Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Womens Health ; 24(1): 116, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347568

RESUMEN

BACKGROUND: The present study aimed to evaluate the long-term oncological and obstetric outcomes following the loop electrosurgical excision procedure (LEEP) in patients with cervical intraepithelial neoplasia (CIN) and investigate the risk factors for recurrence and preterm birth. METHODS: This retrospective cohort study included patients who underwent LEEP for CIN 2-3 between 2011 and 2019. Demographic information, histopathological findings, postoperative cytology, and human papillomavirus (HPV) status were collected and analyzed. The Cox proportional hazards model and Kaplan-Meier curves with the log-rank test were used for risk factor analysis. RESULTS: A total of 385 patients treated with the LEEP were analyzed. Treatment failure, including recurrence or residual disease following surgery, was observed in 13.5% of the patients. Positive surgical margins and postoperative HPV detection were independent risk factors for CIN1 + recurrence or residual disease (HR 1.948 [95%CI 1.020-3.720], p = 0.043, and HR 6.848 [95%CI 3.652-12.840], p-value < 0.001, respectively). Thirty-one patients subsequently delivered after LEEP, and the duration between LEEP and delivery was significantly associated with preterm-related complications, such as a short cervix, preterm labor, and preterm premature rupture of the membrane (p = 0.009). However, only a history of preterm birth was associated with preterm delivery. CONCLUSIONS: Positive HPV status after LEEP and margin status were identified as independent risk factors for treatment failure in patients with CIN who underwent LEEP. However, combining these two factors did not improve the prediction accuracy for recurrence.


Asunto(s)
Infecciones por Papillomavirus , Nacimiento Prematuro , Displasia del Cuello del Útero , Neoplasias del Cuello Uterino , Embarazo , Femenino , Recién Nacido , Humanos , Estudios Retrospectivos , Márgenes de Escisión , Virus del Papiloma Humano , Electrocirugia/métodos , Infecciones por Papillomavirus/complicaciones , Nacimiento Prematuro/epidemiología , Displasia del Cuello del Útero/patología , Recurrencia Local de Neoplasia/cirugía
2.
Environ Toxicol ; 39(4): 2304-2315, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38148711

RESUMEN

Cigarette smoke induces an inflammatory response in the lungs by recruiting inflammatory cells, leading to lung diseases such as lung cancer, chronic obstructive pulmonary disease, and pulmonary fibrosis. Existing inhalation exposure methods for assessing the adverse effects of cigarette smoke require expensive equipment and are labor-intensive. Therefore, we attempted to develop a novel method to assess these adverse effects using intratracheal instillation (ITI) of whole cigarette smoke condensate (WCSC). The WCSC (0, 5, 10, or 20 mg/mL) was administered by ITI once daily for 6 or 12 days using an automatic video instillator. Repeated WCSC ITI increased the lung weight, and monocyte chemoattractant protein-1 (MCP-1), neutrophil, and lymphocyte levels within bronchoalveolar lavage fluid compared to the control. In the histopathological analysis of the lung tissue, a mild inflammatory response was observed in the 6 and 12 days 20 mg/mL WCSC exposure groups. The genome-wide RNA-seq expression patterns revealed that inflammatory and immune response-related genes, such as the chemokine signaling pathway, Th1/Th2 cell differentiation, and cytokine-cytokine receptor interaction, were employed following WCSC exposure. In addition, MCP-1 was time-dependent and increased in the 10 mg/mL exposure group compared to the control group. These results suggested that the WCSC might induce the potential pulmonary inflammatory response. Furthermore, we proposed that ITI may be a rapid and effective method of evaluating the adverse effects of WCSC within a short exposure period (less than 2 weeks), and it can be used to evaluate cigarette inhalation toxicity studies as an alternative method.


Asunto(s)
Fumar Cigarrillos , Enfermedades Pulmonares , Enfermedad Pulmonar Obstructiva Crónica , Ratas , Animales , Pulmón , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedades Pulmonares/patología , Líquido del Lavado Bronquioalveolar
3.
J Antimicrob Chemother ; 78(4): 923-932, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36880170

RESUMEN

BACKGROUND: Although polymyxin has been used as a last-resort antibiotic against resistant bacteria, its use is restricted due to nephrotoxicity and neurotoxicity. While the present antibiotic resistance issue compels clinicians to reconsider polymyxin use in severe illness cases, polymyxin-resistant microorganisms exert an effect. OBJECTIVES: To address the issue of antibiotic resistance, the cycle of developing new antibiotics to counteract emerging resistance must be discontinued. Here we tried to develop novel therapies that do not rely on direct antimicrobial activity and thus do not promote antibiotic resistance. METHODS: By a high-throughout screening system based on bacterial respiration, chemical compounds accelerating the antimicrobial effects of polymyxin B were screened. In vitro and in vivo tests were performed to validate adjuvanticity. In addition, membrane depolarization and total transcriptome analysis were used to determine molecular mechanisms. RESULTS: PA108, a newly discovered chemical compound, was used to eradicate polymyxin-resistant A. baumannii and three other species in the presence of polymyxin B at concentrations less than the MIC. Since this molecule lacks self-bactericidal action, we hypothesized that PA108 acts as an antibiotic adjuvant, enhancing the antimicrobial activity of polymyxin B against resistant bacteria. At working concentrations, no toxicity was observed in cell lines or mice, although co-treatment with PA108 and polymyxin B increased survival of infected mouse and decreased bacterial loads in organs. CONCLUSIONS: Boosting antibiotic efficiency through the use of antibiotic adjuvants holds significant promise for tackling the rise in bacterial antibiotic resistance.


Asunto(s)
Acinetobacter baumannii , Polimixina B , Animales , Ratones , Polimixina B/farmacología , Farmacorresistencia Bacteriana Múltiple , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Polimixinas/farmacología , Pruebas de Sensibilidad Microbiana
4.
J Med Virol ; 95(6): e28863, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37310127

RESUMEN

The ongoing COVID-19 has not only caused millions of deaths worldwide, but it has also led to economic recession and the collapse of public health systems. The vaccines and antivirals developed in response to the pandemic have improved the situation markedly; however, the pandemic is still not under control with recurring surges. Thus, it is still necessary to develop therapeutic agents. In our previous studies, we designed and synthesized a series of novel 2-anilinoquinazolin-4(3H)-one derivatives, and demonstrated inhibitory activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and MERS-CoV in vitro. We then conducted in vivo studies using modified compounds that are suitable for oral administration. These compounds demonstrated no toxicity in rats and inhibited viral entry. Here, we investigated the in vivo efficacy of these drug candidates against SARS-CoV-2. Three candidate drugs, 7-chloro-2-((3,5-dichlorophenyl)amino)quinazolin-4(3H)-one (1), N-(7-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)-N-(3,5-dichlorophenyl)acetamide (2), and N-(7-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)-N-(3,5-difluorophenyl)acetamide (3) were administered orally to hACE2 transgenic mice at a dose of 100 mg/kg. All three drugs improved survival rate and reduced the viral load in the lungs. These results show that the derivatives possess in vivo antiviral efficacy similar to that of molnupiravir, which is currently being used to treat COVID-19. Overall, our data suggest that 2-anilinoquinazolin-4(3H)-one derivatives are promising as potential oral antiviral drug candidates against SARS-CoV-2 infection.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , SARS-CoV-2 , Animales , Humanos , Ratones , Ratas , Acetamidas , Enzima Convertidora de Angiotensina 2/genética , Antivirales/farmacología , Antivirales/uso terapéutico , COVID-19/genética , COVID-19/terapia , Modelos Animales de Enfermedad , Ratones Transgénicos , Quinazolinas/farmacología , Quinazolinas/uso terapéutico , SARS-CoV-2/genética
5.
Bioorg Med Chem Lett ; 85: 129214, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36870624

RESUMEN

The COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to threaten human health and create socioeconomic problems worldwide. A library of 200,000 small molecules from the Korea Chemical Bank (KCB) were evaluated for their inhibitory activities against SARS-CoV-2 in a phenotypic-based screening assay to discover new therapeutics to combat COVID-19. A primary hit of this screen was the quinolone structure-containing compound 1. Based on the structure of compound 1 and enoxacin, which is a quinolone-based antibiotic previously reported to have weak activity against SARS-CoV-2, we designed and synthesized 2-aminoquinolone acid derivatives. Among them, compound 9b exhibited potent antiviral activity against SARS-CoV-2 (EC50 = 1.5 µM) without causing toxicity, while having satisfactory in vitro PK profiles. This study shows that 2-aminoquinolone acid 9b provides a promising new template for developing anti-SARS-CoV-2 entry inhibitors.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Antivirales/farmacología , Antivirales/química , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas
6.
Int J Mol Sci ; 24(11)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37298089

RESUMEN

Human immunodeficiency virus-1 (HIV-1) transactivator (Tat)-mediated transcription is essential for HIV-1 replication. It is determined by the interaction between Tat and transactivation response (TAR) RNA, a highly conserved process representing a prominent therapeutic target against HIV-1 replication. However, owing to the limitations of current high-throughput screening (HTS) assays, no drug that disrupts the Tat-TAR RNA interaction has been uncovered yet. We designed a homogenous (mix-and-read) time-resolved fluorescence resonance energy transfer (TR-FRET) assay using europium cryptate as a fluorescence donor. It was optimized by evaluating different probing systems for Tat-derived peptides or TAR RNA. The specificity of the optimal assay was validated by mutants of the Tat-derived peptides and TAR RNA fragment, individually and by competitive inhibition with known TAR RNA-binding peptides. The assay generated a constant Tat-TAR RNA interaction signal, discriminating the compounds that disrupted the interaction. Combined with a functional assay, the TR-FRET assay identified two small molecules (460-G06 and 463-H08) capable of inhibiting Tat activity and HIV-1 infection from a large-scale compound library. The simplicity, ease of operation, and rapidity of our assay render it suitable for HTS to identify Tat-TAR RNA interaction inhibitors. The identified compounds may also act as potent molecular scaffolds for developing a new HIV-1 drug class.


Asunto(s)
VIH-1 , Productos del Gen tat del Virus de la Inmunodeficiencia Humana , Humanos , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/química , VIH-1/fisiología , Transferencia Resonante de Energía de Fluorescencia , Transactivadores , ARN Viral/genética
7.
Lab Invest ; 102(6): 631-640, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35145202

RESUMEN

The histogenesis of pleomorphic adenoma (PA) of the salivary glands remains controversial. PAs are characterized by the transition of epithelial cells to spindled mesenchymal cells, known as epithelial-mesenchymal transition (EMT). The present study aimed to identify a major EMT-inducing transcription factor (EMT-TF) in PAs. Real-time PCR analysis of SNAIL, SLUG, ZEB1, and TWIST1 demonstrated that only SLUG was significantly upregulated in normal salivary glands and PAs. Combined in situ hybridization for SLUG and multiplex immunohistochemistry for CK19 and P63 revealed that SLUG was specifically expressed in the myoepithelial cells of normal salivary glands. In PAs, SLUG was expressed in neoplastic myoepithelial cells and stromal cells but not in the luminal cells lining the inner layers of tumor glands. SLUG expression showed no correlation with PLAG1 expression, and in vitro experiments demonstrated that PLAG1 suppression in primary cultured PA cells or PLAG1 overexpression in HEK 293 T cells did not affect SLUG levels, indicating that PLAG1 was not involved in the upregulation of SLUG in PAs. The suppression of SLUG expression in cultured PA cells resulted in a morphology change to a less elongated shape and attenuated tumor growth. In addition, SLUG downregulation led to increased E-cadherin and decreased N-cadherin and vimentin expression levels along with decreased migratory activity in cultured PA cells. These findings suggest that SLUG is a major TF that can induce EMT in PAs. In summary, SLUG is specifically and highly expressed in the myoepithelial cells and stromal cells of PAs and is a key regulator of EMT in PAs.


Asunto(s)
Adenoma Pleomórfico , Factores de Transcripción de la Familia Snail , Adenoma Pleomórfico/química , Adenoma Pleomórfico/genética , Adenoma Pleomórfico/metabolismo , Transición Epitelial-Mesenquimal , Células HEK293 , Humanos , Inmunohistoquímica , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción de la Familia Snail/metabolismo
8.
Toxicol Appl Pharmacol ; 456: 116279, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36243099

RESUMEN

Sodium dichloroisocyanurate-96% (NaDCC) is commonly used to treat drinking water, industrial water, and wastewater. However, exposure to NaDCC by inhalation can have toxic pulmonary effects in humans. In the present study, we evaluated the potential toxicity of NaDCC following a 90-day inhalation toxicity study in Sprague-Dawley/Crl:CD (SD) rats. The animals were exposed to 0.4, 2.0, or 10.0 mg/m3 NaDCC for 90 days. In addition, male and female rats from the 10.0 mg/m3 group were set up as the recovery group for 14 days. The bronchoalveolar lavage fluid showed a concentration-dependent increase in the total cell count, with a significant increase in neutrophils in both the sexes in the 10.0 mg/m3 group compared to the negative control group. In the 10.0 mg/m3 group, lung organ weight was significantly increased among the female rats. Histopathological examination showed eosinophilic droplets in the olfactory/respiratory epithelium, mucous cell hyperplasia, atrophy/degeneration of the tracheal branches, and wall thickening of the alveolar ducts in the nasal cavity of both sexes in the 10.0 mg/m3 group. The adverse effects of NaDCC exposure were observed to decrease during the 14-day recovery period in both sexes. Based on pathological observations, the "no observed adverse effect concentration (NOAEC)" of inhaled NaDCC was 2.0 mg/m3 for both sexes. These results are expected to provide a scientific basis for inhalation toxicity data of NaDCC.


Asunto(s)
Exposición por Inhalación , Pulmón , Humanos , Ratas , Animales , Masculino , Femenino , Ratas Sprague-Dawley , Administración por Inhalación , Líquido del Lavado Bronquioalveolar , Exposición por Inhalación/efectos adversos
9.
Environ Toxicol ; 37(5): 1231-1243, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35112775

RESUMEN

Cigarette smoke (CS) substances are known to induce diverse ailments such as cancer, decreased immunity, and lung diseases. Although some studies have been actively conducted to evaluate cigarette toxicity, the current animal exposure methods, that is, exposure of 28- or 90-days, require considerable research cost and lead to obscure results of the CS effects. In a previous study, we compared the effects of CS in a rat model of bleomycin (BLM) and lipopolysaccharide (LPS) induced lung disease. We determined that compared to the LPS-induced rat model, the BLM-induced rat model was more sensitive to alterations in secreting cytokines and total cell number. In the current study, we further confirmed the time-point of effective inhalation exposure by CS in the BLM-induced lung injury rat model. Using an automatic video instillator, rats were administered a single dose of 2.5 mg/kg BLM (day 1), and subsequently exposed to CS via inhalation (nose-only) 4 h/day, for 1, 2, 3, and 4 weeks. The bronchoalveolar lavage fluid (BALF) was obtained from the right lung lobes, total cell numbers were counted, and chemokine and cytokine expressions were evaluated using Enzyme-Linked Immunosorbent Assay. For the 1-week exposure, we observed a greater increase of neutrophils in the BLM + CS 300 µg/L group than in the BLM or CS 300 µg/L groups. Exposure of CS in the BLM-induced lung injury rat model enhanced the secretions of chemokines and cytokines, such as CCL2/MCP-1, CXCL2/MIP-2 and TNF-α, at 1 week. Immunohistochemistry and Hematoxylin and Eosin staining of lungs at 1-2 weeks after exposure clearly confirmed this tendency in the increased levels of CCL2/MCP-1 and TNF-α. Taken together, these results indicate that the rat model of BLM-induced lung injury is more sensitive to CS exposure than other rat models, and may be an appropriate model to evaluate the effect of CS exposure at 1-2 weeks.


Asunto(s)
Fumar Cigarrillos , Lesión Pulmonar , Animales , Bleomicina/toxicidad , Líquido del Lavado Bronquioalveolar/química , Fumar Cigarrillos/efectos adversos , Pulmón , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/metabolismo , Ratas
10.
Molecules ; 27(15)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35956872

RESUMEN

The heterocyclic indole structure has been shown to be one of the most promising scaffolds, offering various medicinal advantages from its wide range of biological activity. Nonetheless, the significance of 3-oxindole has been less known. In this study, a series of novel 3-oxindole-2-carboxylates were synthesized and their antiviral activity against human immunodeficiency virus-1 (HIV-1) infection was evaluated. Among these, methyl (E)-2-(3-chloroallyl)-4,6-dimethyl-one (6f) exhibited the most potent inhibitory effect on HIV-1 infection, with a half-maximal inhibitory concentration (IC50) of 0.4578 µM but without severe cytotoxicity (selectivity index (SI) = 111.37). The inhibitory effect of these compounds on HIV-1 infection was concordant with their inhibitory effect on the viral replication cycle. Mode-of-action studies have shown that these prominent derivatives specifically inhibited the Tat-mediated viral transcription on the HIV-1 LTR promoter instead of reverse transcription or integration. Overall, our findings indicate that 3-oxindole derivatives could be useful as a potent scaffold for the development of a new class of anti-HIV-1 agents.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , VIH-1 , Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Infecciones por VIH/tratamiento farmacológico , Humanos , Oxindoles/farmacología , Transcripción Viral , Replicación Viral , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo
11.
J Pharmacol Exp Ther ; 379(3): 358-371, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34503993

RESUMEN

Although protein-protein interactions (PPIs) have emerged as an attractive therapeutic target space, the identification of chemicals that effectively inhibit PPIs remains challenging. Here, we identified through library screening a chemical probe (compound 1) that can inhibit the tumor-promoting interaction between the oncogenic factor exon 2-depleted splice variant of aminoacyl-transfer RNA synthetase-interacting multifunctional protein 2 (AIMP2-DX2) and heat shock protein 70 (HSP70). We found that compound 1 binds to the N-terminal subdomain of glutathione S-transferase (GST-N) of AIMP2-DX2, causing a direct steric clash with HSP70 and an intramolecular interaction between the N-terminal flexible region and the GST-N of AIMP2-DX2, which induces masking of the HSP70 binding region during molecular dynamics and mutation studies. Compound 1 thus interferes with the AIMP2-DX2 and HSP70 interaction and suppresses the growth of cancer cells that express high levels of AIMP2-DX2 in vitro and in preliminary in vivo experiment. This work provides an example showing that allosteric conformational changes induced by chemicals can be a way to control pathologic PPIs. SIGNIFICANCE STATEMENT: Compound 1 is a promising protein-protein interaction inhibitor between AIMP2-DX2 and HSP70 for cancer therapy by the mechanism with allosteric modulation as well as competitive binding. It seems to induce allosteric conformational change of AIMP2-DX2 proteins and direct binding clash between AIMP2-DX2 and HSP70. The compound reduced the level of AIMP2-DX2 in ubiquitin-dependent manner via suppression of binding between AIMP2-DX2 and HSP70 and suppressed the growth of cancer cells highly expressing AIMP2-DX2 in vitro and in preliminary in vivo experiment.


Asunto(s)
Antineoplásicos/farmacología , Exones/fisiología , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Células A549 , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Animales , Antineoplásicos/química , Antineoplásicos/metabolismo , Células CHO , Supervivencia Celular , Cricetinae , Cricetulus , Relación Dosis-Respuesta a Droga , Exones/efectos de los fármacos , Femenino , Células HEK293 , Proteínas HSP70 de Choque Térmico/química , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas Nucleares/química , Unión Proteica/fisiología , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
12.
Bioorg Med Chem Lett ; 39: 127885, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33662537

RESUMEN

Despite the rising threat of fatal coronaviruses, there are no general proven effective antivirals to treat them. 2-Aminoquinazolin-4(3H)-one derivatives were newly designed, synthesized, and investigated to show the inhibitory effects on SARS-CoV-2 and MERS-CoV. Among the synthesized derivatives, 7-chloro-2-((3,5-dichlorophenyl)amino)quinazolin-4(3H)-one (9g) and 2-((3,5-dichlorophenyl)amino)-5-hydroxyquinazolin-4 (3H)-one (11e) showed the most potent anti-SARS-CoV-2 activities (IC50 < 0.25 µM) and anti-MERS-CoV activities (IC50 < 1.1 µM) with no cytotoxicity (CC50 > 25 µM). In addition, both compounds showed acceptable results in metabolic stabilities, hERG binding affinities, CYP inhibitions, and preliminary PK studies.


Asunto(s)
Antivirales/síntesis química , Diseño de Fármacos , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Quinazolinonas/farmacología , SARS-CoV-2/efectos de los fármacos , Animales , Antivirales/farmacocinética , Antivirales/farmacología , Antivirales/uso terapéutico , COVID-19/virología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/metabolismo , Semivida , Humanos , Concentración 50 Inhibidora , Ratones , Microsomas/metabolismo , Coronavirus del Síndrome Respiratorio de Oriente Medio/aislamiento & purificación , Quinazolinonas/química , Quinazolinonas/metabolismo , Quinazolinonas/uso terapéutico , Ratas , SARS-CoV-2/aislamiento & purificación , Relación Estructura-Actividad , Tratamiento Farmacológico de COVID-19
13.
Bioorg Med Chem Lett ; 31: 127667, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33160024

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) continues to spread worldwide, with 25 million confirmed cases and 800 thousand deaths. Effective treatments to target SARS-CoV-2 are urgently needed. In the present study, we have identified a class of cyclic sulfonamide derivatives as novel SARS-CoV-2 inhibitors. Compound 13c of the synthesized compounds exhibited robust inhibitory activity (IC50 = 0.88 µM) against SARS-CoV-2 without cytotoxicity (CC50 > 25 µM), with a selectivity index (SI) of 30.7. In addition, compound 13c exhibited high oral bioavailability (77%) and metabolic stability with good safety profiles in hERG and cytotoxicity studies. The present study identified that cyclic sulfonamide derivatives are a promising new template for the development of anti-SARS-CoV-2 agents.


Asunto(s)
Antivirales/farmacología , Descubrimiento de Drogas , SARS-CoV-2/efectos de los fármacos , Sulfonamidas/farmacología , Animales , Antivirales/síntesis química , Antivirales/química , Línea Celular , Chlorocebus aethiops , Cricetulus , Perros , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Ratas , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química , Tratamiento Farmacológico de COVID-19
14.
Biochem Biophys Res Commun ; 523(2): 368-374, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31866007

RESUMEN

Trans-activator (Tat)-mediated human immunodeficiency virus type 1 (HIV-1) transcription is essential for the replication of HIV-1 and is considered a potent therapeutic target for HIV-1 inhibition. In this study, the Library of Pharmacologically Active Compounds (LOPAC1280) was screened using our dual-reporter screening system for repositioning as Tat-inhibitory compounds. Consequently, two compounds were found to be potent, with low cytotoxicity. Of these two compounds, Roscovitine (CYC202) is already known to be a Tat inhibitor, while gemcitabine has been newly identified as an inhibitor of Tat-mediated transcription linked to viral production and replication. In an additional screening using the ribonucleoside analogues of gemcitabine, two analogues (2'-C-methylcytidine and 3-deazauridine) showed a specific Tat-inhibitory effect linked to their anti-HIV-1 activity. Interestingly, these compounds did not affect Tat protein directly, while the mechanism underlying their inhibition of Tat-mediated transcription was linked to pyrimidine biosynthesis, rather than to alteration of the dNTP pool, influenced by the inhibition of ribonucleotide reductase. Taken together, the proposed functional screening system is a useful tool for the identification of inhibitors of Tat-mediated HIV-1 transcription from among a large number of compounds, and the inhibitory effect of HIV-1 transcription by gemcitabine and its analogues may suggest a strategy for developing a new class of therapeutic anti-HIV drugs.


Asunto(s)
Fármacos Anti-VIH/farmacología , VIH-1/efectos de los fármacos , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/antagonistas & inhibidores , 3-Desazauridina/farmacología , Línea Celular , Citidina/análogos & derivados , Citidina/farmacología , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Reposicionamiento de Medicamentos , VIH-1/genética , VIH-1/fisiología , Ensayos Analíticos de Alto Rendimiento , Humanos , Roscovitina/farmacología , Bibliotecas de Moléculas Pequeñas , Transcripción Genética/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Gemcitabina
15.
Bioorg Med Chem Lett ; 30(9): 127071, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32146051

RESUMEN

New therapies for treating drug-resistant pneumococcal infections are urgently needed. The novel scaffold 6-hydroxy-4-oxo-1,2-dihydro-4H-quinoline was shown to have similar efficacies against all three different serotypes of S. pneumoniae, ATCC 49617™ (19F), ATCC BAA-1663™ (15B), and ATCC 700904™ (19A), in a resazurin-based high-throughput screen using the Korea Chemical Bank library. Further studies to identify a new lead with this scaffold, including tricyclic pyrrolo[3,2,1-ij]quinolone and pyrido[3,2,1-ij]quinolone derivatives, led to the identification of 6d, 7d and 12a. Compound 6d (IC50 = 0.92, 0.75, and 0.77 µM), 7d (IC50 = 0.57, 0.66, and 0.38 µM) and 12a (IC50 = 0.27, 1.03, and 0.62 µM) showed submicromolar IC50 values against 19F, 15B, and 19A, respectively, and thus serve as a starting point for further optimization. While some of compounds in this series exhibited acceptable pharmacokinetic profiles in preliminary in vivo rat experiments, the most active compound 12a showed poor solubility and high plasma protein binding. Our current research efforts are focused on optimizing compounds to improve physicochemical properties as well as potency.


Asunto(s)
Antibacterianos/síntesis química , Antibacterianos/farmacología , Diseño de Fármacos , Quinolinas/síntesis química , Quinolinas/farmacología , Streptococcus pneumoniae/efectos de los fármacos , Antibacterianos/química , Farmacorresistencia Bacteriana , Ensayos Analíticos de Alto Rendimiento , Estructura Molecular , Quinolinas/química
16.
Bioorg Med Chem Lett ; 30(20): 127472, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32781216

RESUMEN

New therapies for treating coronaviruses are urgently needed. A series of 4-anilino-6-aminoquinazoline derivatives were synthesized and evaluated to show high anti-MERS-CoV activities. N4-(3-Chloro-4-fluorophenyl)-N6-(3-methoxybenzyl)quinazoline-4,6-diamine (1) has been identified in a random screen as a hit compound for inhibiting MERS-CoV infection. Throughout optimization process, compound 20 was found to exhibit high inhibitory effect (IC50 = 0.157 µM, SI = 25) with no cytotoxicity and moderate in vivo PK properties.


Asunto(s)
Compuestos de Anilina/farmacología , Antivirales/farmacología , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Quinazolinas/farmacología , Compuestos de Anilina/síntesis química , Compuestos de Anilina/farmacocinética , Compuestos de Anilina/toxicidad , Animales , Antivirales/síntesis química , Antivirales/farmacocinética , Antivirales/toxicidad , Línea Celular , Chlorocebus aethiops , Cricetulus , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Quinazolinas/síntesis química , Quinazolinas/farmacocinética , Quinazolinas/toxicidad , Ratas , Relación Estructura-Actividad
17.
Molecules ; 25(12)2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32549310

RESUMEN

While aminoacyl-tRNA synthetase-interacting multifunctional protein 2 (AIMP2) is a tumor suppressor, its exon 2-depleted splice variant (AIMP2-DX2 or shortly DX2) is highly expressed in human lung cancer, and the ratio of DX2 to AIMP2 increases according to the progression of lung cancer. In this study, pyrimethamine inhibited the level of DX2 (IC50 = 0.73 µM) in A549 cells expressing nanoluciferase-tagged DX2. In a panel of 5 lung cancer cell lines with various DX2 levels, pyrimethamine most potently suppressed the growth of H460 cells, which express high levels of DX2 (GI50 = 0.01 µM). An immunoblot assay in H460 cells showed that pyrimethamine decreased the DX2 level dose-dependently but did not affect the AIMP2 level. Further experiments confirmed that pyrimethamine resulted in ubiquitination-mediated DX2 degradation. In an in vivo mouse xenograft assay using H460 cells, intraperitoneal administration of pyrimethamine significantly reduced the tumor size and weight, comparable with the effects of taxol, without affecting body weight. Analysis of tumor tissue showed a considerably high concentration of pyrimethamine with a decreased levels of DX2. These results suggest that pyrimethamine, currently used as anti-parasite drug, could be repurposed to treat lung cancer patients expressing high level of DX2.


Asunto(s)
Proteínas Nucleares/metabolismo , Pirimetamina/química , Pirimetamina/farmacología , Células A549 , Aminoacil-ARNt Sintetasas/metabolismo , Animales , Línea Celular Tumoral , Exones , Femenino , Humanos , Pulmón/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C , Proteínas Nucleares/fisiología , Ubiquitina/genética , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Bioorg Med Chem Lett ; 29(6): 839-843, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30686752

RESUMEN

Osthenol (6), a prenylated coumarin isolated from the dried roots of Angelica pubescens, potently and selectively inhibited recombinant human monoamine oxidase-A (hMAO-A) with an IC50 value of 0.74 µM and showed a high selectivity index (SI > 81.1) for hMAO-A versus hMAO-B. Compound 6 was a reversible competitive hMAO-A inhibitor (Ki = 0.26 µM) with a potency greater than toloxatone (IC50 = 0.93 µM), a marketed drug. Isopsoralen (3) and bakuchicin (1), furanocoumarin derivatives isolated from Psoralea corylifolia L., showed slightly higher IC50 values (0.88 and 1.78 µM, respectively) for hMAO-A than 6, but had low SI values (3.1 for both). Other coumarins tested did not effectively inhibit hMAO-A or hMAO-B. A structural comparison suggested that the 8-(3,3-dimethylallyl) group of 6 increased its inhibitory activity against hMAO-A compared with the 6-methoxy group of scopoletin (4). Molecular docking simulations revealed that the binding affinity of 6 for hMAO-A (-8.5 kcal/mol) was greater than that for hMAO-B (-5.6 kcal/mol) and that of 4 for hMAO-A (-7.3 kcal/mol). Docking simulations also implied that 6 interacted with hMAO-A at Phe208 and with hMAO-B at Ile199 by carbon hydrogen bondings. Our findings suggest that osthenol, derived from natural products, is a selective and potent reversible inhibitor of MAO-A, and can be regarded a potential lead compound for the design of novel reversible MAO-A inhibitors.


Asunto(s)
Cumarinas/química , Inhibidores de la Monoaminooxidasa/química , Monoaminooxidasa/química , Acetilcolinesterasa/química , Dominio Catalítico , Inhibidores de la Colinesterasa/química , Cumarinas/metabolismo , Pruebas de Enzimas , Humanos , Cinética , Simulación del Acoplamiento Molecular , Estructura Molecular , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/metabolismo , Unión Proteica , Relación Estructura-Actividad
19.
Bioorg Med Chem Lett ; 29(23): 126727, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31624041

RESUMEN

3-Acyl-2-phenylamino-1,4-dihydroquinolin-4(1H)-one derivatives were synthesized and evaluated to show high anti-MERS-CoV inhibitory activities. Among them, 6,8-difluoro-3-isobutyryl-2-((2,3,4-trifluorophenyl)amino)quinolin-4(1H)-one (6u) exhibits high inhibitory effect (IC50 = 86 nM) and low toxicity (CC50 > 25 µM). Moreover, it shows good metabolic stability, low hERG binding affinity, no cytotoxicity, and good in vivo PK properties.


Asunto(s)
Antivirales/farmacología , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Quinolonas/farmacología , Animales , Antivirales/síntesis química , Antivirales/química , Células CHO , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Cricetulus , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Células 3T3 NIH , Quinolonas/síntesis química , Quinolonas/química , Relación Estructura-Actividad , Células Vero
20.
Bioorg Chem ; 83: 317-325, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30396116

RESUMEN

Three flavanones and two flavones were isolated from the leaves of Prunus padus var. seoulensis by the activity-guided screening for new monoamine oxidase (MAO) inhibitors. Among the compounds isolated, rhamnocitrin (5) was found to potently and selectively inhibit human MAO-A (hMAO-A, IC50 = 0.051 µM) and effectively inhibit hMAO-B (IC50 = 2.97 µM). The IC50 value of 5 for hMAO-A was the lowest amongst all natural flavonoids reported to date, and the potency was 20.2 times higher than that of toloxatone (1.03 µM), a marketed drug. In addition, 5 reversibly and competitively inhibited hMAO-A and hMAO-B with Ki values of 0.030 and 0.91 µM, respectively. Genkwanin (4) was also observed to strongly inhibit hMAO-A and hMAO-B (IC50 = 0.14 and 0.35 µM, respectively), and competitively inhibit hMAO-A and hMAO-B (Ki = 0.097 and 0.12 µM, respectively). Molecular docking simulation reveals that the binding affinity of 5 with hMAO-A (-18.49 kcal/mol) is higher than that observed with hMAO-B (0.19 kcal/mol). Compound 5 interacts with hMAO-A at four possible residues (Asn181, Gln215, Thr336, and Tyr444), while hMAO-B forms a single hydrogen bond at Glu84. These findings suggest that compound 5 as well as 4 can be considered as novel potent and reversible hMAO-A and/or hMAO-B inhibitors or useful lead compounds for future development of hMAO inhibitors in neurological disorder therapies.


Asunto(s)
Quempferoles/química , Inhibidores de la Monoaminooxidasa/química , Prunus/química , Dominio Catalítico , Flavonas/química , Flavonas/aislamiento & purificación , Flavonas/metabolismo , Humanos , Quempferoles/aislamiento & purificación , Quempferoles/metabolismo , Simulación del Acoplamiento Molecular , Monoaminooxidasa/química , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/aislamiento & purificación , Inhibidores de la Monoaminooxidasa/metabolismo , Hojas de la Planta/química , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA