Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Opt Lett ; 49(9): 2525-2528, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691760

RESUMEN

A fundamental parameter to determine how electromagnetic waves interfere is their relative phase, and achieving a fine control over it enables a wide range of interferometric applications. Existing phase control methods rely on modifying the optical path length either by changing the path followed by the light or by altering the thickness or index of refraction of an optical element in the setup. In this Letter, we present a novel, to the best of our knowledge, method, based on acousto-optic modulators (AOMs), which allows adjusting the phase by shifting the frequency of the light in a segment of its path. Since the amount of phase shift depends on the length of the segment, an optical fiber is used to realize a 2π shift. Two experimental implementations are described which deal with different sources of phase fluctuations. The first addresses fluctuations resulting from the optical fiber, while the second tackles unwanted variations originating from the AOMs.

2.
Phys Rev Lett ; 121(10): 103601, 2018 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-30240243

RESUMEN

We report on the experimental observation of nontrivial three-photon correlations imprinted onto initially uncorrelated photons through an interaction with a single Rydberg superatom. Exploiting the Rydberg blockade mechanism, we turn a cold atomic cloud into a single effective emitter with collectively enhanced coupling to a focused photonic mode which gives rise to clear signatures in the connected part of the three-body correlation function of the outgoing photons. We show that our results are in good agreement with a quantitative model for a single, strongly coupled Rydberg superatom. Furthermore, we present an idealized but exactly solvable model of a single two-level system coupled to a photonic mode, which allows for an interpretation of our experimental observations in terms of bound states and scattering states.

3.
Phys Rev Res ; 2(3)2020.
Artículo en Inglés | MEDLINE | ID: mdl-33367285

RESUMEN

We study the dissipative propagation of quantized light in interacting Rydberg media under the conditions of electromagnetically induced transparency. Rydberg blockade physics in optically dense atomic media leads to strong dissipative interactions between single photons. The regime of high incoming photon flux constitutes a challenging many-body dissipative problem. We experimentally study in detail the pulse shapes and the second-order correlation function of the outgoing field and compare our data with simulations based on two novel theoretical approaches well-suited to treat this many-photon limit. At low incoming flux, we report good agreement between both theories and the experiment. For higher input flux, the intensity of the outgoing light is lower than that obtained from theoretical predictions. We explain this discrepancy using a simple phenomenological model taking into account pollutants, which are nearly stationary Rydberg excitations coming from the reabsorption of scattered probe photons. At high incoming photon rates, the blockade physics results in unconventional shapes of measured correlation functions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA