Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 19(5): e3001252, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33983919

RESUMEN

The mitochondrial ATP synthase emerges as key hub of cellular functions controlling the production of ATP, cellular signaling, and fate. It is regulated by the ATPase inhibitory factor 1 (IF1), which is highly abundant in neurons. Herein, we ablated or overexpressed IF1 in mouse neurons to show that IF1 dose defines the fraction of active/inactive enzyme in vivo, thereby controlling mitochondrial function and the production of mitochondrial reactive oxygen species (mtROS). Transcriptomic, proteomic, and metabolomic analyses indicate that IF1 dose regulates mitochondrial metabolism, synaptic function, and cognition. Ablation of IF1 impairs memory, whereas synaptic transmission and learning are enhanced by IF1 overexpression. Mechanistically, quenching the IF1-mediated increase in mtROS production in mice overexpressing IF1 reduces the increased synaptic transmission and obliterates the learning advantage afforded by the higher IF1 content. Overall, IF1 plays a key role in neuronal function by regulating the fraction of ATP synthase responsible for mitohormetic mtROS signaling.


Asunto(s)
Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Proteínas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Encéfalo/metabolismo , Línea Celular , Hipocampo/metabolismo , Ratones , Ratones Endogámicos C57BL , ATPasas de Translocación de Protón Mitocondriales/fisiología , Cultivo Primario de Células , Proteínas/fisiología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Proteína Inhibidora ATPasa
2.
J Neurosci ; 42(19): 3879-3895, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35387872

RESUMEN

Calcium is an important second messenger regulating a bioenergetic response to the workloads triggered by neuronal activation. In embryonic mouse cortical neurons using glucose as only fuel, activation by NMDA elicits a strong workload (ATP demand)-dependent on Na+ and Ca2+ entry, and stimulates glucose uptake, glycolysis, pyruvate and lactate production, and oxidative phosphorylation (OXPHOS) in a Ca2+-dependent way. We find that Ca2+ upregulation of glycolysis, pyruvate levels, and respiration, but not glucose uptake, all depend on Aralar/AGC1/Slc25a12, the mitochondrial aspartate-glutamate carrier, component of the malate-aspartate shuttle (MAS). MAS activation increases glycolysis, pyruvate production, and respiration, a process inhibited in the presence of BAPTA-AM, suggesting that the Ca2+ binding motifs in Aralar may be involved in the activation. Mitochondrial calcium uniporter (MCU) silencing had no effect, indicating that none of these processes required MCU-dependent mitochondrial Ca2+ uptake. The neuronal respiratory response to carbachol was also dependent on Aralar, but not on MCU. We find that mouse cortical neurons are endowed with a constitutive ER-to-mitochondria Ca2+ flow maintaining basal cell bioenergetics in which ryanodine receptors, RyR2, rather than InsP3R, are responsible for Ca2+ release, and in which MCU does not participate. The results reveal that, in neurons using glucose, MCU does not participate in OXPHOS regulation under basal or stimulated conditions, while Aralar-MAS appears as the major Ca2+-dependent pathway tuning simultaneously glycolysis and OXPHOS to neuronal activation.SIGNIFICANCE STATEMENT Neuronal activation increases cell workload to restore ion gradients altered by activation. Ca2+ is involved in matching increased workload with ATP production, but the mechanisms are still unknown. We find that glycolysis, pyruvate production, and neuronal respiration are stimulated on neuronal activation in a Ca2+-dependent way, independently of effects of Ca2+ as workload inducer. Mitochondrial calcium uniporter (MCU) does not play a relevant role in Ca2+ stimulated pyruvate production and oxygen consumption as both are unchanged in MCU silenced neurons. However, Ca2+ stimulation is blunt in the absence of Aralar, a Ca2+-binding mitochondrial carrier component of Malate-Aspartate Shuttle (MAS). The results suggest that Ca2+-regulated Aralar-MAS activation upregulates glycolysis and pyruvate production, which fuels mitochondrial respiration, through regulation of cytosolic NAD+/NADH ratio.


Asunto(s)
Ácido Aspártico , Fosforilación Oxidativa , Adenosina Trifosfato/metabolismo , Animales , Ácido Aspártico/metabolismo , Calcio/metabolismo , Glucosa/metabolismo , Glucólisis , Malatos/metabolismo , Ratones , Neuronas/fisiología , Piruvatos/metabolismo
3.
Hum Mol Genet ; 30(24): 2441-2455, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34274972

RESUMEN

Charcot-Marie-Tooth (CMT) disease is a neuropathy that lacks effective therapy. CMT patients show degeneration of peripheral nerves, leading to muscle weakness and loss of proprioception. Loss of mitochondrial oxidative phosphorylation proteins and enzymes of the antioxidant response accompany degeneration of nerves in skin biopsies of CMT patients. Herein, we followed a drug-repurposing approach to find drugs in a Food and Drug Administration-approved library that could prevent development of CMT disease in the Gdap1-null mouse model. We found that the antibiotic florfenicol is a mitochondrial uncoupler that prevents the production of reactive oxygen species and activates respiration in human GDAP1-knockdown neuroblastoma cells and in dorsal root ganglion neurons of Gdap1-null mice. Treatment of CMT-affected Gdap1-null mice with florfenicol has no beneficial effect in the course of the disease. However, administration of florfenicol, or the antioxidant MitoQ, to pre-symptomatic GDAP1-null mice prevented weight gain and ameliorated the motor coordination deficiencies that developed in the Gdap1-null mice. Interestingly, both florfenicol and MitoQ halted the decay in mitochondrial and redox proteins in sciatic nerves of Gdap1-null mice, supporting that oxidative damage is implicated in the etiology of the neuropathy. These findings support the development of clinical trials for translation of these drugs for treatment of CMT patients.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Animales , Enfermedad de Charcot-Marie-Tooth/tratamiento farmacológico , Enfermedad de Charcot-Marie-Tooth/genética , Humanos , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Mutación , Proteínas del Tejido Nervioso/genética
4.
Gynecol Oncol ; 172: 121-129, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37030280

RESUMEN

BACKGROUND: The open-label, single-arm, multicenter ORZORA trial (NCT02476968) evaluated the efficacy and safety of maintenance olaparib in patients with platinum-sensitive relapsed ovarian cancer (PSR OC) who had tumor BRCA mutations (BRCAm) of germline (g) or somatic (s) origin or non-BRCA homologous recombination repair mutations (HRRm) and were in response to their most recent platinum-based chemotherapy after ≥2 lines of treatment. METHODS: Patients received maintenance olaparib capsules (400 mg twice daily) until disease progression. Prospective central testing at screening determined tumor BRCAm status and subsequent testing determined gBRCAm or sBRCAm status. Patients with predefined non-BRCA HRRm were assigned to an exploratory cohort. The co-primary endpoints were investigator-assessed progression-free survival (PFS; modified Response Evaluation Criteria in Solid Tumors v1.1) in BRCAm and sBRCAm cohorts. Secondary endpoints included health-related quality of life (HRQoL) and tolerability. RESULTS: 177 patients received olaparib. At the primary data cut-off (17 April 2020), the median follow-up for PFS in the BRCAm cohort was 22.3 months. The median PFS (95% CI) in BRCAm, sBRCAm, gBRCAm and non-BRCA HRRm cohorts was 18.0 (14.3-22.1), 16.6 (12.4-22.2), 19.3 (14.3-27.6) and 16.4 (10.9-19.3) months, respectively. Most patients with BRCAm reported improvements (21.8%) or no change (68.7%) in HRQoL and the safety profile was as expected. CONCLUSIONS: Maintenance olaparib had similar clinical activity in PSR OC patients with sBRCAm and those with any BRCAm. Activity was also observed in patients with a non-BRCA HRRm. ORZORA further supports use of maintenance olaparib in all patients with BRCA-mutated, including sBRCA-mutated, PSR OC.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Humanos , Femenino , Antineoplásicos/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Calidad de Vida , Reparación del ADN por Recombinación , Estudios Prospectivos , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Carcinoma Epitelial de Ovario/genética , Ftalazinas/efectos adversos , Mutación , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Mutación de Línea Germinal
5.
Int J Mol Sci ; 24(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37511180

RESUMEN

Despite a multimodal radical treatment, mortality of advanced epithelial ovarian cancer (AEOC) remains high. Host-related factors, such as systemic inflammatory response and its interplay with the immune system, remain underexplored. We hypothesized that the prognostic impact of this response could vary between patients undergoing primary debulking surgery (PDS) and those undergoing interval debulking surgery (IDS). Therefore, we evaluated the outcomes of two surgical groups of newly diagnosed AEOC patients according to the neutrophil, monocyte and platelet to lymphocyte ratios (NLR, MLR, PLR), taking median ratio values as cutoffs. In the PDS group (n = 61), low NLR and PLR subgroups showed significantly better overall survival (not reached (NR) vs. 72.7 months, 95% confidence interval [CI]: 40.9-95.2, p = 0.019; and NR vs. 56.1 months, 95% CI: 40.9-95.2, p = 0.004, respectively) than those with high values. Similar results were observed in progression free survival. NLR and PLR-high values resulted in negative prognostic factors, adjusting for residual disease, BRCA1/2 status and stage (HR 2.48, 95% CI: 1.03-5.99, p = 0.043, and HR 2.91, 95% CI: 1.11-7.64, p = 0.03, respectively). In the IDS group (n = 85), ratios were not significant prognostic factors. We conclude that NLR and PLR may have prognostic value in the PDS setting, but none in IDS, suggesting that time of surgery can modulate the prognostic impact of baseline complete blood count (CBC).


Asunto(s)
Neutrófilos , Neoplasias Ováricas , Humanos , Femenino , Carcinoma Epitelial de Ovario , Monocitos , Proteína BRCA1 , Pronóstico , Procedimientos Quirúrgicos de Citorreducción , Estudios Retrospectivos , Proteína BRCA2 , Linfocitos , Neoplasias Ováricas/diagnóstico
6.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35008954

RESUMEN

AGC1/Aralar/Slc25a12 is the mitochondrial carrier of aspartate-glutamate, the regulatory component of the NADH malate-aspartate shuttle (MAS) that transfers cytosolic redox power to neuronal mitochondria. The deficiency in AGC1/Aralar leads to the human rare disease named "early infantile epileptic encephalopathy 39" (EIEE 39, OMIM # 612949) characterized by epilepsy, hypotonia, arrested psychomotor neurodevelopment, hypo myelination and a drastic drop in brain aspartate (Asp) and N-acetylaspartate (NAA). Current evidence suggest that neurons are the main brain cell type expressing Aralar. However, paradoxically, glial functions such as myelin and Glutamine (Gln) synthesis are markedly impaired in AGC1 deficiency. Herein, we discuss the role of the AGC1/Aralar-MAS pathway in neuronal functions such as Asp and NAA synthesis, lactate use, respiration on glucose, glutamate (Glu) oxidation and other neurometabolic aspects. The possible mechanism triggering the pathophysiological findings in AGC1 deficiency, such as epilepsy and postnatal hypomyelination observed in humans and mice, are also included. Many of these mechanisms arise from findings in the aralar-KO mice model that extensively recapitulate the human disease including the astroglial failure to synthesize Gln and the dopamine (DA) mishandling in the nigrostriatal system. Epilepsy and DA mishandling are a direct consequence of the metabolic defect in neurons due to AGC1/Aralar deficiency. However, the deficits in myelin and Gln synthesis may be a consequence of neuronal affectation or a direct effect of AGC1/Aralar deficiency in glial cells. Further research is needed to clarify this question and delineate the transcellular metabolic fluxes that control brain functions. Finally, we discuss therapeutic approaches successfully used in AGC1-deficient patients and mice.


Asunto(s)
Agrecanos/genética , Sistemas de Transporte de Aminoácidos Acídicos/deficiencia , Antiportadores/deficiencia , Predisposición Genética a la Enfermedad , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/etiología , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/metabolismo , Enfermedades Mitocondriales/etiología , Enfermedades Mitocondriales/metabolismo , Trastornos Psicomotores/etiología , Trastornos Psicomotores/metabolismo , Agrecanos/deficiencia , Agrecanos/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animales , Antiportadores/metabolismo , Biomarcadores , Encéfalo/metabolismo , Terapia Combinada , Manejo de la Enfermedad , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Metabolismo Energético , Estudios de Asociación Genética , Ácido Glutámico/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/diagnóstico , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/terapia , Humanos , Malatos/metabolismo , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/terapia , Vaina de Mielina/metabolismo , Oxidación-Reducción , Fenotipo , Trastornos Psicomotores/diagnóstico , Trastornos Psicomotores/terapia
7.
J Neurosci ; 40(48): 9293-9305, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33087477

RESUMEN

Aralar/AGC1/Slc25a12, the mitochondrial aspartate-glutamate carrier expressed in neurons, is the regulatory component of the NADH malate-aspartate shuttle. AGC1 deficiency is a neuropediatric rare disease characterized by hypomyelination, hypotonia, developmental arrest, and epilepsy. We have investigated whether ß-hydroxybutyrate (ßOHB), the main ketone body (KB) produced in ketogenic diet (KD), is neuroprotective in aralar-knock-out (KO) neurons and mice. We report that ßOHB efficiently recovers aralar-KO neurons from deficits in basal-stimulated and glutamate-stimulated respiration, effects requiring ßOHB entry into the neuron, and protects from glutamate excitotoxicity. Aralar-deficient mice were fed a KD to investigate its therapeutic potential early in development, but this approach was unfeasible. Therefore, aralar-KO pups were treated without distinction of gender with daily intraperitoneal injections of ßOHB during 5 d. This treatment resulted in a recovery of striatal markers of the dopaminergic system including dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC)/DA ratio, and vesicular monoamine transporter 2 (VMAT2) protein. Regarding postnatal myelination, myelin basic protein (MBP) and myelin-associated glycoprotein (MAG) myelin proteins were markedly increased in the cortices of ßOHB-treated aralar-KO mice. Although brain Asp and NAA levels did not change by ßOHB administration, a 4-d ßOHB treatment to aralar-KO, but not to control, neurons led to a substantial increase in Asp (3-fold) and NAA (4-fold) levels. These results suggest that the lack of increase in brain Asp and NAA is possibly because of its active utilization by the aralar-KO brain and the likely involvement of neuronal NAA in postnatal myelination in these mice. The effectiveness of ßOHB as a therapeutic treatment in AGC1 deficiency deserves further investigation.SIGNIFICANCE STATEMENTAralar deficiency induces a fatal phenotype in humans and mice and is associated with impaired neurodevelopment, epilepsy, and hypomyelination. In neurons, highly expressing aralar, its deficiency causes a metabolic blockade hampering mitochondrial energetics and respiration. Here, we find that ßOHB, the main metabolic product in KD, recovers defective mitochondrial respiration bypassing the metabolic failure in aralar-deficient neurons. ßOHB oxidation in mitochondria boosts the synthesis of cytosolic aspartate (Asp) and NAA, which is impeded by aralar deficiency, presumably through citrate-malate shuttle. In aralar-knock-out (KO) mice, ßOHB recovers from the drastic drop in specific dopaminergic and myelin markers. The ßOHB-induced myelin synthesis occurring together with the marked increment in neuronal NAA synthesis supports the role of NAA as a lipid precursor during postnatal myelination.


Asunto(s)
Ácido 3-Hidroxibutírico/fisiología , Agrecanos/fisiología , Encéfalo/fisiología , Dieta Cetogénica , Vías Nerviosas/fisiología , Neuronas/fisiología , Ácido 3-Hidroxibutírico/administración & dosificación , Ácido 3-Hidroxibutírico/farmacología , Agrecanos/genética , Aminoácidos/metabolismo , Animales , Dopamina/fisiología , Femenino , Ácido Glutámico/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Vaina de Mielina/genética , Vaina de Mielina/fisiología , Glicoproteína Asociada a Mielina/genética , Glicoproteína Asociada a Mielina/fisiología , Consumo de Oxígeno/fisiología , Respiración/efectos de los fármacos , Proteínas de Transporte Vesicular de Monoaminas/fisiología
8.
Anticancer Drugs ; 32(1): 88-94, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33332891

RESUMEN

The objective of this observational study was to evaluate the efficacy and safety of duloxetine in a cohort of 100 cancer survivors with chemotherapy-induced peripheral neurotoxicity (CIPN). CIPN was graded employing the TNSc and the NCI-CTCv4. The Patient Global Impression of Change (PGIC) scale measured the efficacy of duloxetine (1: no benefit; to 7: excellent response). A clinically meaningful response was considered a PGIC > 4. Median age was 62 (29-81) years and 42% were male. CIPN was graded as grades 1, 2 and 3 in 20, 66, and 14% of patients, respectively. Median time to duloxetine initiation was 6 (1-63) months after chemotherapy. Fifty-seven patients early dropped out from duloxetine, due to lack of efficacy (20%) or side effects (37%). Male patients more frequently discontinued duloxetine due to lack of efficacy (35.7 vs. 8.6% P = 0.001). PGIC scores were higher in female patients (4 vs. 1, P = 0.001), taxane-treated patients (4 vs. 1, P = 0.042) and with short-lasting (<6 months) CIPN (4 vs. 1, P = 0.008). Patients with long-lasting CIPN had a higher rate of adverse events (47 vs. 27%, P = 0.038) and discontinuation (54.8 vs. 45.1%, P = 0.023). In the multivariate analysis, female gender and short-lasting CIPN were independently associated with a favorable response to duloxetine. Low tolerability, male gender, and long-lasting CIPN significantly limited duloxetine use in daily practice setting. A minority of cancer survivors with CIPN treated with duloxetine had a meaningful CIPN improvement, and tolerability was overall low. Female gender and short-term CIPN were independently associated with a favorable response to duloxetine.


Asunto(s)
Supervivientes de Cáncer/estadística & datos numéricos , Clorhidrato de Duloxetina/efectos adversos , Neoplasias/tratamiento farmacológico , Síndromes de Neurotoxicidad/patología , Enfermedades del Sistema Nervioso Periférico/patología , Calidad de Vida , Inhibidores de Captación de Serotonina y Norepinefrina/efectos adversos , Adulto , Anciano , Anciano de 80 o más Años , Antineoplásicos/efectos adversos , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Neoplasias/patología , Síndromes de Neurotoxicidad/etiología , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Pronóstico , Estudios Prospectivos
9.
EJC Suppl ; 15: 96-103, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33240448

RESUMEN

AIM: The description of rare malignant ovarian tumours and the most suitable treatments. Alternative therapies different from intravenous chemotherapy are also explained. METHODS: Literature review and ongoing trial information have been used to elaborate this guide. RESULTS: Each ovarian cancer type must be identified and treated properly from diagnostic to surgery, adjuvant treatment and metastatic disease. Hormonotherapy can be useful as an alternative treatment, especially in low-grade ovarian cancer and endometrioid subtype. Tumour characterisation is appropriated for treatment selection when targeted therapy is indicated. MEK inhibitors, tyrosine-kinase inhibitors, EGFR inhibitors, therapies against integrins, antibody-drug conjugates and other strategies are described. Antiangiogenics, PARP inhibitors and immunotherapy are discussed in other parts of this publication. CONCLUSION: Different ovarian cancer types must receive the appropriated treatment. Alternative therapies may be evaluated beyond the standard therapy, frequently in a clinical trial, and an individualised molecular study may help to find the best treatment.

10.
Neurochem Res ; 44(10): 2385-2391, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31016552

RESUMEN

The brain uses mainly glucose as fuel with an index of glucose to oxygen utilization close to 6, the maximal index if all glucose was completely oxidized. However, this high oxidative index, contrasts with the metabolic traits of the major cell types in the brain studied in culture, neurons and astrocytes, including the selective use of the malate-aspartate shuttle (MAS) in neurons and the glycerol-phosphate shuttle in astrocytes. Metabolic interactions among these cell types may partly explain the high oxidative index of the brain. In vivo, neuronal activation results in a decrease in the oxygen glucose index, which has been attributed to a stimulation of glycolysis and lactate production in astrocytes in response to glutamate uptake (astrocyte-neuron lactate shuttle, ANLS). Recent findings indicate that this is accompanied with a stimulation of pyruvate formation and astrocyte respiration, indicating that lactate formation is not the only astrocytic response to neuronal activation. ANLS proposes that neurons utilize lactate produced by neighboring astrocytes. Indeed, neurons can use lactate to support an increase in respiration with different workloads, and this depends on the Ca2+ activation of MAS. However, whether this activation operates in the brain, particularly at high stimulation conditions, remains to be established.


Asunto(s)
Astrocitos/metabolismo , Ácido Glutámico/metabolismo , Glucólisis/fisiología , Neuronas/metabolismo , Animales , Encéfalo/metabolismo , Glucosa/metabolismo , Humanos
11.
Int J Gynecol Cancer ; 29(7): 1141-1147, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31420414

RESUMEN

INTRODUCTION: The PENELOPE trial evaluated pertuzumab added to chemotherapy for biomarker-selected platinum-resistant ovarian cancer. As previously reported, pertuzumab did not statistically significantly improve progression-free survival (primary end point: HR 0.74, 95% CI 0.50 to 1.11), although results in the paclitaxel and gemcitabine cohorts suggested activity. Here, we report final overall survival and patient-reported outcomes. PATIENTS AND METHODS: Eligible patients had ovarian carcinoma that progressed during/within 6 months of completing ≥4 platinum cycles, low tumor human epidermal growth factor receptor 3 (HER3) mRNA expression, and ≤2 prior chemotherapy lines. Investigators selected single-agent topotecan, gemcitabine or weekly paclitaxel before patients were randomized to either placebo or pertuzumab (840→420 mg every 3 weeks), stratified by selected chemotherapy, prior anti-angiogenic therapy, and platinum-free interval. Final overall survival analysis (key secondary end point) was pre-specified after 129 deaths. Patient-reported outcomes (secondary end point) were assessed at baseline and every 9 weeks until disease progression. RESULTS: At database lock (June 9, 2016), 130 (83%) of 156 randomized patients had died. Median follow-up was 27 months in the pertuzumab arm versus 26 months in the control arm. In the intent-to-treat population there was no overall survival difference between treatment arms (stratified HR 0.90, 95% CI 0.61 to 1.32; p=0.60). Results in subgroups defined by stratification factors indicated heterogeneity similar to previous progression-free survival results. Updated safety was similar to previously published results. Compliance with patient-reported outcomes questionnaire completion was >75% for all validated patient-reported outcomes measures. Pertuzumab demonstrated neither beneficial nor detrimental effects on patient-reported outcomes compared with placebo, except for increased diarrhea symptoms. DISCUSSION: Consistent with the primary results, adding pertuzumab to chemotherapy for low tumor HER3 mRNA-expressing platinum-resistant ovarian cancer did not improve overall survival, but showed trends in some cohorts. Except for increased diarrhea symptoms, pertuzumab had no impact on patient-reported outcomes. ClinicalTrials.gov: ClinicalTrials.gov: NCT01684878.


Asunto(s)
Anticuerpos Monoclonales Humanizados/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Neoplasias Ováricas/tratamiento farmacológico , ARN Mensajero/biosíntesis , Receptor ErbB-3/genética , Adulto , Anciano , Anciano de 80 o más Años , Antineoplásicos Inmunológicos/administración & dosificación , Carcinoma Epitelial de Ovario/enzimología , Carcinoma Epitelial de Ovario/genética , Desoxicitidina/administración & dosificación , Desoxicitidina/análogos & derivados , Método Doble Ciego , Resistencia a Antineoplásicos , Femenino , Humanos , Persona de Mediana Edad , Neoplasias Ováricas/enzimología , Neoplasias Ováricas/genética , Paclitaxel/administración & dosificación , Medición de Resultados Informados por el Paciente , Supervivencia sin Progresión , ARN Mensajero/genética , Receptor ErbB-3/biosíntesis , Topotecan/administración & dosificación , Gemcitabina
12.
Int J Mol Sci ; 19(7)2018 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-30041485

RESUMEN

Melatonin (MEL) is an ancient molecule, broadly distributed in nature from unicellular to multicellular species. MEL is an indoleamine that acts on a wide variety of cellular targets regulating different physiological functions. This review is focused on the role played by this molecule in the regulation of the circadian rhythms in crayfish. In these species, information about internal and external time progression might be transmitted by the periodical release of MEL and other endocrine signals acting through the pacemaker. We describe documented and original evidence in support of this hypothesis that also suggests that the rhythmic release of MEL contributes to the reinforcement of the temporal organization of nocturnal or diurnal circadian oscillators. Finally, we discuss how MEL might coordinate functions that converge in the performance of complex behaviors, such as the agonistic responses to establish social dominance status in Procambarus clarkii and the burrowing behavior in the secondary digging crayfish P. acanthophorus.


Asunto(s)
Astacoidea/fisiología , Ritmo Circadiano , Melatonina/metabolismo , Animales , Astacoidea/metabolismo , Conducta Animal
13.
J Neurosci ; 36(16): 4443-56, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-27098689

RESUMEN

ARALAR/AGC1/Slc25a12, the aspartate-glutamate carrier from brain mitochondria, is the regulatory step in the malate-aspartate NADH shuttle, MAS. MAS is used to oxidize cytosolic NADH in mitochondria, a process required to maintain oxidative glucose utilization. The role of ARALAR was analyzed in two paradigms of glutamate-induced excitotoxicity in cortical neurons: glucose deprivation and acute glutamate stimulation. ARALAR deficiency did not aggravate glutamate-induced neuronal death in vitro, although glutamate-stimulated respiration was impaired. In contrast, the presence of L-lactate as an additional source protected against glutamate-induced neuronal death in control, but not ARALAR-deficient neurons.l-Lactate supplementation increased glutamate-stimulated respiration partially prevented the decrease in the cytosolic ATP/ADP ratio induced by glutamate and substantially diminished mitochondrial accumulation of 8-oxoguanosine, a marker of reactive oxygen species production, only in the presence, but not the absence, of ARALAR. In addition,l-lactate potentiated glutamate-induced increase in cytosolic Ca(2+), in a way independent of the presence of ARALAR. Interestingly,in vivo, the loss of half-a-dose of ARALAR in aralar(+/-)mice enhanced kainic acid-induced seizures and neuronal damage with respect to control animals, in a model of excitotoxicity in which increased L-lactate levels and L-lactate consumption have been previously proven. These results suggest that,in vivo, an inefficient operation of the shuttle in the aralar hemizygous mice prevents the protective role of L-lactate on glutamate excitotoxiciy and that the entry and oxidation of L-lactate through ARALAR-MAS pathway is required for its neuroprotective function. SIGNIFICANCE STATEMENT: Lactate now stands as a metabolite necessary for multiple functions in the brain and is an alternative energy source during excitotoxic brain injury. Here we find that the absence of a functional malate-aspartate NADH shuttle caused by aralar/AGC1 disruption causes a block in lactate utilization by neurons, which prevents the protective role of lactate on excitotoxicity, but not glutamate excitotoxicity itself. Thus, failure to use lactate is detrimental and is possibly responsible for the exacerbated in vivo excitotoxicity in aralar(+/-)mice.


Asunto(s)
Agrecanos/deficiencia , Ácido Glutámico/toxicidad , Ácido Láctico/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/deficiencia , Neuroprotección/efectos de los fármacos , Animales , Células Cultivadas , Ácido Láctico/farmacología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuroprotección/fisiología
14.
Biochim Biophys Acta ; 1863(10): 2413-21, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27033520

RESUMEN

Mitochondrial function is regulated by calcium. In addition to the long known effects of matrix Ca(2+), regulation of metabolite transport by extramitochondrial Ca(2+) represents an alternative Ca(2+)-dependent mechanism to regulate mitochondrial function. The Ca(2+) regulated mitochondrial transporters (CaMCs) are well suited for that role, as they contain long N-terminal extensions harboring EF-hand Ca(2+) binding domains facing the intermembrane space. They fall in two groups, the aspartate/glutamate exchangers, AGCs, major components of the NADH malate aspartate shuttle (MAS) and urea cycle, and the ATP-Mg(2+)/Pi exchangers or short CaMCs (APCs or SCaMCs). The AGCs are activated by relatively low Ca(2+) levels only slightly higher than resting Ca(2+), whereas all SCaMCs studied so far require strong Ca(2+) signals, above micromolar, for activation. In addition, AGCs are not strictly Ca(2+) dependent, being active even in Ca(2+)-free conditions. Thus, AGCs are well suited to respond to small Ca(2+) signals and that do not reach mitochondria. In contrast, ATP-Mg(2+)/Pi carriers are inactive in Ca(2+) free conditions and activation requires Ca(2+) signals that will also activate the calcium uniporter (MCU). By changing the net content of adenine nucleotides of the matrix upon activation, SCaMCs regulate the activity of the permeability transition pore, and the Ca(2+) retention capacity of mitochondria (CRC), two functions synergizing with those of the MCU. The different Ca(2+) activation properties of the two CaMCs are discussed in relation to their newly obtained structures. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/fisiología , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Animales , Antiportadores/fisiología , Proteínas de Arabidopsis/metabolismo , Transporte Biológico Activo , Proteínas de Unión al Calcio/fisiología , Respiración de la Célula , Humanos , Transporte Iónico , Mamíferos/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/deficiencia , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/fisiología , Modelos Moleculares , Transportadores de Anión Orgánico/fisiología , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Biochim Biophys Acta ; 1857(8): 1158-1166, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27060251

RESUMEN

Glutamate elicits Ca(2+) signals and workloads that regulate neuronal fate both in physiological and pathological circumstances. Oxidative phosphorylation is required in order to respond to the metabolic challenge caused by glutamate. In response to physiological glutamate signals, cytosolic Ca(2+) activates respiration by stimulation of the NADH malate-aspartate shuttle through Ca(2+)-binding to the mitochondrial aspartate/glutamate carrier (Aralar/AGC1/Slc25a12), and by stimulation of adenine nucleotide uptake through Ca(2+) binding to the mitochondrial ATP-Mg/Pi carrier (SCaMC-3/Slc25a23). In addition, after Ca(2+) entry into the matrix through the mitochondrial Ca(2+) uniporter (MCU), it activates mitochondrial dehydrogenases. In response to pathological glutamate stimulation during excitotoxicity, Ca(2+) overload, reactive oxygen species (ROS), mitochondrial dysfunction and delayed Ca(2+) deregulation (DCD) lead to neuronal death. Glutamate-induced respiratory stimulation is rapidly inactivated through a mechanism involving Poly (ADP-ribose) Polymerase-1 (PARP-1) activation, consumption of cytosolic NAD(+), a decrease in matrix ATP and restricted substrate supply. Glutamate-induced Ca(2+)-activation of SCaMC-3 imports adenine nucleotides into mitochondria, counteracting the depletion of matrix ATP and the impaired respiration, while Aralar-dependent lactate metabolism prevents substrate exhaustion. A second mechanism induced by excitotoxic glutamate is permeability transition pore (PTP) opening, which critically depends on ROS production and matrix Ca(2+) entry through the MCU. By increasing matrix content of adenine nucleotides, SCaMC-3 activity protects against glutamate-induced PTP opening and lowers matrix free Ca(2+), resulting in protracted appearance of DCD and protection against excitotoxicity in vitro and in vivo, while the lack of lactate protection during in vivo excitotoxicity explains increased vulnerability to kainite-induced toxicity in Aralar +/- mice. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.


Asunto(s)
Antiportadores/metabolismo , Canales de Calcio/metabolismo , Calcio/metabolismo , Ácido Glutámico/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Antiportadores/genética , Canales de Calcio/genética , Respiración de la Célula/efectos de los fármacos , Expresión Génica , Ácido Glutámico/farmacología , Ratones , Mitocondrias/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/genética , Poro de Transición de la Permeabilidad Mitocondrial , Proteínas Mitocondriales/genética , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Cultivo Primario de Células , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
16.
J Neurochem ; 142(1): 132-139, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28429368

RESUMEN

ARALAR/AGC1 (aspartate-glutamate mitochondrial carrier 1) is an important component of the NADH malate-aspartate shuttle (MAS). AGC1-deficiency is a rare disease causing global cerebral hypomyelination, developmental arrest, hypotonia, and epilepsy (OMIM ID #612949); the aralar-KO mouse recapitulates the major findings in humans. This study was aimed at understanding the impact of ARALAR-deficiency in brain lactate levels as a biomarker. We report that lactate was equally abundant in wild-type and aralar-KO mouse brain in vivo at postnatal day 17. We find that lactate production upon mitochondrial blockade depends on up-regulation of lactate formation in astrocytes rather than in neurons. However, ARALAR-deficiency decreased cell respiration in neurons, not astrocytes, which maintained unchanged respiration and lactate production. As the primary site of ARALAR-deficiency is neuronal, this explains the lack of accumulation of brain lactate in ARALAR-deficiency in humans and mice. On the other hand, we find that the cytosolic and mitochondrial components of the glycerol phosphate shuttle are present in astrocytes with similar activities. This suggests that glycerol phosphate shuttle is the main NADH shuttle in astrocytes and explains the absence of effects of ARALAR-deficiency in these cells.


Asunto(s)
Agrecanos/genética , Agrecanos/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/deficiencia , Antiportadores/deficiencia , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Ácido Láctico/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/metabolismo , Neuronas/metabolismo , Trastornos Psicomotores/genética , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animales , Antiportadores/genética , Astrocitos/metabolismo , Química Encefálica/genética , Glucosa/metabolismo , Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Consumo de Oxígeno/genética
17.
Artículo en Inglés | MEDLINE | ID: mdl-27783925

RESUMEN

In this work, we studied the characteristics of recovery from desensitization of the light-elicited current of crayfish. Applying a two-flash protocol, we found that the first flash triggers a current that activates with a noticeable latency, reaches a peak value, and thereafter decays along a single exponential time course. In comparison with the first-elicited current, the current elicited by the second flash not only presents an expected smaller peak current, depending on the time between flashes, but it also displays a different latency and decay time constant. Recovery of the first flash values of these current parameters depends on the circadian time at which the experiments are conducted, and on the presence of pigment-dispersing hormone. Our data also suggest the existence of distinctive desensitized states, whose induction depends on circadian time and the presence of pigment-dispersing hormone.


Asunto(s)
Astacoidea/fisiología , Ritmo Circadiano , Hormonas de Invertebrados/metabolismo , Células Fotorreceptoras de Invertebrados/fisiología , Algoritmos , Animales , Acuicultura , Astacoidea/crecimiento & desarrollo , Fenómenos Electrofisiológicos , Ojo , Técnicas In Vitro/veterinaria , Cinética , Muda , Tiempo de Reacción
18.
Int J Mol Sci ; 18(8)2017 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-28758950

RESUMEN

There have been no major improvements in the overall survival of ovarian cancer patients in recent decades. Even though more accurate surgery and more effective treatments are available, the mortality rate remains high. Given the differences in origin and the heterogeneity of these tumors, research to elucidate the signaling pathways involved is required. The Transforming Growth Factor (TGFß) family controls different cellular responses in development and cell homeostasis. Disruption of TGFß signaling has been implicated in many cancers, including ovarian cancer. This article considers the involvement of TGFß in ovarian cancer progression, and reviews the various mechanisms that enable the TGFß signaling pathway to control ovarian cancer cell proliferation. These mechanistic explanations support the therapeutic use of TGFß inhibitors in ovarian cancer, which are currently in the early phases of development.


Asunto(s)
Proliferación Celular , Proteínas de Neoplasias/metabolismo , Neoplasias Ováricas/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Animales , Femenino , Humanos , Proteínas de Neoplasias/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Factor de Crecimiento Transformador beta/genética
19.
J Neurosci ; 35(8): 3566-81, 2015 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-25716855

RESUMEN

Glutamate excitotoxicity is caused by sustained activation of neuronal NMDA receptors causing a large Ca(2+) and Na(+) influx, activation of poly(ADP ribose) polymerase-1 (PARP-1), and delayed Ca(2+) deregulation. Mitochondria undergo early changes in membrane potential during excitotoxicity, but their precise role in these events is still controversial. Using primary cortical neurons derived from mice, we show that NMDA exposure results in a rapid fall in mitochondrial ATP in neurons deficient in SCaMC-3/Slc25a23, a Ca(2+)-regulated mitochondrial ATP-Mg/Pi carrier. This fall is associated with blunted increases in respiration and a delayed decrease in cytosolic ATP levels, which are prevented by PARP-1 inhibitors or by SCaMC-3 activity promoting adenine nucleotide uptake into mitochondria. SCaMC-3 KO neurons show an earlier delayed Ca(2+) deregulation, and SCaMC-3-deficient mitochondria incubated with ADP or ATP-Mg had reduced Ca(2+) retention capacity, suggesting a failure to maintain matrix adenine nucleotides as a cause for premature delayed Ca(2+) deregulation. SCaMC-3 KO neurons have higher vulnerability to in vitro excitotoxicity, and SCaMC-3 KO mice are more susceptible to kainate-induced seizures, showing that early PARP-1-dependent fall in mitochondrial ATP levels, counteracted by SCaMC-3, is an early step in the excitotoxic cascade.


Asunto(s)
Adenosina Trifosfato/metabolismo , Antiportadores/metabolismo , Proteínas Mitocondriales/metabolismo , Neuronas/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Potenciales de Acción , Animales , Antiportadores/genética , Calcio/metabolismo , Respiración de la Célula , Células Cultivadas , Corteza Cerebral/citología , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , N-Metilaspartato/farmacología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Poli(ADP-Ribosa) Polimerasa-1 , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Convulsiones/metabolismo
20.
Biochim Biophys Acta ; 1837(10): 1617-24, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24820519

RESUMEN

Calcium is thought to regulate respiration but it is unclear whether this is dependent on the increase in ATP demand caused by any Ca(2+) signal or to Ca(2+) itself. [Na(+)]i, [Ca(2+)]i and [ATP]i dynamics in intact neurons exposed to different workloads in the absence and presence of Ca(2+) clearly showed that Ca(2+)-stimulation of coupled respiration is required to maintain [ATP]i levels. Ca(2+) may regulate respiration by activating metabolite transport in mitochondria from outer face of the inner mitochondrial membrane, or after Ca(2+) entry in mitochondria through the calcium uniporter (MCU). Two Ca(2+)-regulated mitochondrial metabolite transporters are expressed in neurons, the aspartate-glutamate exchanger ARALAR/AGC1/Slc25a12, a component of the malate-aspartate shuttle, and the ATP-Mg/Pi exchanger SCaMC-3/APC2/Slc25a23, with S0.5 for Ca(2+) of 300nM and 3.4µM, respectively. The lack of SCaMC-3 results in a smaller Ca(2+)-dependent stimulation of respiration only at high workloads, as caused by veratridine, whereas the lack of ARALAR reduced by 46% basal OCR in intact neurons using glucose as energy source and the Ca(2+)-dependent responses to all workloads: a reduction of about 65-70% in the response to the high workload imposed by veratridine, and completely suppression of the OCR responses to moderate (K(+)-depolarization) and small (carbachol) workloads, effects reverted by pyruvate supply. For K(+)-depolarization, this occurs in spite of the presence of large [Ca(2+)]mit signals and increased formation of mitochondrial NAD(P)H. These results show that ARALAR-MAS is a major contributor of Ca(2+)-stimulated respiration in neurons by providing increased pyruvate supply to mitochondria. In its absence and under moderate workloads, matrix Ca(2+) is unable to stimulate pyruvate metabolism and entry in mitochondria suggesting a limited role of MCU in these conditions. This article was invited for a Special Issue entitled: 18th European Bioenergetic Conference.


Asunto(s)
Calcio/fisiología , Mitocondrias/fisiología , Neuronas/fisiología , Adenosina Trifosfato/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animales , Antiportadores/metabolismo , Citosol/metabolismo , Humanos , Transporte Iónico , Mitocondrias/metabolismo , Neuronas/metabolismo , Ácido Pirúvico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA