Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nat Immunol ; 16(3): 318-325, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25621826

RESUMEN

Long noncoding RNAs are emerging as important regulators of cellular functions, but little is known of their role in the human immune system. Here we investigated long intergenic noncoding RNAs (lincRNAs) in 13 subsets of T lymphocytes and B lymphocytes by next-generation sequencing-based RNA sequencing (RNA-seq analysis) and de novo transcriptome reconstruction. We identified over 500 previously unknown lincRNAs and described lincRNA signatures. Expression of linc-MAF-4, a chromatin-associated lincRNA specific to the TH1 subset of helper T cells, was inversely correlated with expression of MAF, a TH2-associated transcription factor. Downregulation of linc-MAF-4 skewed T cell differentiation toward the TH2 phenotype. We identified a long-distance interaction between the genomic regions of the gene encoding linc-MAF-4 and MAF, where linc-MAF-4 associated with the chromatin modifiers LSD1 and EZH2; this suggested that linc-MAF-4 regulated MAF transcription through the recruitment of chromatin modifiers. Our results demonstrate a key role for lincRNA in T lymphocyte differentiation.


Asunto(s)
Factores de Transcripción Maf/genética , ARN Largo no Codificante/genética , Linfocitos T/inmunología , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Regulación hacia Abajo/genética , Regulación hacia Abajo/inmunología , Humanos , Factores de Transcripción Maf/inmunología , ARN Largo no Codificante/inmunología , Transcripción Genética/genética , Transcripción Genética/inmunología , Transcriptoma/genética , Transcriptoma/inmunología
2.
Immunity ; 45(5): 1135-1147, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27851914

RESUMEN

Tumor-infiltrating regulatory T lymphocytes (Treg) can suppress effector T cells specific for tumor antigens. Deeper molecular definitions of tumor-infiltrating-lymphocytes could thus offer therapeutic opportunities. Transcriptomes of T helper 1 (Th1), Th17, and Treg cells infiltrating colorectal or non-small-cell lung cancers were compared to transcriptomes of the same subsets from normal tissues and validated at the single-cell level. We found that tumor-infiltrating Treg cells were highly suppressive, upregulated several immune-checkpoints, and expressed on the cell surfaces specific signature molecules such as interleukin-1 receptor 2 (IL1R2), programmed death (PD)-1 Ligand1, PD-1 Ligand2, and CCR8 chemokine, which were not previously described on Treg cells. Remarkably, high expression in whole-tumor samples of Treg cell signature genes, such as LAYN, MAGEH1, or CCR8, correlated with poor prognosis. Our findings provide insights into the molecular identity and functions of human tumor-infiltrating Treg cells and define potential targets for tumor immunotherapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/inmunología , Neoplasias Colorrectales/inmunología , Neoplasias Pulmonares/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos T Reguladores/inmunología , Anciano , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Separación Celular , Neoplasias Colorrectales/mortalidad , Femenino , Citometría de Flujo , Perfilación de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Neoplasias Pulmonares/mortalidad , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Pronóstico , Transcriptoma
3.
Immunol Rev ; 253(1): 82-96, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23550640

RESUMEN

CD4(+) T lymphocytes orchestrate adaptive immune responses by differentiating into various subsets of effector T cells such as T-helper 1 (Th1), Th2, Th17, and regulatory T cells. These subsets have been generally described by master transcription factors that dictate the expression of cytokines and receptors, which ultimately define lymphocyte effector functions. However, the view of T-lymphocyte subsets as stable and terminally differentiated lineages has been challenged by increasing evidence of functional plasticity within CD4(+) T-cell subsets, which implies flexible programming of effector functions depending on time and space of T-cell activation. An outstanding question with broad basic and traslational implications relates to the mechanisms, besides transcriptional regulation, which define the plasticity of effector functions. In this study, we discuss the emerging role of regulatory non-coding RNAs in T-cell differentiation and plasticity. Not only microRNAs have been proven to be important for CD4(+) T-cell differentiation, but it is also likely that the overall T-cell functioning is the result of a multilayered network composed by coding RNAs as well as by short and long non-coding RNAs. The integrated study of all the nodes of this network will provide a comprehensive view of the molecular mechanisms underlying T-cell functions in health and disease.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , MicroARNs/inmunología , ARN Largo no Codificante/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Reguladores/inmunología , Inmunidad Adaptativa , Animales , Comunicación Celular , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Humanos , Inmunomodulación , Activación de Linfocitos/genética , Balance Th1 - Th2 , Células Th17/inmunología
4.
Sci Rep ; 13(1): 13401, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37591977

RESUMEN

Obesity is a chronic, multifactorial disease which is linked to a number of adverse endocrinological and metabolic conditions. Currently, bariatric surgery is one of the most effective treatments for individuals diagnosed with severe obesity. However, the current indications for bariatric surgery are based on inadequate metrics (i.e., BMI) which do not account for the complexity of the disease, nor the heterogeneity among the patient population. Moreover, there is a lack of understanding with respect to the biological underpinnings that influence successful and sustained weight loss post-bariatric surgery. Studies have implicated age and pre-surgery body weight as two factors that are associated with favorable patient outcomes. Still, there is an urgent medical need to identify other potential factors that could improve the specificity of candidate selection and better inform the treatment plan of patients with obesity. In this report, we present and describe the cohort of the DECON pilot project, a multicenter study which aims to identify predictive biomarkers of successful weight loss after bariatric surgery.


Asunto(s)
Cirugía Bariátrica , Obesidad Mórbida , Humanos , Proyectos Piloto , Obesidad/cirugía , Obesidad Mórbida/cirugía , Pérdida de Peso
5.
bioRxiv ; 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37745326

RESUMEN

DNA mutations are necessary drivers of cancer, yet only a small subset of mutated cells go on to cause the disease. To date, the mechanisms that determine which rare subset of cells transform and initiate tumorigenesis remain unclear. Here, we take advantage of a unique model of intrinsic developmental heterogeneity (Trim28+/D9) and demonstrate that stochastic early life epigenetic variation can trigger distinct cancer-susceptibility 'states' in adulthood. We show that these developmentally primed states are characterized by differential methylation patterns at typically silenced heterochromatin, and that these epigenetic signatures are detectable as early as 10 days of age. The differentially methylated loci are enriched for genes with known oncogenic potential. These same genes are frequently mutated in human cancers, and their dysregulation correlates with poor prognosis. These results provide proof-of-concept that intrinsic developmental heterogeneity can prime individual, life-long cancer risk.

6.
bioRxiv ; 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37066282

RESUMEN

Chronic high-fat feeding triggers widespread metabolic dysfunction including obesity, insulin resistance, and diabetes. While these ultimate pathological states are relatively well understood, we have a limited understanding of how high-fat intake first triggers physiological changes. Here, we identify an acute microglial metabolic response that rapidly translates intake of high-fat diet (HFD) to a surprisingly beneficial effect on spatial and learning memory. Acute high-fat intake increases palmitate levels in cerebrospinal fluid and triggers a wave of microglial metabolic activation characterized by mitochondrial membrane activation, fission and metabolic skewing towards aerobic glycolysis. These effects are generalized, detectable in the hypothalamus, hippocampus, and cortex all within 1-3 days of HFD exposure. In vivo microglial ablation and conditional DRP1 deletion experiments show that the microglial metabolic response is necessary for the acute effects of HFD. 13C-tracing experiments reveal that in addition to processing via ß-oxidation, microglia shunt a substantial fraction of palmitate towards anaplerosis and re-release of bioenergetic carbons into the extracellular milieu in the form of lactate, glutamate, succinate, and intriguingly, the neuro-protective metabolite itaconate. Together, these data identify microglial cells as a critical nutrient regulatory node in the brain, metabolizing away harmful fatty acids and liberating the same carbons instead as alternate bioenergetic and protective substrates. The data identify a surprisingly beneficial effect of short-term HFD on learning and memory.

7.
Cell Metab ; 35(5): 821-836.e7, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36948185

RESUMEN

The mechanisms that specify and stabilize cell subtypes remain poorly understood. Here, we identify two major subtypes of pancreatic ß cells based on histone mark heterogeneity (ßHI and ßLO). ßHI cells exhibit ∼4-fold higher levels of H3K27me3, distinct chromatin organization and compaction, and a specific transcriptional pattern. ßHI and ßLO cells also differ in size, morphology, cytosolic and nuclear ultrastructure, epigenomes, cell surface marker expression, and function, and can be FACS separated into CD24+ and CD24- fractions. Functionally, ßHI cells have increased mitochondrial mass, activity, and insulin secretion in vivo and ex vivo. Partial loss of function indicates that H3K27me3 dosage regulates ßHI/ßLO ratio in vivo, suggesting that control of ß cell subtype identity and ratio is at least partially uncoupled. Both subtypes are conserved in humans, with ßHI cells enriched in humans with type 2 diabetes. Thus, epigenetic dosage is a novel regulator of cell subtype specification and identifies two functionally distinct ß cell subtypes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Células Secretoras de Insulina/metabolismo , Histonas/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Epigénesis Genética , Secreción de Insulina
8.
J Vis Exp ; (184)2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35786676

RESUMEN

Obesity is a complex disease influenced by genetics, epigenetics, the environment, and their interactions. Mature adipocytes represent the major cell type in white adipose tissue. Understanding how adipocytes function and respond to (epi)genetic and environmental signals is essential for identifying the cause(s) of obesity. RNA and chromatin have previously been isolated from adipocytes using enzymatic digestion. In addition, protocols have been developed for nuclear isolation, where purification is achieved by fluorescence-activated cell sorting (FACS) of adipocyte-specific transgenic reporters. One of the greatest challenges to achieving high yield and quality during such protocols is the substantial amount of lipid contained in adipose tissue. The present protocol describes an optimized procedure for isolating mature adipocytes that leverages heptane to separate lipids from the targets of interest (RNA/chromatin). The resulting RNA has high integrity and generates high-quality RNA-seq results. Likewise, the procedure improves nuclei yield rate and generates reproducible ChIP-seq results across samples. Therefore, the current study provides a reliable and universal murine adipocyte isolation protocol suitable for whole-genome transcriptome and epigenome studies.


Asunto(s)
Adipocitos Blancos , Transcriptoma , Animales , Cromatina/metabolismo , Epigenoma , Ratones , Obesidad/metabolismo , ARN/metabolismo
9.
Nat Metab ; 4(9): 1150-1165, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36097183

RESUMEN

Studies in genetically 'identical' individuals indicate that as much as 50% of complex trait variation cannot be traced to genetics or to the environment. The mechanisms that generate this 'unexplained' phenotypic variation (UPV) remain largely unknown. Here, we identify neuronatin (NNAT) as a conserved factor that buffers against UPV. We find that Nnat deficiency in isogenic mice triggers the emergence of a bi-stable polyphenism, where littermates emerge into adulthood either 'normal' or 'overgrown'. Mechanistically, this is mediated by an insulin-dependent overgrowth that arises from histone deacetylase (HDAC)-dependent ß-cell hyperproliferation. A multi-dimensional analysis of monozygotic twin discordance reveals the existence of two patterns of human UPV, one of which (Type B) phenocopies the NNAT-buffered polyphenism identified in mice. Specifically, Type-B monozygotic co-twins exhibit coordinated increases in fat and lean mass across the body; decreased NNAT expression; increased HDAC-responsive gene signatures; and clinical outcomes linked to insulinemia. Critically, the Type-B UPV signature stratifies both childhood and adult cohorts into four metabolic states, including two phenotypically and molecularly distinct types of obesity.


Asunto(s)
Proteínas de la Membrana , Proteínas del Tejido Nervioso , Adaptación Fisiológica , Adulto , Animales , Niño , Histona Desacetilasas , Humanos , Insulina , Proteínas de la Membrana/metabolismo , Ratones , Proteínas del Tejido Nervioso/genética , Obesidad/genética , Obesidad/metabolismo
10.
Mol Metab ; 14: 26-38, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29909200

RESUMEN

BACKGROUND: The alarming rise of obesity and its associated comorbidities represents a medical burden and a major global health and economic issue. Understanding etiological mechanisms underpinning susceptibility and therapeutic response is of primary importance. Obesity, diabetes, and metabolic diseases are complex trait disorders with only partial genetic heritability, indicating important roles for environmental programing and epigenetic effects. SCOPE OF THE REVIEW: We will highlight some of the reasons for the scarce predictability of metabolic diseases. We will outline how genetic variants generate phenotypic variation in disease susceptibility across populations. We will then focus on recent conclusions about epigenetic mechanisms playing a fundamental role in increasing variability and subsequently disease triggering. MAJOR CONCLUSIONS: Currently, we are unable to predict or mechanistically define how "missing heritability" drives disease. Unravelling this black box of regulatory processes will allow us to move towards a truly personalized and precision medicine.


Asunto(s)
Variación Biológica Poblacional , Epigénesis Genética , Enfermedades Metabólicas/genética , Animales , Humanos , Procesos Estocásticos
11.
Commun Biol ; 1: 214, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30534606

RESUMEN

Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) is an invaluable tool for mapping chromatin-associated proteins. Current barcoding strategies aim to improve assay throughput and scalability but intense sample handling and lack of standardization over cell types, cell numbers and epitopes hinder wide-spread use in the field. Here, we present a barcoding method to enable high-throughput ChIP-seq using common molecular biology techniques. The method, called RELACS (restriction enzyme-based labeling of chromatin in situ) relies on standardized nuclei extraction from any source and employs chromatin cutting and barcoding within intact nuclei. Barcoded nuclei are pooled and processed within the same ChIP reaction, for maximal comparability and workload reduction. The innovative barcoding concept is particularly user-friendly and suitable for implementation to standardized large-scale clinical studies and scarce samples. Aiming to maximize universality and scalability, RELACS can generate ChIP-seq libraries for transcription factors and histone modifications from hundreds of samples within three days.

12.
Methods Mol Biol ; 1514: 173-185, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27787801

RESUMEN

Next-generation sequencing approaches, in particular RNA-seq, provide a genome-wide expression profiling allowing the identification of novel and rare transcripts such as long noncoding RNAs (lncRNA). Many RNA-seq studies have now been performed aimed at the characterization of lncRNAs and their possible involvement in cell development and differentiation in different organisms, cell types, and tissues. The adaptive immune system is an extraordinary context for the study of the role of lncRNAs in differentiation. Indeed lncRNAs seem to be key drivers in governing flexibility and plasticity of both CD8+ and CD4+ T cell, together with lineage-specific transcription factors and cytokines, acting as fine-tuners of fate choices in T cell differentiation.We describe here a pipeline for the identification of lncRNAs starting from RNA-Seq raw data.


Asunto(s)
Diferenciación Celular/genética , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Largo no Codificante/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Genoma , Humanos , ARN Largo no Codificante/genética
13.
Methods Mol Biol ; 1480: 125-35, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27659980

RESUMEN

RNA-Seq is an approach to transcriptome profiling that uses deep-sequencing technologies to detect and accurately quantify RNA molecules originating from a genome at a given moment in time. In recent years, the advent of RNA-Seq has facilitated genome-wide expression profiling, including the identification of novel and rare transcripts like noncoding RNAs and novel alternative splicing isoforms.Here, we describe the analytical steps required for the identification and characterization of noncoding RNAs starting from RNA-Seq raw samples, with a particular emphasis on long noncoding RNAs (lncRNAs).


Asunto(s)
Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Largo no Codificante/aislamiento & purificación , ARN no Traducido/aislamiento & purificación , Empalme Alternativo/genética , Genoma , ARN Largo no Codificante/genética , ARN no Traducido/genética , Transcriptoma/genética
14.
Front Immunol ; 6: 175, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25926836

RESUMEN

Upon recognition of a foreign antigen, CD4(+) naïve T lymphocytes proliferate and differentiate into subsets with distinct functions. This process is fundamental for the effective immune system function, as CD4(+) T cells orchestrate both the innate and adaptive immune response. Traditionally, this differentiation event has been regarded as the acquisition of an irreversible cell fate so that memory and effector CD4(+) T subsets were considered terminally differentiated cells or lineages. Consequently, these lineages are conventionally defined thanks to their prototypical set of cytokines and transcription factors. However, recent findings suggest that CD4(+) T lymphocytes possess a remarkable phenotypic plasticity, as they can often re-direct their functional program depending on the milieu they encounter. Therefore, new questions are now compelling such as which are the molecular determinants underlying plasticity and stability and how the balance between these two opposite forces drives the cell fate. As already mentioned, in some cases, the mere expression of cytokines and master regulators could not fully explain lymphocytes plasticity. We should consider other layers of regulation, including epigenetic factors such as the modulation of chromatin state or the transcription of non-coding RNAs, whose high cell-specificity give a hint on their involvement in cell fate determination. In this review, we will focus on the recent advances in understanding CD4(+) T lymphocytes subsets specification from an epigenetic point of view. In particular, we will emphasize the emerging importance of non-coding RNAs as key players in these differentiation events. We will also present here new data from our laboratory highlighting the contribution of long non-coding RNAs in driving human CD4(+) T lymphocytes differentiation.

15.
Sci Data ; 2: 150051, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26451251

RESUMEN

To help better understand the role of long noncoding RNAs in the human immune system, we recently generated a comprehensive RNA-seq data set using 63 RNA samples from 13 subsets of T (CD4(+) naive, CD4(+) TH1, CD4(+) TH2, CD4(+) TH17, CD4(+) Treg, CD4(+) TCM, CD4(+) TEM, CD8(+) TCM, CD8(+) TEM, CD8(+) naive) and B (B naive, B memory, B CD5(+)) lymphocytes. There were five biological replicates for each subset except for CD8(+) TCM and B CD5(+) populations that included 4 replicates. RNA-Seq data were generated by an Illumina HiScanSQ sequencer using the TruSeq v3 Cluster kit. 2.192 billion of paired-ends reads, 2×100 bp, were sequenced and after filtering a total of about 1.7 billion reads were mapped. Using different de novo transcriptome reconstruction techniques over 500 previously unknown lincRNAs were identified. The current data set could be exploited to drive the functional characterization of lincRNAs, identify novel genes and regulatory networks associated with specific cells subsets of the human immune system.


Asunto(s)
Subgrupos de Linfocitos B , ARN Largo no Codificante , Subgrupos de Linfocitos T , Transcriptoma , Perfilación de la Expresión Génica , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA