens. Here, we standardized and validated simplex and duplex RT-qPCR assays for the straightforward detection of IBDV and CAV. The qPCR assays are based on primers and hydrolysis probes that target highly conserved regions of IBDV and CAV genomes. Analytical sensitivity tests on 10-fold serial dilutions containing 100-108 viral genomes indicated that the simplex assays have good determination coefficients and efficiency and detect a wide range of virus doses (102 to 108 molecules copies/reactions). The relatively small values of intra- and inter-assay variability ensure the repeatability and support its reproducibility in different diagnostic and research facilities. The assays are also efficient tools for absolute quantification as indicated by the analytical performance analysis. The assays have an excellent specificity and absence of cross-reactivity with negative samples, or with other common avian viruses. The simplex IBDV and CAV assays use probes labelled with different dyes (FAM and HEX) and can be multiplexed for the simultaneous detection of both viruses. The determination coefficients, PCR efficiencies, and relatively small intra- and inter-assay variability were comparable to the simplex assays. This duplex assay is the first to simultaneously detect IBDV and CAV using the same RNA extraction from the bursa of Fabricius in a single and straightforward step. Therefore, this method is time saving, provides quantitative results for both targets without any cross-reaction, and reduces the risk of carrying-over contaminations. The qPCR assays here developed can be used in simplex and duplex formats for detection and quantification of large number of samples with reliable sensitivity and specificity. These tools are expected to improve surveillance and control of these ubiquitous viruses.


Asunto(s)
Virus de la Anemia del Pollo/aislamiento & purificación , Pollos/virología , Virus de la Enfermedad Infecciosa de la Bolsa/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Animales , Estándares de Referencia
10.
Avian Pathol ; 48(3): 270-277, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30761909

RESUMEN

Infectious bronchitis virus (IBV) is a persistent sanitary problem for the South American poultry industry despite extensive vaccination. The IBV single-stranded RNA genome has high rates of mutation and recombination that generate a notorious virus variability. Since most IBV vaccines are type-specific, there is a need for constant surveillance of the circulating lineages and knowledge about their genetic and antigenic properties. Here we present an integrative analysis that provides the pattern of genetic variation of the South American IBV strains and information about their antigenic characteristics. The genetic analysis was performed using the S1 complete coding sequences of all available South American strains, including newly obtained Argentine and Uruguayan field samples. Our phylogenetic and phylodynamic analyses evidence that three main lineages (GI-1, GI-11 and GI-16) are extensively circulating in South American flocks. Strains of the GI-1 lineage (Massachusetts-type) were detected in Argentina, Brazil, Chile and Colombia. The GI-11 lineage is an exclusively South American lineage that emerged in the 1950s, and is the predominant lineage in Brazil and Uruguay at present. The GI-16 lineage emerged around 1979, and is currently circulating in most South American territories (Argentina, Chile, Uruguay, Colombia and Peru). The virus cross-neutralization test performed here reveals very low antigenic relatedness between GI-11 and GI-16 lineages (i.e. they are different serotypes). The results of this study extend our knowledge about the present and past IBV variability in South America and provide relevant elements to improve the control programmes by considering the genetic and antigenic attributes of IBV.


Asunto(s)
Pollos/virología , Infecciones por Coronavirus/veterinaria , Virus de la Bronquitis Infecciosa/inmunología , Enfermedades de las Aves de Corral/prevención & control , Animales , Variación Antigénica/genética , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/virología , Genotipo , Virus de la Bronquitis Infecciosa/genética , Enfermedades de las Aves de Corral/virología , América del Sur
11.
Avian Pathol ; 48(3): 245-254, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30663339

RESUMEN

Infectious bursal disease virus (IBDV) is the causative agent of a highly contagious immunosuppressive disease affecting young chickens. The recently described "distinct IBDV" (dIBDV) genetic lineage encompasses a group of worldwide distributed strains that share conserved genetic characteristics in both genome segments making them unique within IBDV strains. Phenotypic characterization of these strains is scarce and limited to Asiatic and European strains collected more than 15 years ago. The present study aimed to assess the complete and comprehensive phenotypic characterization of a recently collected South American dIBDV strain (1/chicken/URY/1302/16). Genetic analyses of both partial genome segments confirmed that this strain belongs to the dIBDV genetic lineage and that it is not a reassortant. Antigenic analysis with monoclonal antibodies indicated that this strain has a particular antigenic profile, similar to that obtained in a dIBDV strain from Europe (80/GA), which differs from those previously found in the traditional classic, variant and very virulent strains. Chickens infected with the South American dIBDV strain showed subclinical infections but had a marked bursal atrophy. Further analysis using Newcastle disease virus-immunized chickens, previously infected with the South American and European dIBDV strains, demonstrated their severe immunosuppressive effect. These results indicate that dIBDV strains currently circulating in South America can severely impair the immune system of chickens, consequently affecting the local poultry industry. Our study provides new insights into the characteristics and variability of this global genetic lineage and is valuable to determine whether specific control measures are required for the dIBDV lineage. Research Highlights A South American strain of the dIBDV lineage was phenotypically characterized. The strain produced subclinical infections with a marked bursal atrophy. Infected chickens were severely immunosuppressed. The dIBDV strains are antigenically divergent from other IBDV lineages.


Asunto(s)
Infecciones por Birnaviridae/veterinaria , Pollos/virología , Virus de la Enfermedad Infecciosa de la Bolsa/genética , Virus de la Enfermedad Infecciosa de la Bolsa/inmunología , Enfermedades de las Aves de Corral/virología , Animales , Infecciones por Birnaviridae/inmunología , Infecciones por Birnaviridae/virología , Pollos/inmunología , Genotipo , Inmunogenicidad Vacunal , Terapia de Inmunosupresión/veterinaria , Virus de la Enfermedad Infecciosa de la Bolsa/aislamiento & purificación , Virus de la Enfermedad Infecciosa de la Bolsa/patogenicidad , Fenotipo , Enfermedades de las Aves de Corral/inmunología , Virulencia
12.
Genet Mol Biol ; 41(1 suppl 1): 198-205, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29668013

RESUMEN

Hypermutable strains of Drosophila simulans have been studied for 20 years. Several mutants were isolated and characterized, some of which had phenotypes associated with alteration in development; for example, showing ectopic legs with eyes being expressed in place of antennae. The causal agent of this hypermutability is a non-autonomous hobo-related sequence (hoboVA). Around 100 mobilizable copies of this element are present in the D. simulans genome, and these are likely mobilized by the autonomous and canonical hobo element. We have shown that hoboVA has transcription factor binding sites for the developmental genes, hunchback and even-skipped, and that this transposon is expressed in embryos, following the patterns of these genes. We suggest that hobo and hobo-related elements can be material for the emergence of new regulatory networks.

13.
Avian Pathol ; 46(2): 150-156, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27924642

RESUMEN

The infectious bursal disease virus (IBDV) is a major health threat to the world's poultry industry despite intensive controls including proper biosafety practices and vaccination. IBDV (Avibirnavirus, Birnaviridae) is a non-enveloped virus with a bisegmented double-stranded RNA genome. The virus is traditionally classified into classic, variant and very virulent strains, each with different epidemiological relevance and clinical implications. Recently, a novel worldwide spread genetic lineage was described and denoted as distinct (d) IBDV. Here, we report the development and validation of a reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assay for the specific detection of dIBDVs in the global poultry industry. The assay employs a TaqMan-MGB probe that hybridizes with a unique molecular signature of dIBDV. The assay successfully detected all the assessed strains belonging to the dIBDV genetic lineage, showing high specificity and absence of cross-reactivity with non-dIBDVs, IBDV-negative samples and other common avian viruses. Using serial dilutions of in vitro-transcribed RNA we obtained acceptable PCR efficiencies and determination coefficients, and relatively small intra- and inter-assay variability. The assay demonstrated a wide dynamic range between 103 and 108 RNA copies/reaction. This rapid, specific and quantitative assay is expected to improve IBDV surveillance and control worldwide and to increase our understanding of the molecular epidemiology of this economically detrimental poultry pathogen.


Asunto(s)
Infecciones por Birnaviridae/veterinaria , Pollos/virología , Virus de la Enfermedad Infecciosa de la Bolsa/clasificación , Enfermedades de las Aves de Corral/diagnóstico , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria , Proteínas Estructurales Virales/genética , Animales , Infecciones por Birnaviridae/diagnóstico , Infecciones por Birnaviridae/virología , Bolsa de Fabricio/virología , Cartilla de ADN/genética , Sondas de ADN , Virus de la Enfermedad Infecciosa de la Bolsa/genética , Virus de la Enfermedad Infecciosa de la Bolsa/aislamiento & purificación , Enfermedades de las Aves de Corral/virología , ARN Bicatenario/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Sensibilidad y Especificidad , Alineación de Secuencia
14.
J Gen Virol ; 96(Pt 6): 1340-1346, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25667323

RESUMEN

Infectious bronchitis virus (IBV) is a coronavirus of chickens that causes great economic losses to the global poultry industry. The present study focuses on South American IBVs and their genetic relationships with global strains. We obtained full-length sequences of the S1 coding region and N gene of IBV field isolates from Uruguay and Argentina, and performed Phylodynamic analysis to characterize the strains and estimate the time of the most recent common ancestor. We identified two major South American genotypes, which were here denoted South America I (SAI) and Asia/South America II (A/SAII). The SAI genotype is an exclusive South American lineage that emerged in the 1960s. The A/SAII genotype may have emerged in Asia in approximately 1995 before being introduced into South America. Both SAI and A/SAII genotype strains clearly differ from the Massachusetts strains that are included in the vaccine formulations being used in most South American countries.


Asunto(s)
Infecciones por Coronavirus/veterinaria , Variación Genética , Virus de la Bronquitis Infecciosa/clasificación , Proteínas de la Nucleocápside/genética , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/virología , Glicoproteína de la Espiga del Coronavirus/genética , Animales , Argentina/epidemiología , Pollos , Análisis por Conglomerados , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Proteínas de la Nucleocápside de Coronavirus , Genotipo , Virus de la Bronquitis Infecciosa/genética , Virus de la Bronquitis Infecciosa/aislamiento & purificación , Epidemiología Molecular , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN , Uruguay/epidemiología
15.
Mol Phylogenet Evol ; 92: 147-54, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26151219

RESUMEN

Canine distemper virus (CDV) (Paramyxoviridae-Morbillivirus) is a worldwide spread virus causing a fatal systemic disease in a broad range of carnivore hosts. In this study we performed Bayesian inferences using 208 full-length hemagglutinin gene nucleotide sequences isolated in 16 countries during 37 years (1975-2011). The estimated time to the most recent common ancestor suggested that current CDV strains emerged in the United States in the 1880s. This ancestor diversified through time into two ancestral clades, the current America 1 lineage that recently spread to Asia, and other ancestral clade that diversified and spread worldwide to originate the remaining eight lineages characterized to date. The spreading of CDV was characterized by several migratory events with posterior local differentiation, and expansion of the virus host range. A significant genetic flow between domestic and wildlife hosts is displayed; being domestic hosts the main viral reservoirs worldwide. This study is an extensive and integrative description of spatio/temporal population dynamics of CDV lineages that provides a novel evolutionary paradigm about the origin and dissemination of the current strains of the virus.


Asunto(s)
Virus del Moquillo Canino/genética , Moquillo/transmisión , Internacionalidad , Filogeografía , Américas , Animales , Asia , Secuencia de Bases , Moquillo/virología , Perros , Hemaglutininas/genética , Especificidad del Huésped/genética , Filogenia , Factores de Tiempo
16.
Avian Pathol ; 44(3): 212-21, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25746415

RESUMEN

Infectious bursal disease virus (IBDV) is one of the most concerning health problems for world poultry production. IBDVs comprise four well-defined evolutionary lineages known as classic (c), classic attenuated (ca), variant (va) and very virulent (vv) strains. Here, we characterized IBDVs from South America by the genetic analysis of both segments of the viral genome. Viruses belonging to c, ca and vv strains were unambiguously classified by the presence of molecular markers and phylogenetic analysis of the hypervariable region of the vp2 gene. Notably, the majority of the characterized viruses (9 out of 15) could not be accurately assigned to any of the previously described strains and were then denoted as distinct (d) IBDVs. These dIBDVs constitute an independent evolutionary lineage that also comprises field IBDVs from America, Europe and Asia. The hypervariable VP2 sequence of dIBDVs has a unique and conserved molecular signature (272T, 289P, 290I and 296F) that is a diagnostic character for classification. A discriminant analysis of principal components (DAPC) also identified the dIBDVs as a cluster of genetically related viruses separated from the typical strains. DAPC and genetic distance estimation indicated that the dIBDVs are one of the most genetically divergent IBDV lineages. The vp1 gene of the dIBDVs has non-vvIBDV markers and unique nucleotide and amino acid features that support their divergence in both genomic segments. The present study suggests that the dIBDVs comprise a neglected, highly divergent lineage that has been circulating in world poultry production since the early time of IBDV emergence.


Asunto(s)
Infecciones por Birnaviridae/genética , Evolución Molecular , Genoma Viral/genética , Virus de la Enfermedad Infecciosa de la Bolsa/genética , Enfermedades de las Aves de Corral/virología , Animales , Secuencia de Bases , Análisis Discriminante , Virus de la Enfermedad Infecciosa de la Bolsa/clasificación , Modelos Genéticos , Datos de Secuencia Molecular , Aves de Corral , Análisis de Componente Principal , Análisis de Secuencia de ADN/veterinaria , América del Sur , Especificidad de la Especie , Proteínas Estructurales Virales/genética
17.
Genetica ; 142(5): 397-403, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25134938

RESUMEN

Comparative genomics in Drosophila began in 1940, when Muller stated that the ancestral haploid karyotype of this genus is constituted by five acrocentric chromosomes and one dot chromosome, named A to F elements. In some species of the willistoni group such as Drosophila willistoni and D. insularis, the F element, instead of a dot chromosome, has been incorporated into the E element, forming chromosome III (E + F fusion). The aim of this study was to investigate the scope of the E + F fusion in the willistoni group, evaluating six other species. Fluorescent in situ hybridization was used to locate two genes of the F element previously studied-cubitus interruptus (ci) and eyeless (ey)-in species of the willistoni and bocainensis subgroups. Moreover, polytene chromosome photomaps corresponding to the F element (basal portion of chromosome III) were constructed for each species studied. In D. willistoni, D. paulistorum and D. equinoxialis, the ci gene was located in subSectction 78B and the ey gene in 78C. In D. tropicalis, ci was located in subSection 76B and ey in 76C. In species of the bocainensis subgroup, ci and ey were localized, respectively, at subsections 76B and 76C in D. nebulosa and D. capricorni, and 76A and 76C in D. fumipennis. Despite the differences in the subsection numbers, all species showed the same position for ci and ey. The results confirm the synteny of E + F fusion in willistoni and bocainensis subgroups, and allow estimating the occurrence of this event at 15 Mya, at least.


Asunto(s)
Mapeo Cromosómico/métodos , Cromosomas de Insectos/genética , Drosophila/genética , Genes de Insecto/genética , Animales , Proteínas de Unión al ADN/genética , Drosophila/clasificación , Proteínas de Drosophila/genética , Evolución Molecular , Hibridación Fluorescente in Situ , Microscopía Fluorescente , Cromosomas Politénicos/genética , Especificidad de la Especie , Sintenía , Factores de Tiempo , Factores de Transcripción/genética
18.
Virus Genes ; 48(3): 474-8, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24647552

RESUMEN

Canine distemper virus (CDV, Paramyxoviridae, Morbillivirus) is the causative agent of a severe infectious disease affecting terrestrial and marine carnivores worldwide. Phylogenetic relationships and the genetic variability of the hemagglutinin (H) protein and the fusion protein signal-peptide (Fsp) allow for the classification of field strains into genetic lineages. Currently, there are nine CDV lineages worldwide, two of them co-circulating in South America. Using the Fsp-coding region, we analyzed the genetic variability of strains from Uruguay, Brazil, and Ecuador, and compared them with those described previously in South America and other geographical areas. The results revealed that the Brazilian and Uruguayan strains belong to the already described South America lineage (EU1/SA1), whereas the Ecuadorian strains cluster in a new clade, here named South America 3, which may represent the third CDV lineage described in South America.


Asunto(s)
Virus del Moquillo Canino/genética , Virus del Moquillo Canino/aislamiento & purificación , Moquillo/virología , Variación Genética , Secuencia de Aminoácidos , Animales , Virus del Moquillo Canino/química , Virus del Moquillo Canino/clasificación , Perros , Hemaglutininas Virales/química , Hemaglutininas Virales/genética , Datos de Secuencia Molecular , Tipificación Molecular , Filogenia , Alineación de Secuencia , América del Sur
19.
Genet Mol Biol ; 37(2): 375-80, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25071402

RESUMEN

DOMESTIC BUFFALOES ARE DIVIDED INTO TWO GROUP BASED ON CYTOGENETIC CHARACTERISTICS AND HABITATS: the "river buffaloes" with 2n = 50 and the "swamp buffaloes", 2n = 48. Nevertheless, their hybrids are viable, fertile and identified by a 2n = 49. In order to have a better characterization of these different cytotypes of buffaloes, and considering that NOR-bearing chromosomes are involved in the rearrangements responsible for the karyotypic differences, we applied silver staining (Ag-NOR) and performed fluorescent in situ hybridization (FISH) experiments using 18S rDNA as probe. Metaphases were obtained through blood lymphocyte culture of 21 individuals, including river, swamp and hybrid cytotypes. Ag-NOR staining revealed active NORs on six chromosome pairs (3p, 4p, 6, 21, 23, 24) in the river buffaloes, whereas the swamp buffaloes presented only five NOR-bearing pairs (4p, 6, 20, 22, 23). The F1 cross-breed had 11 chromosomes with active NORs, indicating expression of both parental chromosomes. FISH analysis confirmed the numerical divergence identified with Ag-NOR. This result is explained by the loss of the NOR located on chromosome 4p in the river buffalo, which is involved in the tandem fusion with chromosome 9 in this subspecies. A comparison with the ancestral cattle karyotype suggests that the NOR found on the 3p of the river buffalo may have originated from a duplication of ribosomal genes, resulting in the formation of new NOR sites in this subspecies.

20.
Infect Genet Evol ; 123: 105633, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38969193

RESUMEN

Canine parvovirus (CPV) is a significant pathogen in domestic dogs worldwide, causing a severe and often fatal disease. CPV comprises three antigenic variants (2a, 2b, and 2c) distributed unevenly among several phylogenetic groups. The present study compared genetic variability and evolutionary patterns in South American CPV populations. We collected samples from puppies suspected of CPV infection in the neighboring Argentina and Uruguay. Antigenic variants were preliminarily characterized using PCR-RFLP and partial vp2 sequencing. Samples collected in Argentina during 2008-2018 were mainly of the 2c variant. In the Uruguayan strains (2012-2019), the 2a variant wholly replaced the 2c from 2014. Full-length coding genome and vp2 sequences were compared with global strains. The 2c and 2a strains fell by phylogenetic analysis into two phylogroups (Europe I and Asia I). The 2c strains from Argentina and Uruguay clustered in the Europe I group, with strains from America, Europe, Asia, and Oceania. Europe I is widely distributed in South America in the dog population and is also being detected in the wildlife population. The 2a strains from Uruguay formed the distinct Asia I group with strains from Asia, Africa, America, and Oceania. This Asia I group is increasing its distribution in South America and worldwide. Our research reveals high genetic variability in adjacent synchronic samples and different evolutionary patterns in South American CPV. We also highlight the importance of ancestral migrations and local diversification in the evolution of global CPV strains.


Asunto(s)
Enfermedades de los Perros , Genómica , Infecciones por Parvoviridae , Parvovirus Canino , Filogenia , Parvovirus Canino/genética , Parvovirus Canino/clasificación , Animales , Perros , Infecciones por Parvoviridae/veterinaria , Infecciones por Parvoviridae/virología , Infecciones por Parvoviridae/epidemiología , Enfermedades de los Perros/virología , Enfermedades de los Perros/epidemiología , Genómica/métodos , Variación Genética , América del Sur/epidemiología , Genoma Viral , Uruguay/epidemiología , Argentina/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA