Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Biochem Parasitol ; 150(2): 219-28, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16987557

RESUMEN

Chloroquine resistance in Plasmodium vivax threatens the use of this drug as first-line treatment for millions of people infected each year worldwide. Unlike Plasmodium falciparum, in which chloroquine resistance is associated with mutations in the pfcrt gene encoding a digestive vacuole transmembrane protein, no point mutations have been associated with chloroquine resistance in the P. vivax ortholog gene, pvcrt-o (also called pvcg10). However, the question remains whether pvcrt-o can affect chloroquine response independent of mutations. Since P. vivax cannot be cultured in vitro, we used two heterologous expression systems to address this question. Results from the first system, in which chloroquine sensitive P. falciparum parasites were transformed with pvcrt-o, showed a 2.2-fold increase in chloroquine tolerance with pvcrt-o expression under a strong promoter; this effect was reversed by verapamil. In the second system, wild type pvcrt-o or a mutated form of the gene was expressed in Dictyostelium discoideum. Forms of PvCRT-o engineered to express either lysine or threonine at position 76 produced a verapamil-reversible reduction of chloroquine accumulation in this system to approximately 60% of that in control cells. Our data support an effect of PvCRT-o on chloroquine transport and/or accumulation by P. vivax, independent of the K76T amino acid substitution.


Asunto(s)
Antimaláricos/farmacología , Cloroquina/farmacología , Dictyostelium/genética , Resistencia a Medicamentos , Plasmodium falciparum/genética , Plasmodium vivax/genética , Proteínas Protozoarias/genética , Animales , Cloroquina/metabolismo , Dictyostelium/química , Dictyostelium/efectos de los fármacos , Endosomas/metabolismo , Eritrocitos/parasitología , Expresión Génica , Genes Protozoarios , Humanos , Concentración 50 Inhibidora , Proteínas de Transporte de Membrana/análisis , Proteínas de Transporte de Membrana/genética , Plasmodium falciparum/química , Plasmodium falciparum/efectos de los fármacos , Regiones Promotoras Genéticas , Proteínas Protozoarias/análisis , Transfección , Vacuolas/química
2.
Mol Biochem Parasitol ; 144(2): 167-76, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16183150

RESUMEN

A Plasmodium falciparum gene closely linked to the chloroquine resistance locus encodes PfCG2, a predicted 320-330kDa protein. In the parasitized erythrocyte, PfCG2 expression rises sharply in the trophozoite stage and is detected in electron-dense patches along the parasitophorous vacuolar membrane (PVM), in the cytoplasm and in the digestive vacuole (DV). Results of extraction and partitioning experiments show that PfCG2 is a peripheral membrane protein. Exposure of trophozoite-infected erythrocytes to trypsin-containing buffer after streptolysin O permeabilization indicates that PfCG2 is exposed to the erythrocyte cytosol at the outer face of the PVM. PfCG2 is highly susceptible to hydrolysis by aspartic and cysteine proteases and shows dose-dependent accumulation in the presence of protease inhibitors. These results suggest that PfCG2 is delivered from the outside face of the PVM to the DV, where it is broken down by parasite proteases. PfCG2 interacts with erythrocyte cytoplasm and may be associated with processes of hemoglobin uptake and digestion by erythrocytic-stage parasites.


Asunto(s)
Hemoglobinas/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Animales , Ácido Aspártico Endopeptidasas/farmacología , Membrana Celular/metabolismo , Cisteína Endopeptidasas/farmacología , Citosol/metabolismo , Resistencia a Medicamentos , Eritrocitos/química , Eritrocitos/citología , Eritrocitos/parasitología , Humanos , Estadios del Ciclo de Vida , Microscopía Electrónica , Plasmodium falciparum/crecimiento & desarrollo , Proteínas Protozoarias/efectos de los fármacos , Vacuolas/metabolismo
3.
Mol Biochem Parasitol ; 187(2): 103-10, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23305874

RESUMEN

Aotus nancymaae, the owl monkey, provides a useful laboratory model for research to develop drugs and vaccines against human falciparum malaria; however, many Plasmodium falciparum parasites are unable to invade A. nancymaae erythrocytes, rendering the parasites noninfective to the monkeys. In previous work, we identified a key polymorphism that determined the inheritance of erythrocyte invasion in a genetic cross of two P. falciparum clones that were virulent (GB4) or noninfective (7G8) to A. nancymaae. This polymorphism, an isoleucine-to-lysine polymorphism at position 204 (I204K) of the GB4 erythrocyte binding protein PfRH5, was nevertheless not found in several other P. falciparum lines that could also invade A. nancymaae erythrocytes. Alternative PfRH5 polymorphisms occur at different positions in these virulent parasites, and additional polymorphisms are found in P. falciparum parasites that cannot infect A. nancymaae. By allelic replacement methods, we have introduced the polymorphisms of these A. nancymaae-virulent or noninfective parasites at codons 204, 347, 358, 362, 410, and 429 of the endogenous PfRH5 gene in the noninfective 7G8 line. 7G8 transformants expressing the polymorphisms of the A. nancymaae-virulent parasites show neuraminidase-sensitive (sialic acid-dependent) invasion into the monkey erythrocytes, whereas 7G8 transformants expressing the PfRH5 alleles of noninfective parasites show little or no invasion of these erythrocytes. Parasites harboring PfRH5 polymorphisms 204K or 204R are also able to invade rat erythrocytes and are differentially sensitive to the removal of surface sialic acids by neuraminidase. These studies offer insights into the PfRH5 receptor-binding domain and interactions that support the invasion of various primate and rodent erythrocytes by P. falciparum.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Eritrocitos/parasitología , Plasmodium falciparum/patogenicidad , Polimorfismo Genético , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Animales , Aotidae , Plasmodium falciparum/genética , Ratas , Recombinación Genética , Virulencia
4.
PLoS One ; 7(6): e39569, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22724026

RESUMEN

BACKGROUND: Chloroquine (CQ)-resistant Plasmodium falciparum malaria has been a global health catastrophe, yet much about the CQ resistance (CQR) mechanism remains unclear. Hallmarks of the CQR phenotype include reduced accumulation of protonated CQ as a weak base in the digestive vacuole of the erythrocyte-stage parasite, and chemosensitization of CQ-resistant (but not CQ-sensitive) P. falciparum by agents such as verapamil. Mutations in the P. falciparum CQR transporter (PfCRT) confer CQR; particularly important among these mutations is the charge-loss substitution K→T at position 76. Dictyostelium discoideum transformed with mutant PfCRT expresses key features of CQR including reduced drug accumulation and verapamil chemosensitization. METHODOLOGY AND FINDINGS: We describe the isolation and characterization of PfCRT-transformed, hematin-free vesicles from D. discoideum cells. These vesicles permit assessments of drug accumulation, pH, and membrane potential that are difficult or impossible with hematin-containing digestive vacuoles from P. falciparum-infected erythrocytes. Mutant PfCRT-transformed D. discoideum vesicles show features of the CQR phenotype, and manipulations of vesicle membrane potential by agents including ionophores produce large changes of CQ accumulation that are dissociated from vesicular pH. PfCRT in its native or mutant form blunts the ability of valinomycin to reduce CQ accumulation in transformed vesicles and decreases the ability of K(+) to reverse membrane potential hyperpolarization caused by valinomycin treatment. CONCLUSION: Isolated vesicles from mutant-PfCRT-transformed D. discoideum exhibit features of the CQR phenotype, consistent with evidence that the drug resistance mechanism operates at the P. falciparum digestive vacuole membrane in malaria. Membrane potential apart from pH has a major effect on the PfCRT-mediated CQR phenotype of D. discoideum vesicles. These results support a model of PfCRT as an electrochemical potential-driven transporter in the drug/metabolite superfamily that (appropriately mutated) acts as a saturable simple carrier for the facilitated diffusion of protonated CQ.


Asunto(s)
Vesículas Citoplasmáticas/metabolismo , Dictyostelium/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Adenosina Trifosfato/metabolismo , Amoníaco/farmacología , Animales , Antimaláricos/farmacología , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Línea Celular Transformada , Cloroquina/metabolismo , Cloroquina/farmacología , Vesículas Citoplasmáticas/efectos de los fármacos , Dictyostelium/efectos de los fármacos , Concentración de Iones de Hidrógeno , Ionóforos/farmacología , Macrólidos/farmacología , Potenciales de la Membrana/efectos de los fármacos , Fenotipo , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Potasio/metabolismo , Valinomicina/farmacología , Verapamilo/farmacología
5.
Mol Microbiol ; 55(4): 1272-84, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15686570

RESUMEN

Plasmodium falciparum erythrocyte membrane protein-1 (PfEMP-1) is exposed on the surface of infected erythrocytes where it both acts as an important pathogenicity factor in malaria and undergoes antigenic variation as a means of immune evasion. Because the mammalian erythrocyte lacks a protein secretory machinery there has been much interest in elucidating the mechanism whereby this protein is transferred from its site of synthesis within the parasite to its final destination. Current opinion favours a mechanism whereby PfEMP-1 becomes cotranslationally inserted into the endoplasmic reticulum of the parasite and is subsequently transported as an integral part of an erythrocyte cytoplasmic membrane system derived from the parasite. Here we show that the solubility characteristics of this protein during several stages of its transport pathway are inconsistent with this view. Instead we propose that the protein is synthesized as a peripheral membrane protein which only when it arrives at its final destination assumes a transmembrane topology. Even in this state, the extractability of the protein with urea suggest that it is anchored in the membrane by protein-protein rather than by protein-lipid interaction.


Asunto(s)
Plasmodium falciparum/fisiología , Proteínas Protozoarias/metabolismo , Secuencia de Aminoácidos , Animales , Adhesión Celular , Membrana Eritrocítica/parasitología , Humanos , Mamíferos , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Vacuolas/parasitología
6.
J Cell Sci ; 118(Pt 11): 2507-18, 2005 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-15923663

RESUMEN

The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a key virulence factor for this species of human malarial parasite. PfEMP1 is expressed on the surface of infected erythrocytes (IEs) and directly mediates adhesion to a variety of host cells. A number of other parasite-encoded proteins are similarly exported to the IE plasma membrane and play an indirect role in this adhesion process through the modification of the erythrocyte cytoskeleton and the formation of electron dense knobs into which PfEMP1 is anchored. Analysis of the specific contribution of knob-associated proteins to adhesion is difficult due to rapid PfEMP1 switching during in vitro culture. Furthermore, these studies typically assume that the level and distribution of PfEMP1 exposed in knobby (K(+)) and knobless (K(-)) IEs is unaltered, an assumption not yet supported with data. We describe here the preparation and characterisation of a panel of isogenic K(+) and K(-) parasite clones that express one of two defined PfEMP1 variants. Analysis of the cytoadhesive properties of these clones shows that both static and flow adhesion is reduced in all the K(-) clones and, further, that this correlates with an approximately 50% reduction in PfEMP1 displayed on the IE surface. However, despite this reduction, the gross distribution of PfEMP1 in K(-) IEs appears unaltered. These data impact on our current interpretation of the role of knobs in adhesion and the mechanism of trafficking PfEMP1 to the IE surface.


Asunto(s)
Eritrocitos/metabolismo , Malaria Falciparum/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Animales , Adhesión Celular/genética , Adhesión Celular/fisiología , Células Cultivadas , Eritrocitos/parasitología , Eritrocitos/ultraestructura , Humanos , Malaria Falciparum/genética , Plasmodium falciparum/genética , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , Proteínas Protozoarias/genética
7.
J Biol Chem ; 277(42): 40005-11, 2002 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-12186876

RESUMEN

In its host erythrocyte, the malaria parasite Plasmodium falciparum resides within a parasitophorous vacuole, the membrane of which forms a barrier between the host cell cytosol and the parasite surface. The vacuole is a unique compartment because it contains specific proteins that are believed to be involved in cell biological functions essential for parasite survival. As a prerequisite for the characterization of the vacuolar proteome, we have developed an experimental approach that allows the selective biotinylation of soluble vacuolar proteins. This approach utilizes nonpermeant biotin derivatives that can be introduced into infected erythrocytes after selective permeabilization of the erythrocyte membrane with the pore-forming protein streptolysin O. The derivatives gain access to the vacuolar lumen but not to the parasite cytosol, thus providing supportive evidence for the existence of nonselective pores within the vacuolar membrane that have been postulated based on electrophysiological studies. Soluble vacuolar proteins that are biotin-labeled can be isolated by affinity chromatography using streptavidin-agarose.


Asunto(s)
Biotina/análogos & derivados , Biotina/farmacología , Eritrocitos/parasitología , Plasmodium falciparum/metabolismo , Estreptolisinas/metabolismo , Animales , Proteínas Bacterianas , Biotina/metabolismo , Biotinilación , Cromatografía , Citosol/metabolismo , Electroforesis en Gel Bidimensional , Eritrocitos/metabolismo , Técnica del Anticuerpo Fluorescente Indirecta , Humanos , Concentración de Iones de Hidrógeno , Immunoblotting , Pruebas de Precipitina , Unión Proteica , Sefarosa/metabolismo , Estreptavidina/farmacología , Succinimidas/farmacología , Vacuolas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA