Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Pathol ; 260(4): 455-464, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37345735

RESUMEN

Understanding the timing and spectrum of genetic alterations that contribute to the development of pancreatic cancer is essential for effective interventions and treatments. The aim of this study was to characterize somatic ATM alterations in noninvasive pancreatic precursor lesions and invasive pancreatic adenocarcinomas from patients with and without pathogenic germline ATM variants. DNA was isolated and sequenced from the invasive pancreatic ductal adenocarcinomas and precursor lesions of patients with a pathogenic germline ATM variant. Tumor and precursor lesions from these patients as well as colloid carcinoma from patients without a germline ATM variant were immunolabeled to assess ATM expression. Among patients with a pathogenic germline ATM variant, somatic ATM alterations, either mutations and/or loss of protein expression, were identified in 75.0% of invasive pancreatic adenocarcinomas but only 7.1% of pancreatic precursor lesions. Loss of ATM expression was also detected in 31.0% of colloid carcinomas from patients unselected for germline ATM status, significantly higher than in pancreatic precursor lesions [pancreatic intraepithelial neoplasms (p = 0.0013); intraductal papillary mucinous neoplasms, p = 0.0040] and pancreatic ductal adenocarcinoma (p = 0.0076) unselected for germline ATM status. These data are consistent with the second hit to ATM being a late event in pancreatic tumorigenesis. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Adenocarcinoma Mucinoso , Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Carcinogénesis , Transformación Celular Neoplásica , Adenocarcinoma Mucinoso/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Neoplasias Pancreáticas
2.
Bioorg Med Chem ; 24(16): 3501-12, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27288180

RESUMEN

A new series of 4-anilinoquinazolines with C-6 ureido and thioureido side chains and various substituents at the C-4 anilino moiety was designed, synthesized and evaluated as wild type (WT) and mutant EGFR inhibitors. Most of the compounds inhibited EGFR kinase wild type (EGFR WT) with IC50 values in the low nanomolar range (<0.495-9.05nM) and displayed more potent cytotoxic effect in BaF/3 expressing EGFR WT than reference compound gefitinib. The anti-proliferative effect of all synthesized compounds against gefitinib insensitive double mutant cell lines Ba/F3 expressing Del19/T790M and Ba/F3 expressing L858R/T790M were assayed. Compounds 4d, 6f, 7e showed significant inhibition (IC50=1.76-2.38µM) in these mutant lines and significant Her2 enzyme inhibition (IC50=19.2-40.6nM) compared to lapatinib (60.1nM). The Binding mode of compounds 6d, 6f, 7a, 7b and 8b were demonstrated. Furthermore, growth inhibition against gefitinib insensitive cell lines PC9-GR4 (Del19/T790M) were tested, compounds 6f and 7e showed about eight and three folds respectively greater potency than gefitinib. Our structure-activity relationships (SAR) studies suggested that presence of ethyl piperidino urea/thiourea at 6-position and bulky group of (3-chloro-4-(3-fluorobenzyloxy)phenyl)amino at 4-position of quinazoline may serve as promising scaffold for developing inhibitors against wild type and mutant EGFR.


Asunto(s)
Receptores ErbB/antagonistas & inhibidores , Quinazolinas/farmacología , Línea Celular , Diseño de Fármacos , Humanos , Técnicas In Vitro , Concentración 50 Inhibidora , Mutación
3.
Fam Cancer ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609521

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease that is the result of an accumulation of sequential genetic alterations. These genetic alterations can either be inherited, such as pathogenic germline variants that are associated with an increased risk of cancer, or acquired, such as somatic mutations that occur during the lifetime of an individual. Understanding the genetic basis of inherited risk of PDAC is essential to advancing patient care and outcomes through improved clinical surveillance, early detection initiatives, and targeted therapies. In this review we discuss factors associated with an increased risk of PDAC, the prevalence of genetic variants associated with an increased risk in patients with PDAC, estimates of PDAC risk in carriers of pathogenic germline variants in genes associated with an increased risk of PDAC. The role of common variants in pancreatic cancer risk will also be discussed.

4.
Elife ; 112022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35001868

RESUMEN

Pathogenic germline CDKN2A variants are associated with an increased risk of pancreatic ductal adenocarcinoma (PDAC). CDKN2A variants of uncertain significance (VUSs) are reported in up to 4.3% of patients with PDAC and result in significant uncertainty for patients and their family members as an unknown fraction are functionally deleterious, and therefore, likely pathogenic. Functional characterization of CDKN2A VUSs is needed to reclassify variants and inform clinical management. Twenty-nine germline CDKN2A VUSs previously reported in patients with PDAC or in ClinVar were evaluated using a validated in vitro cell proliferation assay. Twelve of the 29 CDKN2A VUSs were functionally deleterious (11 VUSs) or potentially functionally deleterious (1 VUS) and were reclassified as likely pathogenic variants. Thus, over 40% of CDKN2A VUSs identified in patients with PDAC are functionally deleterious and likely pathogenic. When incorporating VUSs found to be functionally deleterious, and reclassified as likely pathogenic, the prevalence of pathogenic/likely pathogenic CDKN2A in patients with PDAC reported in the published literature is increased to up to 4.1% of patients, depending on family history. Therefore, CDKN2A VUSs may play a significant, unappreciated role in risk of pancreatic cancer. These findings have significant implications for the counselling and care of patients and their relatives.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Mutación de Línea Germinal , Neoplasias Pancreáticas/genética , Alelos , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Humanos
5.
Sci Transl Med ; 13(609): eabb3738, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34516823

RESUMEN

The clinical efficacy of epidermal growth factor receptor (EGFR)­targeted therapy in EGFR-mutant non­small cell lung cancer is limited by the development of drug resistance. One mechanism of EGFR inhibitor resistance occurs through amplification of the human growth factor receptor (MET) proto-oncogene, which bypasses EGFR to reactivate downstream signaling. Tumors exhibiting concurrent EGFR mutation and MET amplification are historically thought to be codependent on the activation of both oncogenes. Hence, patients whose tumors harbor both alterations are commonly treated with a combination of EGFR and MET tyrosine kinase inhibitors (TKIs). Here, we identify and characterize six patient-derived models of EGFR-mutant, MET-amplified lung cancer that have switched oncogene dependence to rely exclusively on MET activation for survival. We demonstrate in this MET-driven subset of EGFR TKI-refractory cancers that canonical EGFR downstream signaling was governed by MET, even in the presence of sustained mutant EGFR expression and activation. In these models, combined EGFR and MET inhibition did not result in greater efficacy in vitro or in vivo compared to single-agent MET inhibition. We further identified a reduced EGFR:MET mRNA expression stoichiometry as associated with MET oncogene dependence and single-agent MET TKI sensitivity. Tumors from 10 of 11 EGFR inhibitor­resistant EGFR-mutant, MET-amplified patients also exhibited a reduced EGFR:MET mRNA ratio. Our findings reveal that a subset of EGFR-mutant, MET-amplified lung cancers develop dependence on MET activation alone, suggesting that such patients could be treated with a single-agent MET TKI rather than the current standard-of-care EGFR and MET inhibitor combination regimens.


Asunto(s)
Receptores ErbB , Neoplasias Pulmonares , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
6.
Cell Chem Biol ; 24(8): 1005-1016.e3, 2017 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-28781124

RESUMEN

Targeted covalent small molecules have shown promise for cancers driven by KRAS G12C. Allosteric compounds that access an inducible pocket formed by movement of a dynamic structural element in KRAS, switch II, have been reported, but these compounds require further optimization to enable their advancement into clinical development. We demonstrate that covalent quinazoline-based switch II pocket (SIIP) compounds effectively suppress GTP loading of KRAS G12C, MAPK phosphorylation, and the growth of cancer cells harboring G12C. Notably we find that adding an amide substituent to the quinazoline scaffold allows additional interactions with KRAS G12C, and remarkably increases the labeling efficiency, potency, and selectivity of KRAS G12C inhibitors. Structural studies using X-ray crystallography reveal a new conformation of SIIP and key interactions made by substituents located at the quinazoline 2-, 4-, and 7-positions. Optimized lead compounds in the quinazoline series selectively inhibit KRAS G12C-dependent signaling and cancer cell growth at sub-micromolar concentrations.


Asunto(s)
Acrilamidas/química , Quinazolinas/química , Proteínas ras/metabolismo , Células A549 , Acrilamidas/metabolismo , Acrilamidas/farmacología , Amidas/química , Apoptosis/efectos de los fármacos , Sitios de Unión , Línea Celular Tumoral , Cristalografía por Rayos X , Células HCT116 , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Fosforilación/efectos de los fármacos , Estructura Terciaria de Proteína , Quinazolinas/metabolismo , Quinazolinas/farmacología , Relación Estructura-Actividad , Proteínas ras/antagonistas & inhibidores , Proteínas ras/genética
7.
Cancer Res ; 77(10): 2712-2721, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28363995

RESUMEN

Insertion mutations in EGFR and HER2 both occur at analogous positions in exon 20. Non-small cell lung cancer (NSCLC) patients with tumors harboring these mutations seldom achieve clinical responses to dacomitinib and afatinib, two covalent quinazoline-based inhibitors of EGFR or HER2, respectively. In this study, we investigated the effects of specific EGFR and HER2 exon 20 insertion mutations from NSCLC patients that had clinically achieved a partial response after dacomitinib treatment. We identified Gly770 as a common feature among the drug-sensitive mutations. Structural modeling suggested that this mutation may facilitate inhibitor binding to EGFR. Introduction of Gly770 into two dacomitinib-resistant EGFR exon 20 insertion mutants restored sensitivity to dacomitinib. Based on these findings, we used afatinib to treat an NSCLC patient whose tumor harbored the HER2 V777_G778insGSP mutation and achieved a durable partial response. We further identified secondary mutations in EGFR (T790M or C797S) and HER2 (C805S) that mediated acquired drug resistance in drug-sensitive EGFR or HER2 exon 20 insertion models. Overall, our findings identified a subset of EGFR and HER2 exon 20 insertion mutations that are sensitive to existing covalent quinazoline-based EGFR/HER2 inhibitors, with implications for current clinical treatment and next-generation small-molecule inhibitors. Cancer Res; 77(10); 2712-21. ©2017 AACR.


Asunto(s)
Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Exones , Mutagénesis Insercional , Inhibidores de Proteínas Quinasas/farmacología , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-2/genética , Adulto , Sustitución de Aminoácidos , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Codón , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos/genética , Receptores ErbB/química , Femenino , Expresión Génica , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Masculino , Ratones , Persona de Mediana Edad , Modelos Moleculares , Conformación Molecular , Unión Proteica , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptor ErbB-2/química , Tomografía Computarizada por Rayos X , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA