Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Curr Issues Mol Biol ; 46(1): 542-556, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38248337

RESUMEN

We produced rec-single chain eel luteinizing (rec-eel LH) and follicle-stimulating (rec- eel FSH) hormones displaying high biological activity in Chinese hamster ovary suspension (CHO-S) cells. We constructed several mutants, in which a linker, including an O-linked glycosylated carboxyl-terminal peptide (CTP) of an equine chorionic gonadotropin (eCG) ß-subunit, was attached between the ß- and α-subunit (LH-M and FSH-M) or in the N-terminal (C-LH and C-FSH) or C-terminal (LH-C and FSH-C) regions. The plasmids were transfected into CHO-S cells, and culture supernatants were collected. The secretion of mutants from the CHO-S cells was faster than that of eel LHß/α-wt and FSHß/α-wt proteins. The molecular weight of eel LHß/α-wt and eel FSHß/α-wt was 32-34 and 34-36 kDa, respectively, and that of LH-M and FSH-M was 40-43 and 42-45 kDa, respectively. Peptide-N-glycanase F-treatment markedly decreased the molecular weight by approximately 8-10 kDa. The EC50 value and the maximal responsiveness of the eel LH-M and eel FSH-M increased compared with the wild-type proteins. These results show that the CTP region plays a pivotal role in early secretion and signal transduction. We suggest that novel rec-eel LH and FSH proteins, exhibiting potent activity, could be produced in large quantities using a stable CHO cell system.

2.
Small ; 20(13): e2307694, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37967333

RESUMEN

Although adoptive cell-based therapy is illuminated as one of the promising approaches in cancer immunotherapy, it shows low antitumor efficacy because transferred cells adapt and alter toward a pro-tumoral phenotype in response to the tumor's immunosuppressive milieu. Herein, nanoengineered macrophages anchored with functional liposome armed with cholesterol-conjugated Toll-like receptor 7/8 agonist (masked TLR7/8a, m7/8a) are generated to overcome the shortcomings of current macrophage-based therapies and enhance the remodeling of the immunosuppressive tumor microenvironment (TME). The liposome-anchored macrophages (LAMΦ-m7/8a), are fabricated by anchoring dibenzocyclooctyne-modified liposome(m7/8a) onto azido-expressing macrophages via a bio-orthogonal click reaction, are continuously invigorated due to the slow internalization of liposome(m7/8a) and sustained activation. LAMΦ-m7/8a secreted ≈3 and 33-fold more IL-6 and TNF-α than conventional M1-MΦ, maintained the M1 phenotype, and phagocytosed tumor cells for up to 48 h in vitro. Both intratumoral and intravenous injections of LAMΦ-m7/8a induced effective antitumor efficacy when treated in combination with doxorubicin-loaded liposomes in 4T1-tumor bearing mice. It not only increases the infiltration of antigen-specific CD8+ T cells secreting granzyme B, IFN-γ, and TNF-α within the TME, but also reduces myeloid-derived suppressor cells. These results suggest that LAMΦ-m7/8a may provide a suitable alternative to next-generation cell-based therapy platform.


Asunto(s)
Neoplasias , Receptor Toll-Like 7 , Ratones , Animales , Linfocitos T CD8-positivos , Factor de Necrosis Tumoral alfa , Liposomas , Microambiente Tumoral , Macrófagos , Neoplasias/terapia , Inmunoterapia/métodos , Adyuvantes Inmunológicos , Línea Celular Tumoral
3.
Drug Deliv Transl Res ; 13(7): 2015-2031, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36581707

RESUMEN

Almost like a living being in and of itself, tumors actively interact with and modify their environment to escape immune responses. Owing to the pre-formation of cancer-favorable microenvironment prior to anti-cancer treatment, the numerous attempts that followed propose limited efficacy in oncology. Immunogenicity by activation of immune cells within the tumor microenvironment or recruitment of immune cells from nearby lymph nodes is quickly offset as the immunosuppressive environment, rapidly converting immunogenic cells into immune suppressive cells, overriding the immune system. Tumor cells, as well as regulatory cells, namely M2 macrophages, Treg cells, and MDSCs, derived by the immunosuppressive environment, also cloak from potential anti-tumoral factors by directly or indirectly secreting cytokines, such as IL-10 and TGF-ß, related to immune regulation. Enzymes and other metabolic or angiogenetic constituents - VEGF, IDO1, and iNOS - are also employed directed for anti-cancer immune cell malfunctioning. Therefore, the conversion of "cold" immunosuppressive environment into "hot" immune responsive environment is of paramount importance, bestowing the advances in the field of cancer immunotherapy the opportunity to wholly fulfill its intended purpose. This paper reviews the mechanisms by which tumors wield to exercise immune suppression and the nanoengineered delivery strategies being developed to overcome this suppression.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Inmunoterapia , Neoplasias/tratamiento farmacológico , Macrófagos , Sistemas de Liberación de Medicamentos
4.
J Control Release ; 343: 564-583, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35124126

RESUMEN

Although cancer immunotherapy has emerged as a novel cancer treatment modality, it still suffers from low therapeutic efficacy in clinics due to the presence of a low number of activated immune cells and immunosuppressive factors in the tumor microenvironment (TME). Immunomodulatory ribonucleic acids (RNAs) have been developed to improve the therapeutic efficacy of cancer immunotherapy through either regulating target cell functions [i.e., messenger RNA (mRNA) or small interfering RNA (siRNA)] or stimulating immune cells [i.e., toll-like receptors (TLRs) or cytosolic retinoic acid-inducible gene I (RIG-I) agonist]. However, RNA-based therapeutics face many biological barriers, including ineffective delivery to target cells, degradation by ribonucleases (RNases), and difficulties in passing through the cellular membranes. In this review, we discuss nanoparticle-based delivery strategies that can overcome these hurdles to enhance RNA-based immunomodulation in cancer immunotherapy. Various nanoparticle-based delivery has been reported to increase the delivery efficacy of RNAs, by improving cellular uptake, RNA stability, and accumulation at the desired sites (target cells and intracellular compartments). The nanoparticle-based delivery of multifaceted immunomodulatory RNAs could enhance cancer immunotherapy through the regulating functions of immune cells, tumor cells, and immunosuppressive factors as well as stimulating the immune cells by recognition of endosomal TLRs and cytosolic RIG-I. Nanotechnology-assisted RNA-based therapeutics are expected to offer tremendous potential and advances for treating cancer, viral infections, and other diseases.


Asunto(s)
Nanopartículas , ARN Mensajero , ARN Interferente Pequeño , Sistemas de Liberación de Medicamentos , Humanos , Inmunoterapia , Nanopartículas/uso terapéutico , Neoplasias/tratamiento farmacológico , ARN Mensajero/uso terapéutico , Receptores Toll-Like , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA